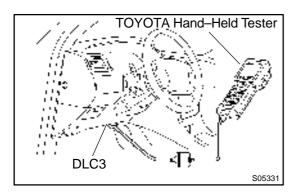

ENGINE (5S–FE) HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following page.

DI00F-08

CUSTOMER PROBLEM ANALYSIS CHECK

ENG	ENGINE CONTROL SYSTEM Check Sheet Inspector's Name						
Cus	tomer's Name				Model and Model Year		
Driv	er's Name				Frame No.		
	vehicle ught in				Engine Model		
Lice	nse No.				Odometer Reading		km miles
	Engine does not Start	Engine does	not crank		o initial combustion	□ No comple	ete combustion
	Difficult to Start	Engine crant Other	-				
ptoms	Poor Idling	□ Incorrect firs □ Rough idling	t idle 🛛	Idling rpm is a	bnormal 🛛 High (rpm) 🛛	
Problem Symptoms	□ Poor Driveaability	☐ Hesitation ☐ Knocking	🗆 Bac	k fire	☐ Muffler explosion (afte	er-fire) 🛛	
Proble	Engine Stall	After acceler	arting ator pedal I	□ After acce released	elerator pedal depressed		
	□ Others						
	s Problem urred						
	blem Frequency			•	times per day/mo		e only
	Weather	□ Fine			ny 🗆 Snowy 🗆		
len urs	Outdoor Temperature	□ Hot	🗆 War	m 🗆 Coo	DI Cold (approx.	°F/°C)	
Condition When Problem Occurs	Place	☐ Highw ☐ Rough	ay ⊡ S road		□ Inner city □		Downhill
Condi	Engine Temper	ature 🛛 Cold	🗆 War			Any temperature [□ Other
	Engine Operat	Engine Operation		Just after star Constant spec	ed 🛛 Accelerat	0	□ Racing leration
Con	Condition of MIL			□ Remains on	☐ Sometimes lig	ht up 🛛 🗆	Does not light up
	Inspection	Normal Mode (Precheck)		Normal	Malfunction co Freezed frame	()()
DTC Inspection		Check Mode		□ Normal	☐ Malfunction co ☐ Freezed frame)


DI00G-05

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Description
 - When troubleshooting OBD II vehicles, the only difference from the usual troubleshooting procedure is that you connect to the vehicle the OBD II scan tool complying with SAE J1978 or TOYOTA hand– held tester, and read off various data output from the vehicle's ECM.
 - OBD II regulations require that the vehicle's onboard computer lights up the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in the emission control system / components or in the powertrain control components which affect vehicle emissions, or a malfunction in the computer. In addition to the MIL lighting up when a malfunction is detected, the applicable Diagnostic Trouble Code (DTC) prescribed by SAE J2012 are recorded in the ECM memory. (See page DI–16)

If the malfunction does not reoccur in 3 consecutive trips, the MIL goes off automarially but the DTCs remain recorded in the ECM memory.

 To check the DTCs, connect the OBD II scan tool or TOYOTA hand-held tester to Data Link Connector 3 (DLC3) on the vehicle. The OBD II scan tool or TOYOTA hand-held tester also enables you to erase the DTCs and check freezed frame data and various forms of engine data (For operating instructions, see the OBD II scan tool's instruction book.) DTCs include SAE controlled codes and manufacturer controlled codes. SAE controlled codes must be set as prescribed by the SAE, while manufacturer controlled codes can be set freely by the manufacturer within the prescribed limits. (See DTC chart on page DI-16)

DI00H-08

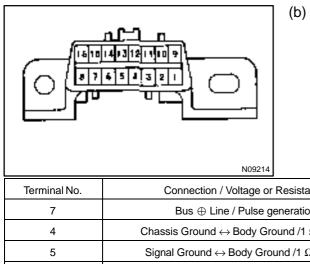
238

- The diagnosis system operates in normal mode during normal vehicle use. It also has a check mode for technicians to simulate malfunction symptoms and troubleshoot. Most DTCs use 2 trip detection logic* to prevent erroneous detection, and ensure thorough malfunction detection. By switching the ECM to check mode when troubleshooting, the technician can cause the MIL to light up for a malfunction that is only detected once or momentarily. (TOYOTA hand-held tester only)
 - (See page <mark>DI–3</mark>)
- *2 trip detection logic: When a malfunction is first detected, the malfunction is temporarily stored in the ECM memory.(1st trip)

If the same malfunction is detected again during the second drive test, this second detection causes the MIL to light up.(2nd trip) (However, the IG switch must be turned OFF between the 1st trip and the 2nd trip.)

• Freeze frame data:

Freeze frame data records the engine condition when a misfire (DTCs P0300 ~ P0304) or fuel trim malfunction (DTCs P0171, P0172) or other malfunction (first malfunction only), is detected.


Because freeze frame data records the engine conditions (fuel system, calculated load, engine coolant temperature, fuel trim, engine speed, vehicle speed, etc.) when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

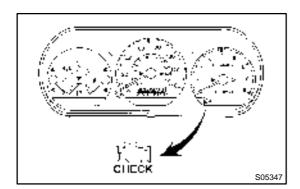
• Priorities for troubleshooting:

If troubleshooting priorities for multiple DTCs are given in the applicable DTC chart, these should be followed.

If no instructions are given troubleshoot DTCs according to the following priorities.

- DTCs other than fuel trim malfunction (DTCs P0171, P0172), EGR (DTCs P0401, P0402), and misfire (DTCs P0300 ~ P0304).
- (2) Fuel trim malfunction (DTCs P0171, P0172), and EGR (DTCs P0401, P0402).
- (3) Misfire (DTCs P0300 ~ P0304).

Check the DLC3


The vehicle's ECM uses ISO 9141–2 for communication. The terminal arrangement of DLC3 complies with SAE J1962 and matches the ISO 9141–2 format.

Terminal No. Connection / Voltage or Resistance Condition		Condition
7	Bus \oplus Line / Pulse generation	During transmission
4	Chassis Ground \leftrightarrow Body Ground /1 Ω or less	Always
5	Signal Ground \leftrightarrow Body Ground /1 Ω or less	Always
16	Battery Positive \leftrightarrow Body Ground /9 ~ 14 V	Always

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of the OBD II scan tool or TOYOTA hand-held tester to DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

2. INSPECT DIAGNOSIS (Normal Mode)

- (a) Check the MIL.
 - (1) The MIL comes on when the ignition switch is turned ON and the engine is not running.

HINT:

If the MIL does not light up, troubleshoot the combination meter (See page BE-2).

- (2) When the engine started, the MIL should go off. If the lamp remains on, the diagnosis system has detected a malfunction or abnormality in the system.
- (b) Check the DTC.

NOTICE:

TOYOTA hand-held tester only: When the diagnosis system is switched from normal mode to check mode, it erases all DTCs and freezed frame data recorded in normal mode. So before switching modes, always check the DTCs and freezed frame data, and note them down.

Prepare the OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester.

Date :

- (2) Connect the OBD II scan tool or TOYOTA handheld tester to DLC3 under the instrument panel lower pad.
- (3) Turn the ignition switch ON and turn the OBD II scan tool or TOYOTA hand-held tester switch ON.
- (4) Use the OBD II scan tool or TOYOTA hand-held tester to check the DTCs and freezed frame data and note them down. (For operating instructions, see the OBD II scan tool's instruction book.)

(5) See page DI-3 to confirm the details of the DTCs.

NOTICE:

- When simulating symptoms with an OBD II scan tool (excluding TOYOTA hand-held tester) to check the DTCs, use normal mode. For code on the DTC chart subject to "2 trip detection logic", perform the following either action.
- Turn the ignition switch OFF after the symptom is simulated the first time. Then repeat the simulation process again. When the problem has been simulated twice, the MIL lights up and the DTCs are recorded in the ECM.
- Check the 1st trip DTC using Mode 7 (Continuous Test Results) for SAE J1979.
- (c) Clear the DTC.

The DTCs and freezed frame data will be erased by either action.

- Operating the OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester to erase the codes. (See the OBD II scan tool's instruction book for operating instructions.)
- (2) Disconnecting the battery terminals or EFI fuse.

NOTICE:

If the TOYOTA hand-held tester switches the ECM from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during check mode, the DTCs and freezed frame data will be erased.

3. INSPECT DIAGNOSIS (Check Mode)

HINT:

TOYOTA hand-held tester only:

Compared to the normal mode, the check mode has an increased sensitivity to detect malfunctions.

Furthermore, the same diagnostic items which are detected in the normal mode can also be detected in the check mode.

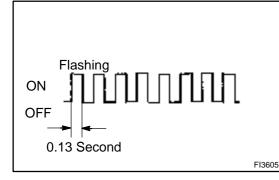
- (a) Check the DTC.
 - (1) Initial conditions
 - Battery positive voltage 11 V or more
 - Throttle valve fully closed
 - Transmission in P or N position
 - Air conditioning switched OFF
 - (2) Turn ignition switch OFF.
 - (3) Prepare the TOYOTA hand-held tester.
 - (4) Connect the TOYOTA hand-held tester to the DLC3 under the instrument panel lower pad.
 - (5) Turn the ignition switch ON and switch the TOYOTA hand-held tester ON.
 - (6) Switch the TOYOTA hand-held tester normal mode to check mode. (Check that the MIL flashes.)

NOTICE:

If the TOYOTA hand-held tester switches the ECM from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or LOCK during check mode, the DTCs and freezed frame data will be erased.

- (7) Start the engine. (The MIL goes out after the engine start.)
- (8) Simulate the conditions of the malfunction described by the customer.

NOTICE:


Leave the ignition switch ON until you have checked the DTC, etc.

(9) After simulating the malfunction conditions, use the TOYOTA hand-held tester diagnosis selector to check the DTCs and freezed frame data, etc.

HINT:

Take care not to turn the ignition switch OFF. Turning the ignition switch OFF switches the diagnosis system from check mode to normal mode. So all DTCs, etc. are erased.

(10) After checking the DTC, inspect the applicable circuit.

4. FAIL-SAFE CHART

If any of the following codes is recorded, the ECM enters fail-safe mode.

DTC No.	Fail–Safe Operation	Fail–Safe Deactivation Conditions
P0105	Ignition timing fixed at 5° BTDC	Returned to normal condition
P0110	Intake air temperature is fixed at 20°C (68°F)	Returned to normal condition
P0115	Engine coolant temperature is fixed at 80°(176°F)	Returned to normal condition
P0120	VTA is fixed at 0°	The following condition must be repeated at least 2 times consecutively VTA $\geqq~0.1$ V and >0.95 V
P0135 P0141	The heater circuit in witch an abnormality is detected is turned off	Ignition switch OFF
P0325	Max. timing retardation	Ignition switch OFF
P0336	Fuel cut	Returned to normal condition
P1135	The heater circuit in which an abnormality is detected is turned off	Ignition switch OFF
P1300 P1310	Fuel cut	IGF signal is detected for 2 consecutive ignitions

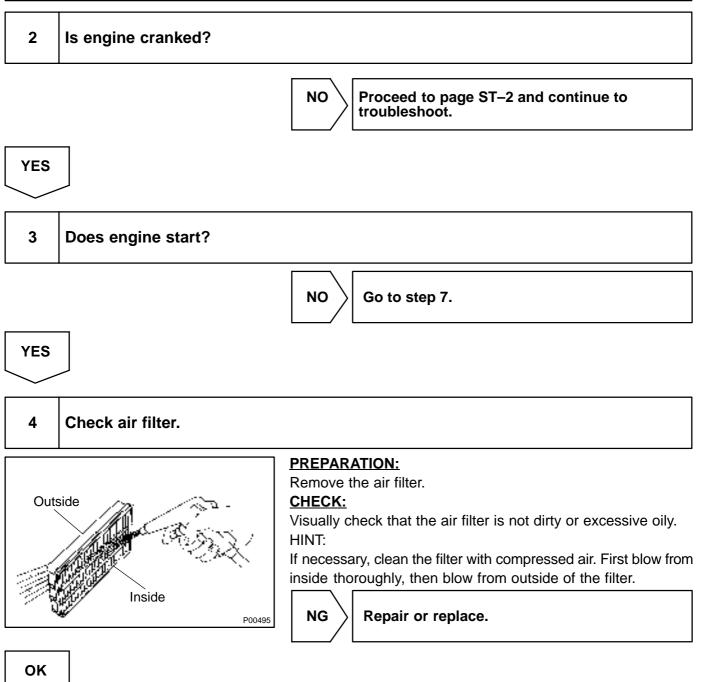
5. CHECK FOR INTERMITTENT PROBLEMS

TOYOTA HAND-HELD TESTER only:

By putting the vehicle's ECM in check mode, 1 trip detection logic is possible instead of 2 trip detection logic and sensitivity to detect open circuits is increased. This makes it easier to detect intermittent problems.

- (1) Clear the DTC (See page DI–3).
- (2) Set the check mode (See page DI–3).
- (3) Perform a simulation test (See page IN–21).
- (4) Check the connector and terminal (See page IN–31).
- (5) Handle the connector (See page IN–31).

6. BASIC INSPECTION


When the malfunction code is not confirmed in the DTC check, troubleshooting should be performed in the order for all possible circuits to be considered as the causes of the problems. In many cases, by carrying out the basic engine check shown in the following flow chart, the location causing the problem can be found quickly and efficiently. Therefore, use of this check is essential in engine troubleshooting.

1 Is battery positive voltage 11 V or more when engine is stopped?

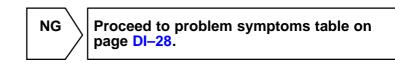
NO

Charge or replace battery.

YES

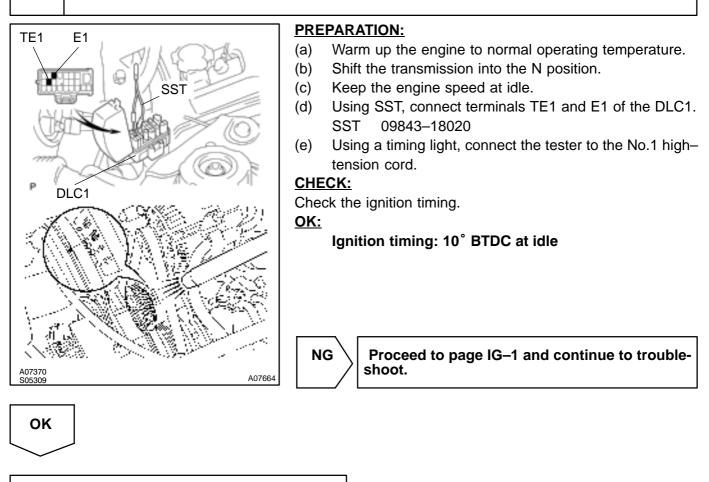
5 Check idle speed.

PREPARATION:


- (a) Warm up the engine to normal operating temperature.
- (b) Switch off all the accessories.
- (c) Switch off the air conditioning.
- (d) Shift the transmission into the N position.
- (e) Connect the OBD II scan tool or TOYOTA hand-held tester to DLC3 on the vehicle.

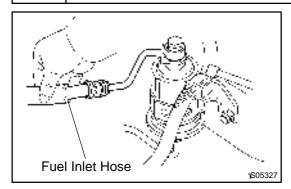
CHECK:

Use the CURRENT DATA to check the idle speed.


<u>OK:</u>

Idle speed: 650 ~ 750 rpm

OK


6 Check ignition timing.

Proceed to problem symptoms table on page DI-28.

DI–12

7 Check fuel pressure.

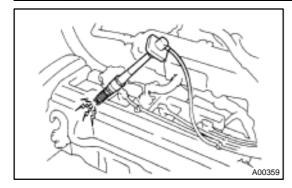
PREPARATION:

- (a) Be sure that enough fuel is in the tank.
- (b) Connect the TOYOTA hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and push TOYOTA hand-held tester main switch ON.
- (d) Use the ACTIVE TEST mode to operate the fuel pump.
- (e) Please refer to the TOYOTA hand-held tester operator's manual for further details.
- (f) If you have no TOYOTA hand-held tester, connect the positive (+) and negative (-) leads from the battery to the fuel pump connector (See page SF-6).

CHECK:

Check for fuel pressure in the fuel inlet hose when it is pinched off.

HINT:


At this time, you will hear a fuel flowing noise.

OK

DIAGNOSTICS - ENGINE (5S-FE)

8 Check for spark.

PREPARATION:

- (a) Disconnect the high-tension cord from the spark plug.
- (b) Remove the spark plug.
- (c) Install the spark plug to the high-tension cord.
- (d) Disconnect the injector connector.
- (e) Ground the spark plug.

CHECK:

Check if spark occurs while the engine is being cranked. **NOTICE:**

To prevent excess fuel being injected from the injectors during this test, don't crank the engine for more than $5 \sim 10$ seconds at a time.

Proceed to page IG–1 and continue to trouble-shoot.

ОК

Proceed to problem symptoms table on page DI–28.

7. ENGINE OPERATING CONDITION NOTICE:

The values given below for "Normal Condition" are representative values, so a vehicle may still be normal even if its value varies from those listed here. So do not decide whether a part is faulty or not solely according to the "Normal Condition" here.

(a) CARB mandated signals.

TOYOTA hand-held tester display	Measurement Item	Normal Condition*1
FUEL SYS #1	Fuel System Bank 1 OPEN: Air–fuel ratio feedback stopped CLOSED: Air–fuel ratio feedback operating	Idling after warming up: CLOSED
CALC LOAD	Calculator Load: Current intake air volume as a proportion of max. intake air volume	Idling: 19.7 ~ 50.4 % Racing without load (2,500rpm): 16.8 ~ 47.4 %
COOLANT TEMP.	Engine Coolant Temp. Sensor Value	After warming up: 80 ~ 95°C (176 ~ 203°F)
SHORT FT #1	Short-term Fuel Trim Bank 1	0 ± 20 %
LONG FT #1	Long-term Fuel Trim Bank 1	0 ± 20 %
ENGINE SPD	Engine Speed	Idling: 650 ~ 750 rpm
VEHICLE SPD	Vehicle Speed	Vehicle Stopped: 0 km/h (0 mph)
IGN ADVANCE	Ignition Advance: Ignition Timing of Cylinder No. 1	Idling: BTDC 0 ~ 10°
INTAKE AIR	Intake Air Temp. Sensor Value	Equivalent to Ambient Temp.
МАР	Absolute Pressure inside Intake Manifold	Idling: 20 ~ 51 kPa Racing without load (2,500 rpm): 17 ~ 48 kPa
THROTTLE POS	Voltage Output of Throttle Position Sensor Calculated as a percentage: $0 V \rightarrow 0\%, 5 V \rightarrow 100 \%$	Throttle Fully Closed: 6 ~ 16 % Throttle Fully Open: 64 ~ 98 %
O2S B1, S1	Voltage Output of Heated Oxygen Sensor Bank 1 Sensor 1	Idling: 0.1 ~ 0.9 V (0.56 ~ 0.76 V *2)
O2FT B1, S1	Heated Oxygen Sensor Fuel Trim Bank 1 Sensor 1 (Same as SHORT FT #1)	0 ± 20 %
A/FS B1, S1 *3	Voltage Output of A/F Sensor	Idling: 2.8 ~ 3.8 V
A/FFT B1, S1 *3	A/F Sensor Fuel Trim (Same as SHORT FT #1)	0 ± 20 %
O2S B1, S2	Voltage Output of Heated Oxygen Sensor Bank 1 Sensor 2	Driving at 50 km/h (31 mph): 0.05 ~ 0.95 V

*1: If no conditions are specifically stated for "Idling", it means the shift lever is at N or P position, the A/C switch is OFF and all accessory switches are OFF.

*2: Only for California Specification vehicles, when you use the OBD II scan tool (excluding TOYOTA hand-held tester).

*3: Only for California Specification vehicles, when you use the TOYOTA hand-held tester.

TOYOTA hand-held tester display	Measurement Item	Normal Condition*1
MISFIRE RPM	Engine RPM for first misfire range	Misfire 0: 0 rpm
MISFIRE LOAD	Engine load for first misfire range	Misfire 0: 0 g/r
INJECTOR	Fuel injection time for cylinder No.1	Idling: 2.9 ~ 5.1 ms
IAC DUTY RATIO	Intake Air Control Valve Duty Ratio Opening ratio rotary solenoid type IAC valve	Idling: 25 ~ 62 %
STARTER SIG	Starter Signal	Cranking: ON
CTP SIG	Closed Throttle Position Signal	Throttle fully closed: ON
A/C SIG	A/C Switch Signal	A/C ON: ON
PNP SIG	Park/Neutral Position Switch Signal	P or N position: ON
ELECTCL LOAD SIG	Electrical Load Signal	Defogger S/W ON: ON
STOP LIGHT SW	Stop Light Switch Signal	Stop light switch ON: ON
PS OIL PRESS SW	Power Steering Oil Pressure Switch Signal	Turn steering wheel: ON
FC IDL	Fuel Cut Idle: Fuel cut when throttle valve fully closed, during deceleration	Fuel cut operating: ON
FC TAU	Fuel Cut TAU: Fuel cut during very light load	Fuel cut operating: ON
CYL#1, CYL#2, CYL#3, CYL#4	Abnormal revolution variation for each cylinder	0 %
IGNITION	Total number of ignition for every 1,000 revolu- tions	0 ~ 2,000 rpm
EGR SYSTEM	EGR system operating condition	Idling: OFF
FUEL PUMP	Fuel Pump Signal	Idling: ON
A/C CUT SIG	A/C Cut Signal	A/C S/W OFF: ON
A/C MAG CLUTCH	A/C Switch Signal	A/C ON: ON
EVAP (PURGE) VSV	EVAP VSV Signal	VSV operating: Avove 30 %
VAPOR PRESS VSV	Vapor Pressure VSV Signal	VSV operating: ON
TOTAL FT B1	Total Fuel Trim Bank 1: Average value for fuel trim system of bank 1	Idling: 0.8 ~ 1.2 V
O2 LR B1, S1 *2	Heated Oxygen Sensor Lean Rich Bank 1 Sen- sor 1: Response time for oxygen sensor output to switch from lean to rich	Idling after warming up: 0 ~ 1,000 msec.
O2 RL B1, S1 *2	Heated Oxygen Sensor Rich Lean Bank 1 Sen- sor 1: Response time for oxygen sensor output to switch from rich to lean	Idling after warming up: 0 ~ 1,000 msec.

(b) TOYOTA Enhanced Signals.

*1: If no conditions are specifically stated for "Idling", it means the shift lever is at N or P position, the A/C switch is OFF and all accessory switches are OFF.

*2: Except California Specification vehicles.

DIAGNOSTIC TROUBLE CODE CHART

HINT:

Parameters listed in the chart may not be exactly the same as your reading due to the type of instrument or other factors.

If a malfunction code is displayed during the DTC check in check mode, check the circuit for that code listed in the table below. For details of each code, turn to the page referred to under the "See Page" for the respective "DTC No." in the DTC chart.

SAE Controlled:

DTC No. (See Page)	Detection Item	Trouble Area	MIL*1	Memory
P0105 (DI-29)	Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction	□Open or short in manifold absolute pressure sensor circuit □Manifold absolute pressure sensor □ECM	0	0
P0106 (DI-33)	Manifold Absolute Pressure Circuit Range/Performance Problem	☐Manifold absolute pressure sensor ☐Vacuum line	0	0
P0110 (DI–35)	Intake Air Temp. Circuit Malfunction	□Open or short in intake air temp. sensor circuit □ntake air temp. sensor (built into mass air flow meter) □ECM	0	0
P0115 (DI-41)	Engine Coolant Temp. Circuit Malfunction	□Open or short in engine coolant temp. sensor circuit □Engine coolant temp. sensor □ECM	0	0
P0116 (DI-47)	Engine Coolant Temp. Circuit Range/Performance Problem	☐Engine coolant temp. sensor ☐Cooling system	0	0
P0120 (DI-49)	Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction	Open or short in throttle position sensor circuit Throttle position sensor ECM	0	0
P0121 (DI–54)	Throttle/Pedal Position Sensor/Switch "A" Circuit Range/Performance Problem	☐ hrottle position sensor	0	0
*2 P0125 (DI-61)	Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)	 Open or short in heated oxygen sensor (bank 1 sensor 1) circuit Heated oxygen sensor (bank 1 sensor 1) ECM 	0	0
*3 P0125 (DI–55)	Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)	□Open or short in A/F sensor circuit □A/F sensor □ECM	0	0
*2 P0130 (DI–66)	Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 1)	☐Heated oxygen sensor □Fuel trim malfunction	0	0
*2 P0133 (DI-71)	Heated Oxygen Sensor Circuit Slow Response (Bank 1 Sensor 1)	☐Heated oxygen sensor ☐Fuel trim malfunction	0	0
*2 P0135 (DI–75)	Heated Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 1)	□Open or short in heater circuit of heated oxygen sensor □Heated oxygen sensor heater □ECM	0	0

*1: 0 ~~~MIL lights up

*2: Except California specification vehicles

*3: Only for California specification vehicles

DI00I-09

DTC No. (See Page)	Detection Item	Trouble Area	MIL*1	Memory
P0136 (DI–77)	Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)	□Heated oxygen sensor	0	0
P0141 (DI–75)	Heated Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 2)	□Same as DTC P0135	0	0
*3 P0171 (DI–84)	System too Lean (Fuel Trim) (Except California Spec.)	 ☐Air intake (hose loose) ☐Fuel line pressure ☐njector blockage ☐Heated oxygen sensor (bank 1 sensor 1) ☐Manifold absolute pressure sensor ☐Engine coolant temp. sensor 	<u></u> ^*1	0
*3 P0172 (DI–84)	System too Rich (Fuel Trim) (Except California Spec.)	 Fuel line pressure Injector leak, blockage Heated oxygen sensor (bank 1 sensor 1) Manifold absolute pressure sensor Engine coolant temp. sensor 	_*1	0
*4 P0171 (DI–79)	System too Lean (Fuel Trim) (Only for California Spec.)	 Air intake (hose loose) Fuel line pressure Injector blockage Manifold absolute pressure sensor Engine coolant temp. sensor A/F sensor 	<u></u> ^*1	0
*4 P0172 (DI–79)	System too Rich (Fuel Trim) (Only for California Spec.)	□Fuel line pressure □Injector leak, blockage □Manifold absolute pressure sensor □Engine coolant temp. sensor □A/F sensor	_*1	0
P0300 (DI-89)	Random/Multiple Cylinder Misfire Detected	□gnition system □njector □Fuel line pressure □EGR □Compression pressure □Valve clearance not to specification		
P0301 P0302 P0303 P0304 (DI-89)	Misfire Detected – Cylinder 1 – Cylinder 2 – Cylinder 3 – Cylinder 4	Valve timing Manifold absolute pressure sensor Engine coolant temp. sensor Open or short engine wire Connector connection ECM	_ ^{*2}	0
P0325 (DI–97)	Knock Sensor 1 Circuit Malfunction	□Open or short in knock sensor 1 circuit □Knock sensor 1 (looseness) □ECM	_*1	0
P0335 (DI–100)	Crankshaft Position Sensor "A" Circuit Malfunction	Open or short in crankshaft position sensor circuit Crankshaft position sensor Starter ECM	_ ^{★1}	0

*1: MIL lights up
*2: MIL lights up or blinking
*3: Except California Specification vehicles
*4: Only for California Specification vehicles

DTC No. (See Page)	Detection Item	Trouble Area	MIL*1	Memory
P0340 (DI–103)	Camshaft Position Sensor Circuit Malfunction	 Open or short in camshaft position sensor circuit Camshaft position sensor Distributor Starter ECM 	0	0
P0401 (DI–105)	Exhaust Gas Recirculation Flow Insufficient Detected	EGR valve stuck closed Open or short in VSV circuit for EGR Vacuum or EGR hose disconnected Manifold absolute pressure sensor EGR VSV open or close malfunction ECM	0	0
P0402 (DI-113)	Exhaust Gas Recirculation Flow Excessive Detected	☐EGR valve stuck open ☐Vacuum or EGR hose is connected to wrong post ☐Manifold absolute pressure sensor ☐ECM	0	0
*2 P0420 (DI–116)	Catalyst System Efficiency Below Threshold (Except California Spec.)	 Three–way catalytic converter Open or short in heated oxygen sensor circuit Heated oxygen sensor 	0	0
*3 P0420 (DI–119)	Catalyst System Efficiency Below Threshold (Only for California Spec.)	 Three–way catalystic converter Open short in heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Open or short in A/F sensor circuit A/F sensor 	0	0
P0440 (DI–122)	Evaporative Emission Control System Malfunction	 □Vapor pressure sensor □Fuel tank cap incorrectly installed □Fuel tank cap cracked or damaged □Vacuum hose cracked, holed, blocked, damaged or disconnected ((1) or (2) in fig. 1) □Hose or tube cracked, holed, damaged or loose seal ((3) in fig. 1) □Fuel tank cracked, holed or damaged □Charcoal canister cracked, holed or damaged □Fuel tank over fill check valve cracked or damaged 	0	0
P0441 (DI-129)	Evaporative Emission Control System Incorrect Purge Flow	Open or short in VSV circuit for vapor pressure sensor VSV for vapor pressure sensor Open or short in vapor pressure sensor circuit Vapor pressure sensor	0	0
P0446 (DI–129)	Evaporative Emission Control System Vent Control Malfunction	 Open or short in VSV circuit for EVAP VSV for EVAP Vacuum hose cracks, hole, blocked, damaged or disconnected ((1), (4), (5) holed (6) and (7) in fig. 1) Charcoal canister cracked, holed or damaged Fuel tank over fill check valve cracked or damaged 	0	0
P0450 (DI–142)	Evaporative Emission Control System Pressure Sensor Malfunction	Dpen or short in vapor pressure sensor circuit	0	0
P0451 (DI–142)	Evaporative Emission Control System Pressure Sensor (Range/performance)	□/apor pressure sensor □ECM	0	0

*1: O ~--MIL lights up
 *2: Except California Specification vehicles
 *3: Only for California Specification vehicles

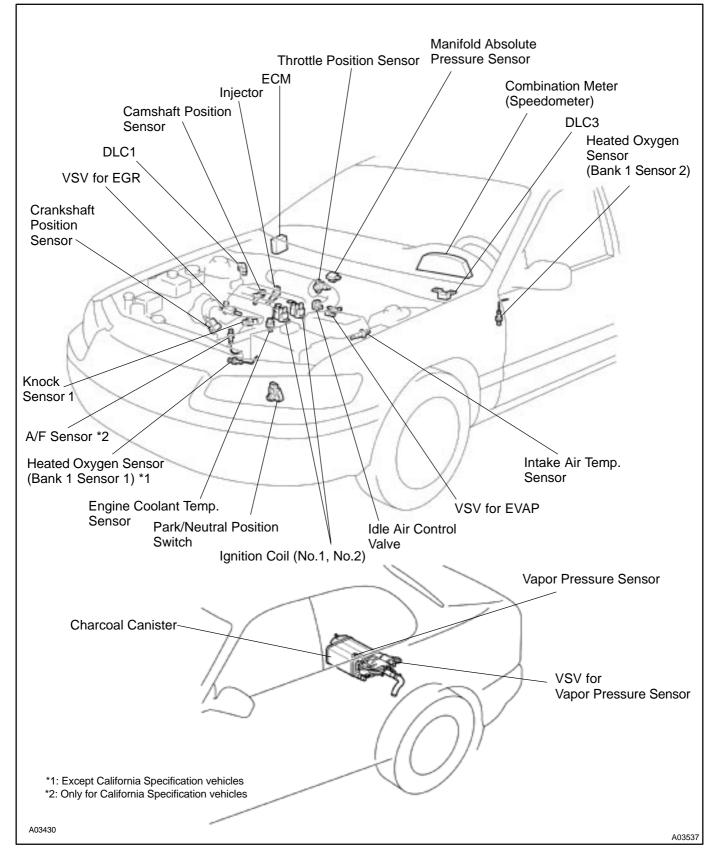
DTC No. (See Page)	Detection Item	Trouble Area	MIL*1	Memory
P0500 (DI–145)	Vehicle Speed Sensor Malfunction	Combination meter Open or short in No.1 vehicle speed sensor circuit No.1 vehicle speed sensor ECM	0	0
P0505 (DI–148)	Idle Control System Malfunction	□AC valve is stuck or closed □Open or short in IAC valve circuit □Open or short in A/C switch circuit □Air intake (hose loose) □ECM	0	0

*1: O ~~~MIL lights up 2. MANUFACTURER CONTROLLED

DTC No. (See Page)	Detection Item	Trouble Area	MIL* ¹	Memory
*2 P1130 (DI–152)	A/F Sensor Circuit Range/Performance Malfunction	□Open or short in A/F sensor circuit □A/F sensor □ECM	0	0
*2 P1133 (DI–157)	A/F Sensor Circuit Response Malfunction	□A/F sensor	0	0
*2 P1135 (DI–161)	A/F Sensor Heater Circuit Malfunction	©pen or short in heater circuit of A/F sensor □A/F sensor heater □ECM	0	0
P1300 (DI–163)	Igniter Circuit Malfunction (No.1)	□Open or short in IGF or IGT circuit from igniter to ECM □gnition coil (No.1) □ECM	0	0
P1310 (DI–163)	Igniter Circuit Malfunction (No.2)	Dpen or short in IGF or IGT circuit from igniter to ECM gnition coil (No.2) ECM	0	0
P1335 (DI–169)	Crankshaft Position Sensor Cir- cuit Malfunction (During engine running)	©pen short in crankshaft position sensor circuit Crankshaft position sensor ECM	-	0
+3 P1520 (DI–170)	Stop Light Switch Signal Mal- function	Short in stop light switch signal circuit Stop light switch ECM	0	0
P1600 (DI–173)	ECM BATT Malfunction	□Open in back up power source circuit □ECM	0	0
*3 P1780 (DI–175)	Park/Neutral Position Switch Malfunction	□Short in park/neutral position switch circuit □Park/neutral position switch □ECM	0	0

*1: O ~--MIL lights up
*2: Only for California Specification vehicles
*3: Only for A/T models

254


DIAGNOSTICS - ENGINE (5S-FE)

DTC No. (See Page)	Detection Item	Trouble Area	MIL*1	Memory
*2 B2795 (DI–928)	Unmatched key Code	☐mmobiliser system	-	0
*2 B2796 (DI–929)	No Communnication in Immobiliser system	☐mmobiliser system	-	0
*2 B2797 (DI–932)	Communication Malfunction No.1	☐mmobiliser system	_	0
*2 B2798 (DI–935)	Communication Malfunction No.2	☐mmobiliser system	_	0

*1: -----MIL does not light up

*2: Only for w/ engine immobiliser system models

PARTS LOCATION

DI-21

Author :

TERMINALS OF ECM

Without engine immobiliser system

ECM Terminals	>	E8	E7)		
Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)		
BATT (E7 – 1) – E1 (E9 – 14)	$B-Y\leftrightarrowBR$	Always	9 ~ 14		
+ B (E7 – 12) – E1 (E9 – 14)	$B-Y\leftrightarrowBR$	IG switch ON	9 ~ 14		
VC (E8 – 1) – E2 (E8 – 9)	$Y \leftrightarrow BR$	IG switch ON	4.5 ~ 5.5		
VTA (E8 – 11) – E2 (E8 – 9)	$LG \leftrightarrow BR$	IG switch ON Throttle valve fully closed	0.3 ~ 1.0		
		IG switch ON Throttle valve fully open	3.2 ~ 4.9		
		IG switch ON	3.3 ~ 3.9		
PIM (E8 – 2) – E2 (E8 – 9)	$B - Y \leftrightarrow BR$	Apply vacuum 26.7 kPa (200 mmHg, 7.9 in.Hg)	2.5 ~ 3.1		
THA (E8 – 3) – E2 (E8 – 9)	$Y-B\leftrightarrowBR$	Idling, Intake air temp. 20°C (68° F)	0.5 ~ 3.4		
THW (E8 – 4) – E2 (E8 – 9)	$G-B\leftrightarrowBR$	Idling, Engine coolant temp. 80°C (176°F)	0.2 ~ 1.0		
STA (E7 – 11) – E1 (E9 – 14)	*1 GR \leftrightarrow BR	Cranking	6.0 or more		
STA (E7 – TT) – ET (E9 – T4)	*2 B – O \leftrightarrow BR	Cranking	6.0 or more		
		IG switch ON	9 ~ 14		
#10 (E9 – 12) – E01 (E9 – 13)	$L \leftrightarrow BR$	Idling	Pulse generation (See page DI-89)		
		IG switch ON	9 ~ 14		
#20 (E9 – 11) – E01 (E9 – 13)	$R \leftrightarrow BR$	Idling	Pulse generation (See page DI-89)		
		IG switch ON	9 ~ 14		
#30 (E9 – 25) – E01 (E9 – 13)	$Y \leftrightarrow BR$	Idling	Pulse generation (See page DI–89)		
		IG switch ON	9 ~ 14		
#40 (E9 – 24) – E01 (E9 – 13)	$W \leftrightarrow BR$	Idling	Pulse generation (See page DI–89)		
IGT1 (E9 – 20) – E1 (E9 – 14)	$B \leftrightarrow BR$	Idling	Pulse generation (See page DI–163)		
IGT2 (E9 – 19) – E1 (E9 – 14)	$Y-R\leftrightarrowBR$	Idling	Pulse generation (See page DI–163)		
		IG switch ON, Disconnect ignition coil connector	4.5 ~ 5.5		
IGF (E9 – 3) – E1 (E9 – 14)	$W-R\leftrightarrowBR$	Idling	Pulse generation (See page DI–163)		

*1: TMC made

*2: TMMK made

DI1JT-03

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$G \sim (E9 - 5) - NE > (E9 - 17)$	$B-W\leftrightarrowL$	Idling	Pulse generation (See page DI-100)
NE~(E9-4) - NE>(E9-17)	$B-R\leftrightarrowL$	Idling	Pulse generation (See page DI-100)
FC (E7 – 14) – E01 (E9 – 13)	$G-R\leftrightarrowBR$	IG switch ON	9 ~ 14
EGR (E9 – 23) – E01(E9 – 13)	$P-B\leftrightarrowBR$	IG switch ON	0 ~ 3
ISCC (E9 – 9) – E01 (E9 – 13)	$B-O\leftrightarrowBR$	IG switch ON Disconnect E9 connector of ECM	9 ~ 4
ISCO (E9 –10) – E01(E9 – 13)	$W \leftrightarrow BR$	IG switch ON Disconnect E9 connector of ECM	Below 3.0
*1 OX1 (E8 – 6) – E1 (E9 – 14)	$W \leftrightarrow BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation (See page DI–66)
OX2 (E8 – 5) – E1 (E9 – 14)	$B \leftrightarrow BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation
*1		Idling	Below 3.0
HT1 (E9-8) - E1 (E9-14)	$L - Y \leftrightarrow BR$	IG switch ON	9 ~ 14
		Idling	Below 3.0
HT2 (E9 – 21) – E1 (E9 – 14)	$P - B \leftrightarrow BR$	IG switch ON	9 ~ 14
KNK (E8 – 13) – E1 (E9 – 14)	$W \leftrightarrow BR$	Idling	Pulse generation (See page DI–97)
*3	$B-W\leftrightarrowBR$	IG switch ON Other shift position in P or N position	9 ~ 14
NSW (E7 – 22) – E1 (E9 – 14)		IG switch ON Shift position in P or N position	0 ~ 3.0
SPD (E7 – 9) – E1 (E9 – 14)	$V-W\leftrightarrowBR$	IG switch ON Rotate driving wheel slowly	Pulse generation (See page DI–145)
TE1 (E8 – 15) – E1 (E9 – 14)	$L-W\leftrightarrowBR$	IG switch ON	9 ~ 14
		Idling	9 ~ 14
W (E7 – 5) – E1 (E9 – 14)	$G - R \leftrightarrow BR$	IG switch ON	Below 3.0
EVP (E9 – 22) – E1 (E9 – 14)	$V-W\leftrightarrowBR$	IG switch ON	9 ~ 14
TPC (E8 – 8) – E1 (E9 – 14)	$V \leftrightarrow BR$	IG switch ON	9 ~ 14
PTNK (E8 – 7) – E2 (E8 – 9)	$P \leftrightarrow BR$	IG switch ON, Disconnect vacuum hose from vapor pressure sensor	2.9 ~ 3.7
		Apply vacuum (less than 66.7 kPa (500 mmHg, 19.7 in.Hg))	Below 0.5
*2 AF~ (E8-6) - E1 (E9-14)	$W \leftrightarrow BR$	Always (IG switch ON)	3.3 fixed*4
*2 AF> (E8 – 14) – E1 (E9 – 14)	$O \leftrightarrow BR$	Always (IG switch ON)	3.0 fixed*4

*1: Except California Specification vehicles

*2: Only for California Specification vehicles

*3: Only for A/T models

*4: The ECM terminal voltage is fixed regardless of the output voltage from the sensor.

258

DIAGNOSTICS - ENGINE (5S-FE)

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
*1		Idling	Below 3.0
HTAF (E9 – 2) – E04 (E9 – 15)	$G \leftrightarrow BR$	IG switch ON	9 ~ 14
LOCK IN (E9 – 18) – E1 (E9 – 14)	$W-L\leftrightarrowBR$	A/C compressor is operating	Pulse generation (See page DI–190)
		A/C indicator light lights up	Below 4.0
LOCK (E7 – 15) – E1(E9 – 14)	$R-W\leftrightarrowBR$	A/C indicator light does not lights up	Below 1.0
A/C SW (E7 – 10)		A/C switch ON	9 ~ 14
– E1 (E9 – 14)	$R-B\leftrightarrowBR$	A/C switch OFF	Below 1.0
PRS (E7 – 13) – E1 (E9 – 14)	$G \leftrightarrow BR$	A/C pressure is normally	Below 1.0
THR (E8 – 10) – E2 (E8 – 9)	$L-R\leftrightarrowBR$	IG switch ON, A/C evaporator temp. 0°C (32°F)	2.2 ~ 2.6
		IG switch ON, A/C evaporator temp. 15°C (59°F)	1.4 ~ 1.8
		A/C magnetic clutch ON	Below 1.0
MGC (E7 – 21) – E01(E9 – 14)	$L - Y \leftrightarrow BR$	A/C magnetic clutch OFF	9 ~ 14
		IG switch ON, Brake pedal depressed	7.5 ~ 14
* STP (E7 – 4) – E1 (E9 – 14)	$G - W \leftrightarrow BR$	IG switch ON, Brake pedal released	Below 1.5
	$B - R \leftrightarrow BR$	Defogger switch and taillight switch ON	7.5 ~ 14
ELS (E7 – 2) – E1 (E9 – 14)		Defogger switch and taillight switch OFF	Below 1.5
PSSW (E8 – 12) – E1 (E9 – 14)		IG switch ON	9 ~ 14
	$B - L \leftrightarrow BR$	At idling, Turn steering wheel to lock position	Below 3.0
SIL (E7 – 16) – E1 (E9 – 14)	$W \leftrightarrow BR$	During transmission	Pulse generation

*: Only for A/T models *1: Only for California Specification vehicles

With engine immobiliser system

ECM Terminals	\supset	E8	E10	E7
13121110 9 8 7 6 2625242322212015	5 4 3 2 1 91817161514 1	8 7 6 5 4 3 2 6151413121110	1 6 5 4 3 2 1 11 9 121110 9 8 7 22	10 9 8 7 6 5 4 3 2 1 21 201 91 8 1 7 1 6 1 5 1 4 1 3 1 2
		I		A02958
Symbols (Terminals No.)	Wiring Color		Condition	STD Voltage (V)
BATT (E7 – 2) – E1 (E9 – 24)	$B-Y\leftrightarrowBR$	Always		9 ~ 14
+ B (E7 – 12) – E1 (E9 – 24)	$B-Y\leftrightarrowBR$	IG switch ON		9 ~ 14
VC (E8 – 1) – E2 (E8 – 9)	$Y \leftrightarrow BR$	IG switch ON		4.5 ~ 5.5
		IG switch ON Throttle valve fully clo	osed	0.3 ~ 1.0
VTA (E8 – 10) – E2 (E8 – 9)	$LG \leftrightarrow BR$	IG switch ON Throttle valve fully op	en	3.2 ~ 4.9
		IG switch ON		3.3 ~ 3.9
PIM (E8 – 2) – E2 (E8 – 9)	$B - Y \leftrightarrow BR$	Apply vacuum 26.7 k	Pa (200 mmHg, 7.9 in.Hg)	2.5 ~ 3.1
THA (E8 – 3) – E2 (E8 – 9)	$Y-B\leftrightarrowBR$	Idling, Intake air temp	o. 20°C (68° F)	0.5 ~ 3.4
THW (E8 – 4) – E2 (E8 – 9)	$G-B\leftrightarrowBR$	Idling, Engine coolan	t temp. 80°C (176°F)	0.2 ~ 1.0
STA (E7 11) E1 (E0 24)	STA (E7 – 11) – E1 (E9 – 24) *1 GR ↔ BR			6.0 or more
STA (E7 - TT) - ET (E9 - 24)	*2 B – O \leftrightarrow BR	Cranking		6.0 or more
#10 (FO 10)		IG switch ON		9 ~ 14
#10 (E9 – 12) – E01 (E9 – 13)	$L \leftrightarrow BR$	Idling		Pulse generation (See page DI-89)
(IOD (ED 44)		IG switch ON		9 ~ 14
#20 (E9 – 11) – E01 (E9 – 13)	$R \leftrightarrow BR$	Idling		Pulse generation (See page DI–89)
		IG switch ON		9 ~ 14
#30 (E9 – 10) – E01 (E9 – 13)	$Y \leftrightarrow BR$	Idling		Pulse generation (See page DI-89)
		IG switch ON		9 ~ 14
#40 (E9 – 9) – E01 (E9 – 13)	$W \leftrightarrow BR$	Idling		Pulse generation (See page DI–89)
IGT1 (E9 – 23) – E1 (E9 – 24)	$B \leftrightarrow BR$	Idling		Pulse generation (See page DI–163)
IGT2 (E9 – 22) – E1 (E9 – 24)	$Y - R \leftrightarrow BR$	Idling		Pulse generation (See page DI–163)
		IG switch ON, Discor	nnect ignition coil connector	4.5 ~ 5.5
IGF (E9 – 17) – E1 (E9 – 24)	$W-R\leftrightarrowBR$	Idling		Pulse generation (See page DI–163)

*1: TMC made

*2: TMMK made

DI-26

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$G \sim (E10 - 11) - NE > (E10 - 6)$	$B-W\leftrightarrowL$	Idling	Pulse generation (See page DI–100)
NE~(E10 – 12) – NE>(E10 – 6)	$B-R\leftrightarrowL$	Idling	Pulse generation (See page DI–100)
FC (E7 – 14) – E01 (E9 – 13)	$G-R\leftrightarrowBR$	IG switch ON	9 ~ 14
EGR (E8 – 15) – E01(E9 – 13)	$P-B\leftrightarrowBR$	IG switch ON	0 ~ 3
ISCC (E9 – 6) – E01 (E9 – 13)	$B-O\leftrightarrowBR$	IG switch ON Disconnect E9 connector of ECM	9 ~ 4
ISCO (E9 –7) – E01(E9 – 13)	$W \leftrightarrow BR$	IG switch ON Disconnect E9 connector of ECM	Below 3.0
*1 OX1 (E8 – 5) – E1 (E9 – 24)	$W \leftrightarrow BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation (See page DI–66)
OX2 (E8 – 13) – E1 (E9 – 24)	$B \leftrightarrow BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation
*1		Idling	Below 3.0
HT1 (E9-1) - E1 (E9-24)	$L - Y \leftrightarrow BR$	IG switch ON	9 ~ 14
		Idling	Below 3.0
HT2 (E9 – 14) – E1 (E9 – 24)	$P - B \leftrightarrow BR$	IG switch ON	9 ~ 14
KNK (E8 – 12) – E1 (E9 – 24)	$W \leftrightarrow BR$	Idling	Pulse generation (See page DI–97)
*3	$B-W\leftrightarrowBR$	IG switch ON Other shift position in P or N position	9~14
NSW (E7 – 22) – E1 (E9 – 24)		IG switch ON Shift position in P or N position	0 ~ 3.0
SPD (E7 – 8) – E1 (E9 – 24)	$V-W\leftrightarrowBR$	IG switch ON Rotate driving wheel slowly	Pulse generation (See page DI-145)
TE1 (E8 – 7) – E1 (E9 – 24)	$L-W\leftrightarrowBR$	IG switch ON	9 ~ 14
	0 0 00	Idling	9 ~ 14
W (E7 – 4) – E1 (E9 – 24)	$G-R\leftrightarrowBR$	IG switch ON	Below 3.0
EVP (E9-3) - E1 (E9-24)	$V-W\leftrightarrowBR$	IG switch ON	9 ~ 14
TPC (E8 – 16) – E1 (E9 – 24)	$V \leftrightarrow BR$	IG switch ON	9~14
PTNK (E8 – 8) – E2 (E8 – 9)	P ↔ BR	IG switch ON, Disconnect vacuum hose from vapor pressure sensor	2.9 ~ 3.7
		Apply vacuum (less than 66.7 kPa (500 mmHg, 19.7 in.Hg))	Below 0.5
*2 AF~ (E8-6) - E1 (E9-24)	$W \leftrightarrow BR$	Always (IG switch ON)	3.3 fixed*4
*2 AF> (E8 – 14) – E1 (E9 – 24)	$O \leftrightarrow BR$	Always (IG switch ON)	3.0 fixed*4

*1: Except California Specification vehicles

*2: Only for California Specification vehicles

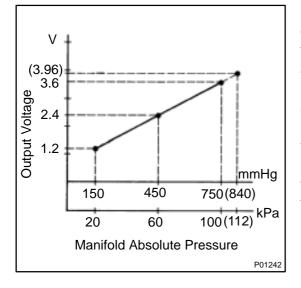
*3: Only for A/T models

*4: The ECM terminal voltage is fixed regardless of the output voltage from the sensor.

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
*1		Idling	Below 3.0
HTAF (E9 – 2) – E04 (E9 – 15)	$G \leftrightarrow BR$	IG switch ON	9 ~ 14
LOCK IN (E9 – 19) – E1 (E9 – 24)	$W - L \leftrightarrow BR$	A/C compressor is operating	Pulse generation (See page DI–190)
LOCK (E7 – 20)		A/C indicator light lights up	Below 4.0
– E1 (E9 – 24)	$R - W \leftrightarrow BR$	A/C indicator light does not lights up	Below 1.0
A/C SW (E7 – 10)		A/C switch ON	9 ~ 14
– E1 (E9 – 24)	$R - B \leftrightarrow BR$	A/C switch OFF	Below 1.0
PRS (E7 – 19) – E1 (E9 – 24)	$G \leftrightarrow BR$	A/C pressure is normally	Below 1.0
		IG switch ON, A/C evaporator temp. 0°C (32°F)	2.2 ~ 2.6
THR (E8 – 11) – E2 (E8 – 9)	$L - R \leftrightarrow BR$	IG switch ON, A/C evaporator temp. 15°C (59°F)	1.4 ~ 1.8
MGC (E7 – 21)		A/C magnetic clutch ON	Below 1.0
– E01 (E9 – 13)	$L - Y \leftrightarrow BR$	A/C magnetic clutch OFF	9 ~ 14
	$G-W\leftrightarrowBR$	IG switch ON, Brake pedal depressed	7.5 ~ 14
* STP (E7 – 9) – E1 (E9 – 24)		IG switch ON, Brake pedal released	Below 1.5
	$B-R\leftrightarrowBR$	Defogger switch and taillight switch ON	7.5 ~ 14
ELS (E7 – 13) – E1 (E9 – 24)		Defogger switch and taillight switch OFF	Below 1.5
PSSW (E9 – 4)		IG switch ON	9 ~ 14
– E1 (E9 – 24)	$B - L \leftrightarrow BR$	At idling, Turn steering wheel to lock position	Below 3.0
SIL (E7 – 6) – E1 (E9 – 24)	$W \leftrightarrow BR$	During transmission	Pulse generation
TACH (E7 – 7) – E1 (E9 – 24)	$B-O\leftrightarrowBR$	Idling	Pulse generation
		At the time of inserting key	Below 1.5
KSW (E10 – 4) – E1 (E9 – 24)	$L - B \leftrightarrow BR$	In the condition without key inserted	Pulse generation
RXCK (E10 – 3) – E1 (E9 – 24)	$R - L \leftrightarrow BR$	At the time of inserting key	Pulse generation
CODE (E10 – 8) – E1 (E9 – 24)	$G-W\leftrightarrowBR$	At the time of inserting key	Pulse generation
TXCT (E10 – 1) – E1 (E9 – 24)	$L-Y\leftrightarrowBR$	At the time of inserting key	Pulse generation
IMLD (E10 – 1) – E1 (E9 – 24)	$R-Y\leftrightarrowBR$	In the condition without key inserted	Pulse generation
MREL (E10 – 7) – E1 (E9 – 24)	$B-W\leftrightarrowBR$	IG switch ON	9 ~ 14
IGSW (E7 – 1) – E1 (E9 – 24)	$B - R \leftrightarrow BR$	IG switch ON	9~14

*: Only for A/T models *1: Only for California Specification vehicles

PROBLEM SYMPTOMS TABLE


DI00L-03

Symptom	Suspect Area	See page
Engine does not crank (Does not start)	 Starter starter relay 	ST–2 ST–20
No initial combustion (Does not start)	 ECM power source circuit Fuel pump control circuit Engine control module (ECM) 	DI-179 DI-183 IN-31
No complete combustion (Does not start)	1. Fuel pump control circuit	DI-183
Engine cranks normally (Difficult to start)	 Starter signal circuit Fuel pump control circuit Compression 	DI-176 DI-183 EM-3
Cold engine (Difficult to start)	 Starter signal circuit Fuel pump control circuit 	DI–176 DI–183
Hot engine (Difficult to start)	 Starter signal circuit Fuel pump control circuit 	DI–176 DI–183
High engine idle speed (Poor idling)	 A/C switch circuit ECM power source circuit 	AC84 DI179
Low engine idle speed (Poor idling)	 A/C switch circuit Fuel pump control circuit 	AC-84 DI-183
Rough idling (Poor idling)	 Compression Fuel pump control circuit 	EM-3 DI-183
Hunting (Poor idling)	 ECM power source circuit Fuel pump control circuit 	DI–179 DI–183
Hesitation/Poor acceleration (Poor driveability)	 Fuel pump control circuit A/T faulty 	DI–183 DI–405
Surging (Poor driveability)	1. Fuel pump control circuit	DI-183
Soon after starting (Engine stall)	1. Fuel pump control circuit	DI-183
During A/C operation (Engine stall)	1. A/C switch circuit 2. Engine control module (ECM)	AC-84 IN-31
A/C switch indicatior blinking	 A/C Compressor lock sensor circuit A/C Evaporator temp. sensor circuit 	DI–190 DI–192
Unable to refuel/ Difficult to refuel	1. ORVR system	EC–6

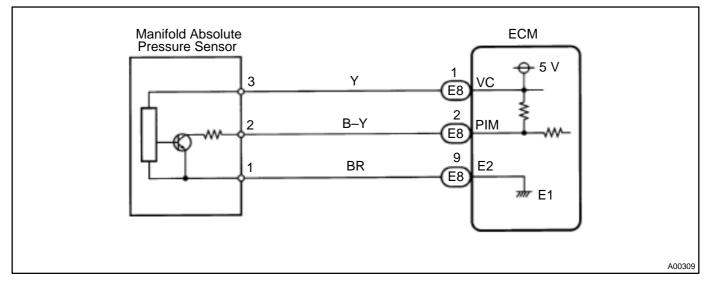
CIRCUIT INSPECTION

DTC	P0105	Manifold Absolute Pressure/Barometric
		Pressure Circuit Malfunction

CIRCUIT DESCRIPTION

By a built–in sensor unit, the manifold absolute pressure sensor detects the intake manifold pressure as a voltage. The ECM then determines the basic injection duration and basic injection advance angle based on this voltage. Since the manifold absolute pressure sensor does not use the atmospheric pressure as a criterion, but senses the absolute pressure inside the intake manifold (the pressure in proportion to the present absolute vacuum 0), it is not influenced by fluctuations in the atmospheric pressure due to high altitude and other factors. This permits it to control the air–fuel ratio at the proper lever under all conditions.

P0105 Open or short in manifold absolute pressure sensor circuit •Open or short in manifold absolute pressure sensor circuit	DTC No.	DTC Detecting Condition	Trouble Area
	P0105	Open or short in manifold absolute pressure sensor circuit	Manifold absolute pressure sensor


HINT:

After confirming DTC P0105, use the OBD II scan tool or TOYOTA hand-held tester to confirm the manifold absolute pressure from the CURRENT DATA.

Manifold Absolute Pressure (kPa)	Malfunction
Approx. 0	●PIM circuit short
130 or more	VC circuit open or shortPIM circuit open
	•E2 circuit open

DI00M-05

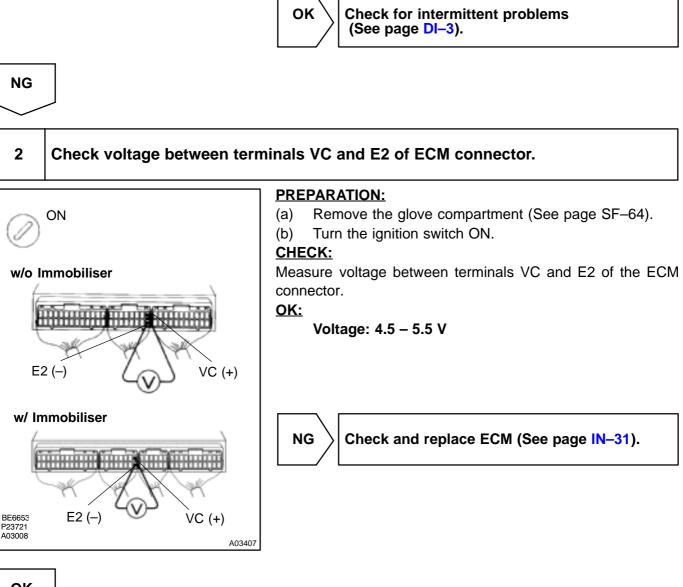
WIRING DIAGRAM

INSPECTION PROCEDURE

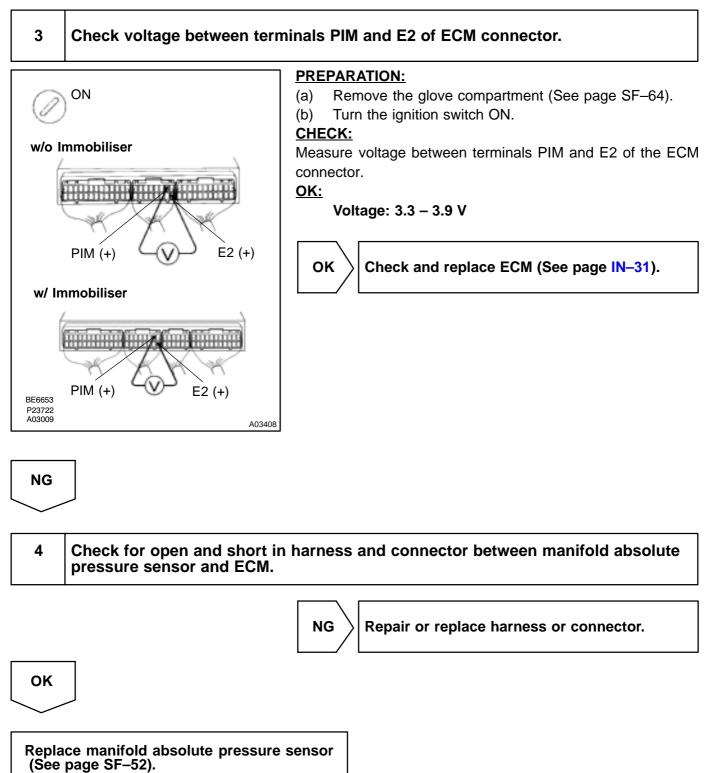
HINT:

- If DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure /Barometric Pressure Circuit Range/Performance Problem) and P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction), P0120 (Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction) are output simultaneously, E2 (sensor ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

onnect OBD II scan tool or TOYOTA hand-held tester, and read value of man- ld absolute pressure.


PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch


ON. CHECK:

Read value of the manifold absolute pressure on the OBD II scan tool or TOYOTA hand-held tester. **OK:**

Same as atmospheric pressure.

οκ

DI00N-04

DTC P0106 Manifold Absolute Pressure Circuit Range/Performance Problem

CIRCUIT DESCRIPTION

Refer to DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction) on page DI-29.

DTC No.	DTC Detecting Condition	Trouble Area
Paras	After engine is warmed up, conditions (a) and (b) continue with engine speed 400 ~ 1,000 rpm (2 trip detection logic) (a) Throttle valve fully closed (b) Manifold absolute pressure sensor output > 3.0 V	Manifold absolute pressure sensor
P0106	Condition (c) and (d) continue with engine speed 2,500 rpm or less (2 trip detection logic) (c) VTA > 1.85 (d) Manifold absolute pressure sensor output < 1.0 V	●Vacuum line

WIRING DIAGRAM

Refer to DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction) on page DI-29.

INSPECTION PROCEDURE

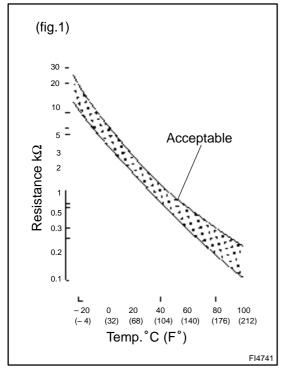
HINT:

- If DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction) and P0106 (Manifold Absolute Pressure /Barometric Pressure Circuit Range/Performance Problem) are output simultaneously, manifold absolute pressure sensor circuit may be open. Perform troubleshooting of DTC P0105 first.
- If DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure /Barometric Pressure Circuit Range/Performance Problem), P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction) and P0120 (Throttle/ Pedal Position Sensor/Switch "A" Circuit Malfunction) are output simultaneously, E2 (sensor ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0106) being output?

YES \rangle Go to relevant DTC chart.

2	Check manifold absolute pressure sensor operation (See page SF–52).
	OK Check vacuum line between intake air chamber and manifold absolute pressure sensor.
NG	
Repla	ace manifold absolute pressure sensor.


DI000-05

DTC

P0110

Intake Air Temp. Circuit Malfunction

CIRCUIT DESCRIPTION

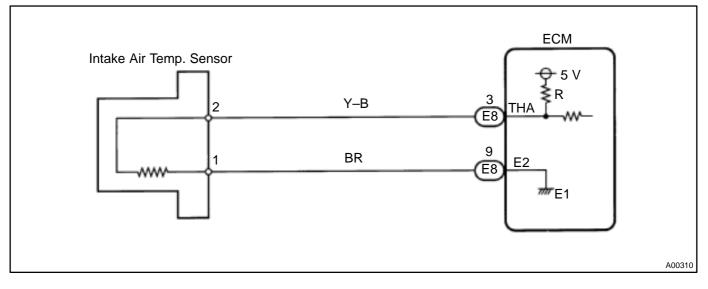
The intake air temp. sensor is built into the air cleaner cap and senses the intake air temperature.

A thermistor built in the sensor changes the resistance value according to the intake air temperature, the lower the intake air temperature, the greater the thermistor resistance value, and the higher the intake air temperature, the lower the thermistor resistance value (See fig.1).

The air intake temperature sensor is connected to the ECM (See below). The 5 V power source voltage in the ECM is applied to the intake air temp. sensor from the terminal THA via a resistor R.

That is, the resistor R and the intake air temp. sensor are connected in series. When the resistance value of the intake air temp. sensor changes in accordance with changes in the intake air temperature, the potential at terminal THA also changes. Based on this signal, the ECM increases the fuel injection volume to improve driveability during cold engine operation.

If the ECM detects the DTC P0110, it operates the fail safe function in which the intake air temperature is assumed to be 20° C (68°F).


DTC No.	DTC Detecting Condition	Trouble Area
P0110	Open or short in intake air temp. sensor circuit	 Open or short in intake air temp. sensor circuit
		Intake air temp. sensor
		●ECM

HINT:

After confirming DTC P0110, use the OBD II scan tool or TOYOTA hand-held tester to confirm the intake air temperature from the CURRENT DATA.

Temperature Displayed	Malfunction
-40°C (-40°F)	Open circuit
140°C (284°F) or more	Short circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

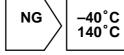
- If DTCs P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure /Barometric Pressure Circuit Range/Performance Problem), P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction) and P0120 (Throttle/ Pedal Position Sensor/Switch "A" Circuit Malfunction) are output simultaneously, E2 (sensor ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Connect OBD II scan tool or TOYOTA hand-held tester, and read value of intake
air temperature.

PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.

CHECK:

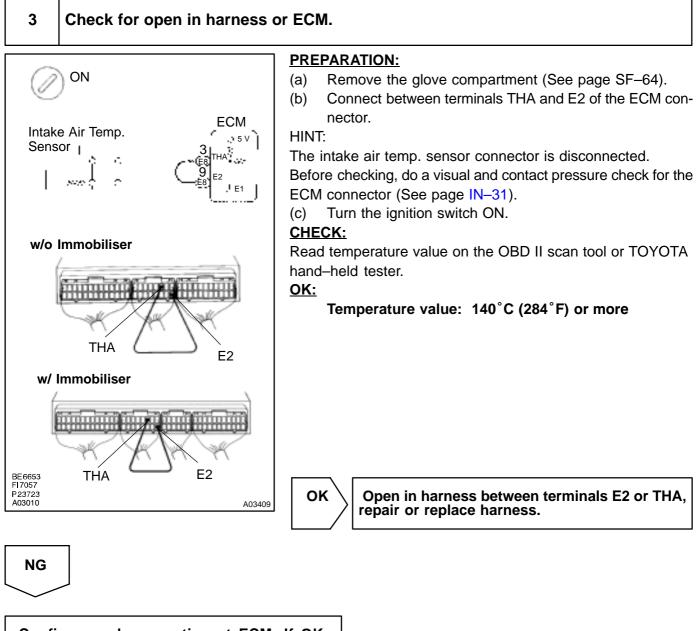

Read temperature value on the OBD II scan tool or TOYOTA hand-held tester.

<u>OK:</u>

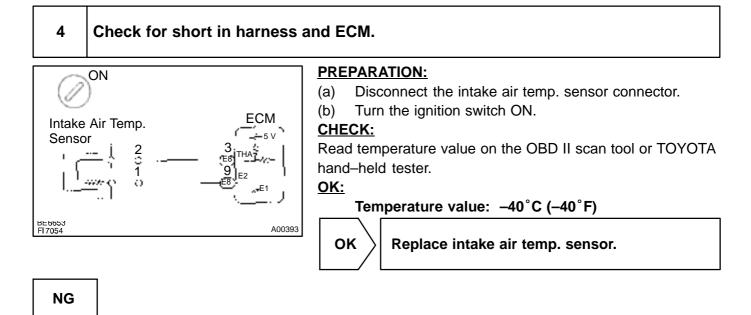
Same as actual air intake temperature.

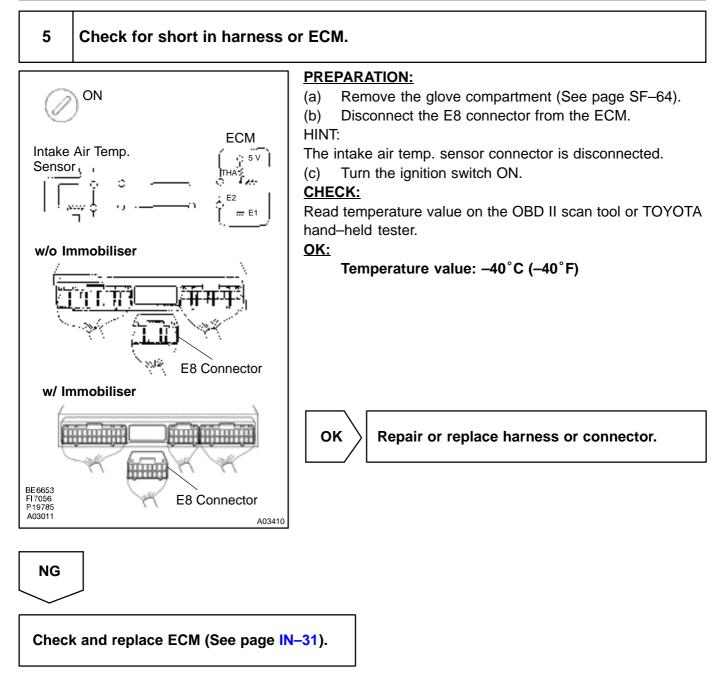
HINT:

- If there is open circuit, OBD II scan tool or TOYOTA hand-held tester indicates 40°C (- 40°F).
- If there is short circuit, OBD II scan tool or TOYOTA hand-held tester indicates 140°C (284°F) or more.


-40°C (-40°F) Go to step 2. 140°C (284°F) or more Go to step 4.

OK


Check for intermittent problems (See page DI-3).


2 Check for open in harness or ECM.		
ON		PREPARATION:
Ø		(a) Disconnect the intake air temp. sensor connector.(b) Connect the sensor wire harness terminals together.
Intake Air Temp.	ECM	(c) Turn the ignition switch ON.
Sensor $2 \qquad 3$ THA		CHECK:
		Read temp. value on the OBD II scan tool or TOYOTA hand-
	8 E2	held tester.
	1 <u>*</u> E1	<u>ОК:</u>
BE FI7055	A00391	Temp. value: 140°C (284°F) or more
		OK Confirm good connection at sensor. If OK, replace intake air temp. sensor.

NG

Confirm good connection at ECM. If OK, check and replace ECM (See page IN-31).

D .	Т	C

P0115

CIRCUIT DESCRIPTION

A thermistor built into the engine coolant temp. sensor changes the resistance value according to the engine coolant temp.

The structure of the sensor and connection to the ECM is the same as in the intake air temp. circuit malfunction shown on page DI–35.

If the ECM detects the DTC P0115, it operates fail safe function in which the engine coolant temperature is assumed to be 80° C (176°F).

DTC No.	Detection Item	Trouble Area
P0115		 Open or short in engine coolant temp. sensor circuit Engine coolant temp. sensor ECM

HINT:

After confirming DTC P0115, use the OBD II scan tool or TOYOTA hand-held tester to confirm the engine coolant temp. from the CURRENT DATA.

Temp. Displayed	Malfunction
-40°C (-40°F)	Open circuit
140°C (284°F) or more	Short circuit

DI00P-05

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTCs P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure /Barometric Pressure Circuit Range/Performance Problem), P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction) and P0120 (Throttle/ Pedal Position Sensor/Switch "A" Circuit Malfunction) are output simultaneously, E2 (sensor ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1	Connect OBD II scan tool or TOYOTA hand-held tester, and read value of
	engine coolant temperature.

PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.

CHECK:

Read temperature value on the OBD II scan tool or TOYOTA hand-held tester.

<u> 0K:</u>

Same as actual engine coolant temperature

HINT:

- If there is open circuit, OBD II scan tool or TOYOTA hand-held tester indicates -40°C (-40°F).
- If there is open circuit, OBD II scan tool or TOYOTA hand-held tester indicates 140 °C (284 °F) or more.

-40°C (-40°F) ... Go to step 2. 140°C (284°F) or more ... Go to step 4.

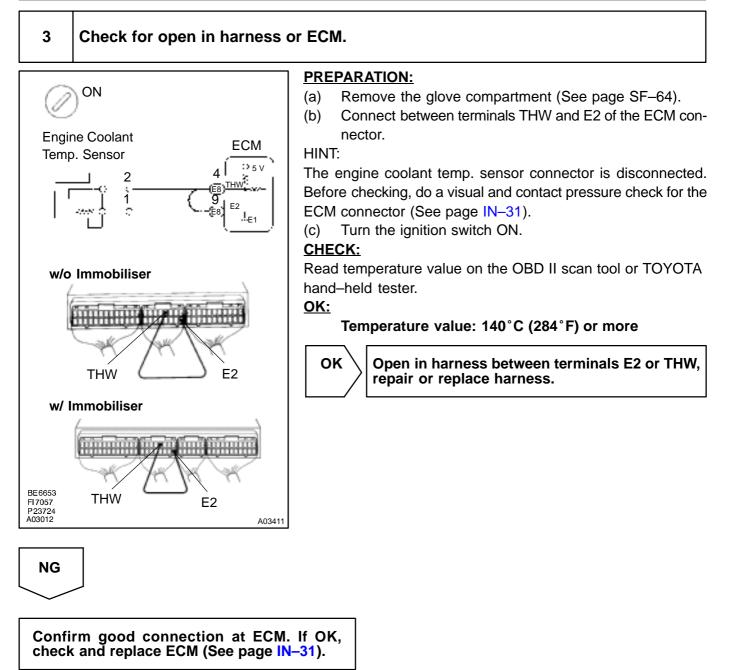
OK

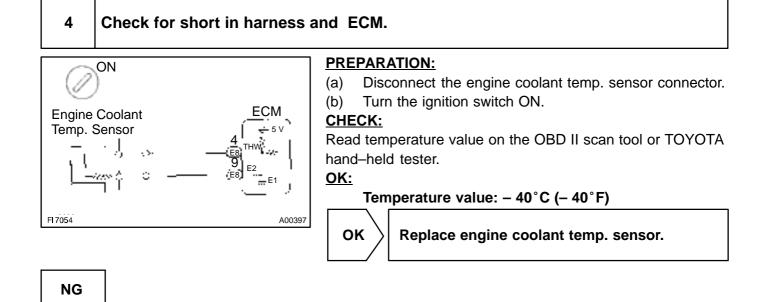
Check for intermittent problems (See page DI-3).

2 Check for open in harness or ECM. **PREPARATION:** ON (a) Disconnect the engine coolant temp. sensor connector. (b) Connect the sensor wire harness terminals together. ECM (c) Turn the ignition switch ON. **Engine Coolant** Temp. Sensor 5 V CHECK: 2 Read temperature value on the OBD II scan tool or TOYOTA hand-held tester.

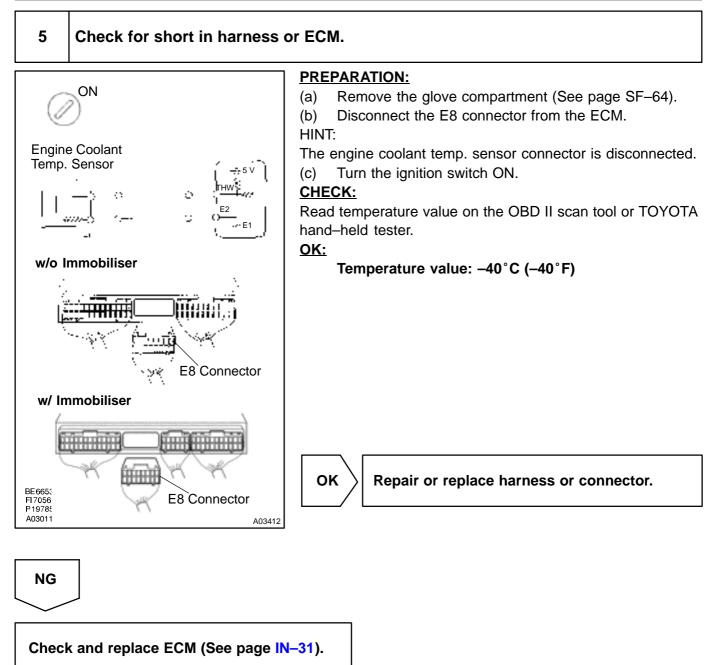
<u>OK:</u>

A00395


Temperature value: 140°C (284°F) or more


ок

Confirm good connection at sensor. If OK, replace engine coolant temp. sensor.


NG

FI 7055

Author :

DI00Q-05

DTC P0116 Engine Coolant Temp. Circuit Range/ Performance Problem

CIRCUIT DESCRIPTION

Refer to DTC P0115 (Engine Coolant Temp. Circuit Malfunction) on page DI-41.

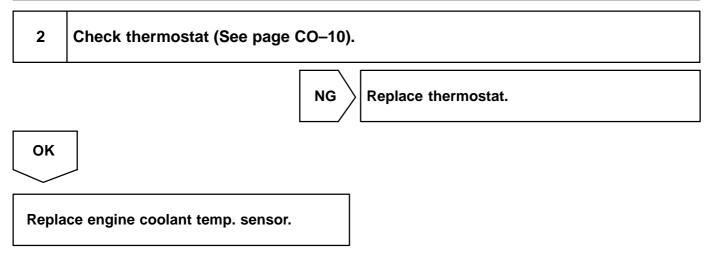
DTC No.	DTC Detecting Condition	Trouble Area	
	If THW < -7° C (19.4°F) or THA < -7° C (19.4°F) 20 min. or more after starting engine, engine coolant temp. sensor value is 30°C (86°F)*1 20°C (48°F)*2 or less (2 trip detection logic)		
	If THW $\square -7^{\circ}C$ (19.4°F) and THA $\sim -7^{\circ}C$ (19.4°F) and 10°C (50°F) at engine start, 5 min. or more after starting engine, engine coolant temp. sensor value is 30°C (86°F)*1 20°C (48°F)*2 or less (2 trip detection logic)		
P0116	If THW ~ 10°C (50°F) and THA ~ 10°C (50°F) at engine start, 2 min. or more after starting engine, engine coolant temp. sensor value is 30°C (86°F)*1 20°C (48°F)*2 or less (2 trip detection logic)	Engine coolant temp. sensorCooling system	
	 When THW 2 35°C (95°F) and 60°C (140°F), THA ~ -6.7°C (19.9°F) when starting the engine, condition (a) and (b) continues: (a) Vehicle speed is changing (Not stable) (b) Water temperature change is lower than 3°C (37.4°F) from the water temperature since when sterting the engine 		
	(2 trip detection logic)		

*1: Except California Specification vehicles.

*2: Only for California Specification vehicles.

INSPECTION PROCEDURE

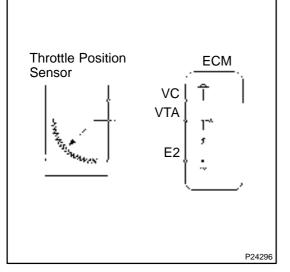
HINT:


- If DTCs P0115 (Engine Coolant Temp. Circuit Malfunction) and P0116 (Engine Coolant Temp. Circuit Range/Performance Problem) are output simultaneously, engine coolant temp. sensor circuit may be open. Perform troubleshooting of DTC P0115 first.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0116) being output?

Go to relevant DTC chart.

NO


DI00R-05

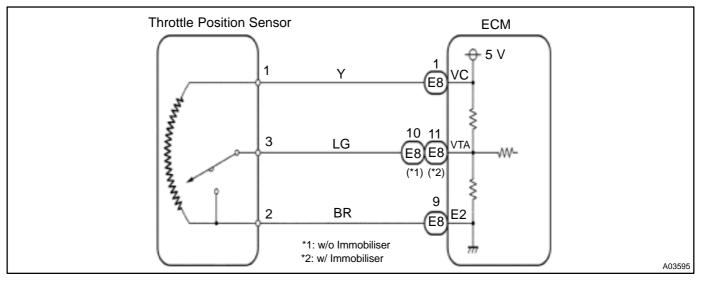
DTC

P0120

Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction

CIRCUIT DESCRIPTION

The throttle position sensor is mounted in the throttle body and detects the throttle valve opening angle. When the throttle valve is fully closed, a voltage of approximately $0.3 \sim 0.8$ V is applied to terminal VTA of the ECM. The voltage applied to the terminals VTA of the ECM increases in proportion to the opening angle of the throttle valve and becomes approximately $3.2 \sim 4.9$ V when the throttle valve is fully opened. The ECM judges the vehicle driving conditions from this signal input from terminal VTA, and uses it as one of the conditions for deciding the air–fuel ratio correction, power increase correction and fuel–cut control etc.


DTC No.	DTC Detecting Condition	Trouble Area
P0120	Condition (a) or (b) continues with more than 5 sec.: (a) VTA < 0.1 V (b) VTA > 4.9 V	 Open or short in throttle position sensor circuit Throttle position sensor ECM

HINT:

After confirming DTC P0120, use the OBD II scan tool or TOYOTA hand-held tester to confirm the throttle valve opening percentage.

Throttle valv expressed	Trouble Area	
Throttle valve fully closed	Throttle valve fully open	
0 %	0 %	VC line open VTA line open or short
Approx. 100 %	Approx. 100 %	E2 line open

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTCs P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure /Barometric Pressure Circuit Range/Performance Problem), P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction) and P0120 (Throttle/ Pedal Position Sensor/Switch "A" Circuit Malfunction) are output simultaneously, E2 (sensor ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Connect OBD II scan tool or TOYOTA hand-held tester, read the throttle valve

1

opening percentage.

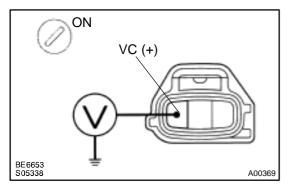
PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.

CHECK:

Read the throttle valve opening percentage.

<u> 0K:</u>

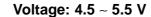

Throttle valve	Throttle valve opening position expressed as percentage
Fully open	Approx. 70 %
Fully closed	Approx. 10 %

ОК ∖

Check for intermittent problems (See page DI–3).

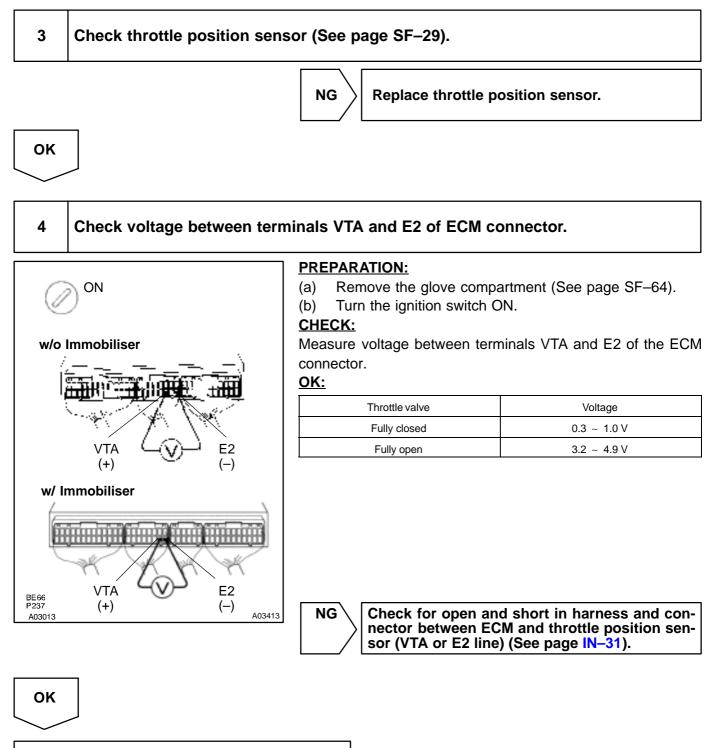
NG

2 Check voltage between terminal VC of throttle position sensor connector and body ground.

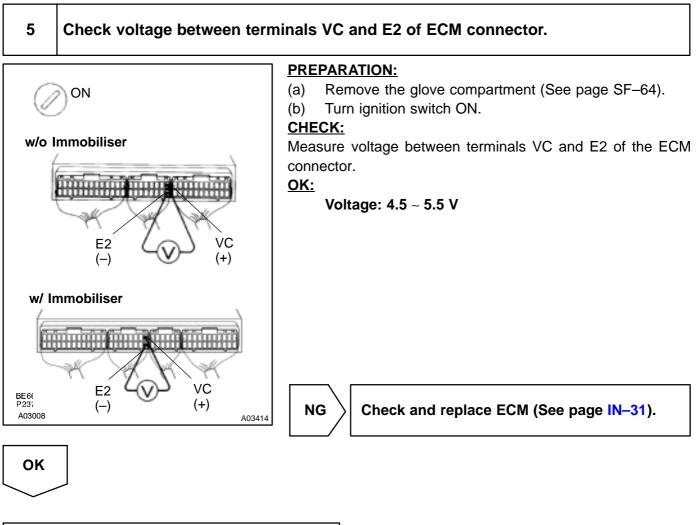

PREPARATION:

- (a) Disconnect the throttle position sensor connector.
- (b) Turn the ignition switch ON.

CHECK:


Measure voltage between terminal VC of the throttle position connector and body ground.

<u>OK:</u>


Go to step 5.

Check and replace ECM (See page IN-31).

Check for open in harness and connector between ECM and sensor (VC line) (See page IN-31).

DTC	P0121	Throttle/Pedal Position Sensor/Switch "A" Circuit Range/Performance Problem
-----	-------	--

CIRCUIT DESCRIPTION

Refer to DTC P0120 (Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction) on page DI-49.

DTC No.	Detection Item	Trouble Area
P0121	After vehicle speed has been exceeded 30 km/h (19 mph) even once, output value of throttle position sensor is out of applicable range while vehicle speed between 30 km/h (19 mph) and 0 km/h (0 mph) (2 trip detection logic)	 Throttle position sensor

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1	Are there any other codes (besides DTC P0121) being output?
---	---

YES

Go to relevant DTC chart.

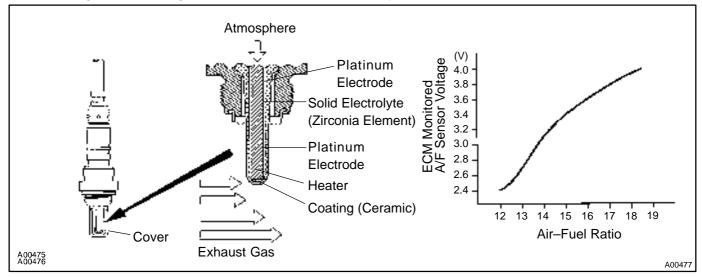
NO

Replace throttle position sensor.

DI00S-04

DTC	Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)

CIRCUIT DESCRIPTION

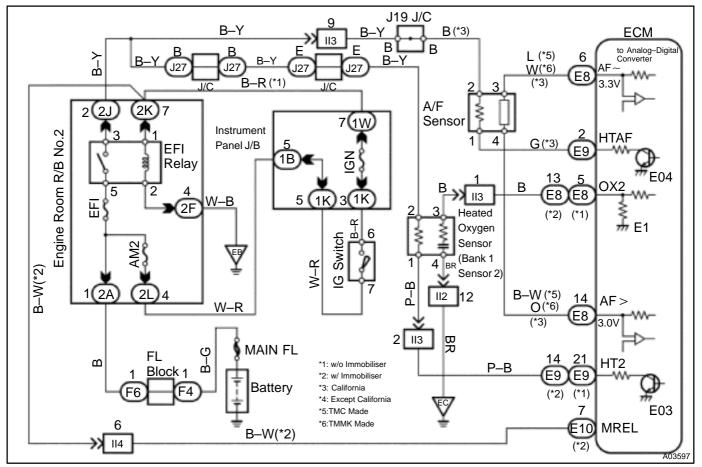

To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three–way catalytic converter is used, but for the most efficient use of the three–way catalytic converter, the air–fuel ratio must be precisely controlled so that it is always close to the stoichiometric air–fuel ratio.

The A/F sensor has the characteristic that provides output voltage* approximately proportional to the existing air–fuel ratio. The A/F sensor output voltage* is used to provide feedback for the ECM to control the air– fuel ratio.

By the A/F sensor output, the ECM can determine the deviation amount from the stoichiometric air–fuel ratio and control the proper injection time immediately. If the A/F sensor is malfunctioning, ECM is unable to perform accurate air–fuel ratio control.

The A/F sensor is equipped with a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temp. of the exhaust gas is low), current flows to the heater to heat the sensor for accurate oxygen concentration detection.

*: The voltage value changes at the inside of the ECM only.

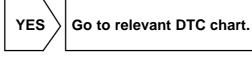


DTC No.	DTC Detecting Condition	Trouble Area
	After engine is warmed up, A/F sensor output* does not change when conditions (a), (b), and (c) continue for at least	●Fuel system ●Injector
	1.5 min.:	•Ignition system
P0125	*: Output value changes at inside of ECM only	 Gas leakage on exhaust system
	(a) Engine speed: 1,500 rpm or more	 Open or short in A/F sensor circuit
	(b) Vehicle speed: 40 ~ 100 km/h (25 ~ 62 mph)	●A/F sensor
	(c) Throttle valve is not fully closed	●ECM

HINT:

- After confirming DTC P0125, use the OBD II scan tool or TOYOTA hand—held tester to confirm voltage output of A/F sensor from the CURRENT DATA.
- The ECM controls the voltage of AF~ and AF> terminals of ECM to the fixed voltage. Therefore, it
 is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held
 tester.
- OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the TOYOTA hand-held tester.

WIRING DIAGRAM



INSPECTION PROCEDURE

HINT:

- If the vehicle run out fuel, the air-fuel ratio is LEAN and DTC P0125 will be recorded. The MIL then comes on.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0125) being output?

NO

2 Connect OBD II scan tool or TOYOTA hand-held tester, and read value for voltage output of A/F sensor.

PREPARATION:

(a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

(b) Warm up the A/F sensor with the engine at 2,500 rpm for approx. 90 sec.

CHECK:

Read voltage value of the A/F sensor on the screen of OBD II scan tool or TOYOTA hand-held tester when you perform all the following conditions.

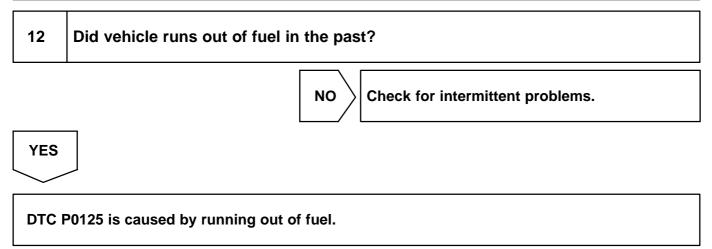
HINT:

The voltage of AF \sim terminal of ECM is 3.3 V fixed and the A/F > terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AF \sim /AF >) of ECM.

<u>OK:</u>

Condition	A/F Sensor Voltage Value
Engine idling	
Engine racing	 Not remains at 3.30 V (* 0.660 V) Not remains at 3.8 V (* 0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	 Not remains at 2.8 V (* 0.56 V) or less *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:


- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of the A/F sensor is above 3.8 V (* 0.76 V), it is normal.
- If output voltage of the A/F sensor remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F the sensor circuit may be open.
- If output voltage of A/F sensor remains at 3.8 V (* 0.76 V) or more, or 2.8 V (* 0.56 V) or less even after performing all the above conditions, A/F sensor circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).

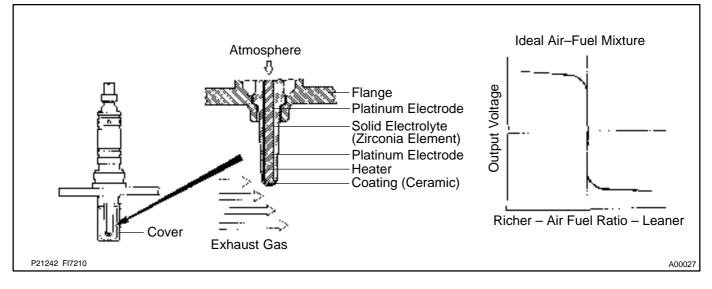
NG

3	Check for open and short in harness and connector between ECM and A/F sensor (See page IN-31).		
	NG Repair or replace harness or connector.		
ОК			
4	Check resistance of A/F sensor heater (See page SF–59).		
	NG Replace A/F sensor.		
ОК			
5	Check air induction system (See page SF–1).		
	NG Replace or replace.		
ОК			
6	Check EGR system (See page EC–12).		
	NG Repair EGR system.		
ОК			
7	7 Check fuel pressure (See page SF–6).		
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).		
ОК			

8	Check injector injection (See page SF-23).		
	NG Replace injector.		
ОК			
\sim			
9	Check gas leakage on exhaust system.		
	NG Repair or replace.		
ОК			
Repla	ice A/F sensor.		
10	10 Perform confirmation driving pattern (See page DI–152).		
Go			
11	Is there DTC P0125 being output again?		
	YES Check and replace ECM.		
NO			

DTC	P0125	Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)
-----	-------	--

CIRCUIT DESCRIPTION

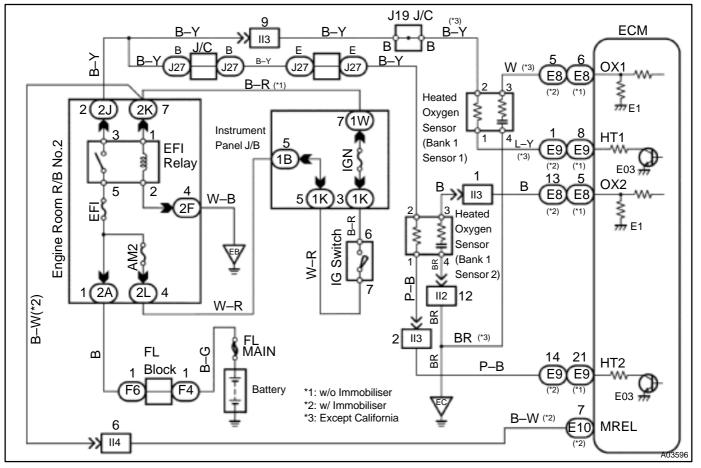

To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three–way catalytic converter is used, but for the most efficient use of the three–way catalytic converter, the air–fuel ratio must be precisely controlled so that it is always close to the stoichiometric air–fuel ratio.

The heated oxygen sensor has the characteristic where by its output voltage changes suddenly in the vicinity of the stoichiometric air-fuel ratio. This is used to detect the oxygen concentration in the exhaust gas and provide feedback to the computer for control of the air-fuel ratio.

When the air–fuel ratio becomes LEAN, the oxygen concentration in the exhaust increases and the heated oxygen sensor informs the ECM of the LEAN condition (small electromotive force: 0 V).

When the air-fuel ratio is RICHER than the stoichiometric air-fuel ratio the oxygen concentration in the exhaust gas is reduced and the heated oxygen sensor informs the ECM of the RICH condition (large electromotive force: 1 V).

The ECM judges by the electromotive force from the heated oxygen sensor whether the air-fuel ratio is RICH or LEAN and controls the injection time accordingly. However, if malfunction of the heated oxygen sensor causes output of abnormal electromotive force, the ECM is unable to perform accurate air-fuel ratio control. The heated oxygen sensors include a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temperature of the exhaust gas is low) current flows to the heater to heat the sensor for accurate oxygen concentration detection.


DTC No.	DTC Detecting Condition	Trouble Area
P0125	After engine is warmed up, heated oxygen sensor (bank 1 sensor 1) output does not indicate RICH even once when conditions (a), (b) and (c) continue for at least 1.5 min.: (a) Engine speed: 1,500 rpm or more (b) Vehicle speed: 40 ~ 100 km/h (25 ~ 62 mph) (c) Throttle valve does not fully closed	 Fuel system Injector Ignition system Gas leakage on exhaust system Open or short in heated oxygen sensor (bank 1 sensor 1) circuit Heated oxygen sensor (bank 1 sensor 1) ECM

HINT:

After confirming DTC P0125, use the OBD II scan tool or TOYOTA hand-held tester to confirm voltage output of the heated oxygen sensor (bank 1 sensor 1) from the CURRENT DATA.

If voltage output of the heated oxygen sensor (bank 1 sensor 1) is 0 V, heated oxygen sensor (bank 1 sensor 1) circuit may be open or short.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If the vehicle run out fuel, the air-fuel ratio is LEAN and DTC P0125 will be recorded. The MIL then comes on.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0125) being output? YES Go to relevant DTC chart.

NO

2	Connect OBD II scan tool or TOYOTA hand-held tester, and read value for volt-
	age output of heated oxygen sensor (bank 1 sensor 1).

PREPARATION:

(a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

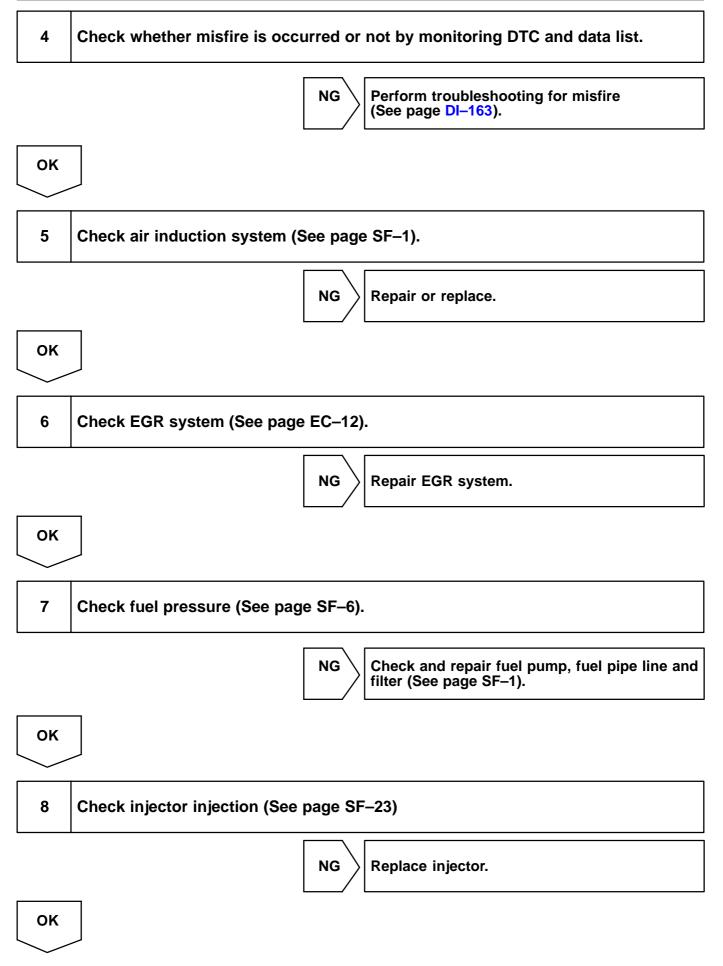
Г

(b) Warm up the engine to normal operating temp. (above 75°C (169°F)).

CHECK:

Read voltage output of the heated oxygen sensor (bank 1 sensor 1) when the engine is suddenly raced. HINT:

ΝГ


Perform quick racing to 4,000 rpm 3 times using the accelerator pedal.

<u>OK:</u>

Heated oxygen sensor (bank 1 sensor 1) output a RICH signal (0.45 V or more) at least once.

DI-63

٦

9	Check gas leakage on exhaust system.	
	NG Repair or replace.	
ОК		
Repla (bank	ce oxygen sensor 1 sensor 1).	
10	Perform confirmation driving pattern (See page DI–152).	
Go		
11	11 Is there DTC P0125 being output again?	
	YES Check and replace ECM.	
NO		
12	Did vehicle runs out of fuel in the past?	
	NO Check for intermittent problems.	
YES		
DTC I	DTC P0125 is caused by running out of fuel.	

300

DTC		Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 1) (Except California Spec.)
-----	--	---

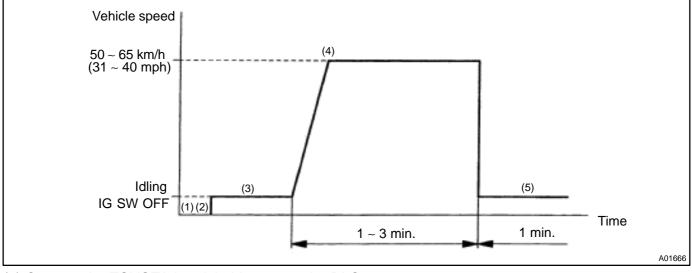
CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI-55.

DTC No.	DTC Detecting Condition	Trouble Area
P0130	Voltage output of heated oxygen sensor remains at 0.4 V or more, or 0.55 V or less, during idling after engine is warmed up (2 trip detection logic)	Heated oxygen sensorFuel trim malfunction

HINT:

Sensor 1 refers to the sensor closer to the engine body.


The heated oxygen sensor's output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI-55.

DI00V-05

CONFIRMATION DRIVING PATTERN

(1) Connect the TOYOTA hand-held tester to the DLC3.

(2) Switch the TOYOTA hand-held tester from normal mode to check mode (See page DI-3).

(3) Start the engine and warm it up with all accessory switches OFF.

(4) Drive the vehicle at 50 ~ 65 km/h (31 ~ 40 mph) for 1 ~ 3 min. to warm up the heated oxygen sensor.

(5) Let the engine idle for 1 min.

(6) Perform steps (3) to (5) three times.

HINT:

If a malfunction exists, the MIL will light up during step (6).

NOTICE:

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a TOYOTA hand-held tester, turn the ignition switch OFF after performing steps (3) to (6), then perform steps (3) to (6) again.

INSPECTION PROCEDURE

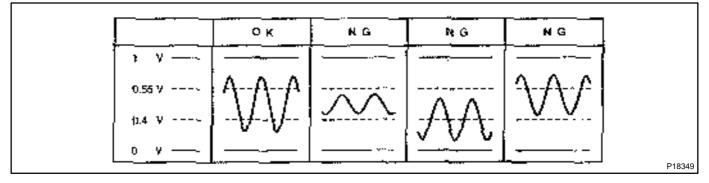
HINT:

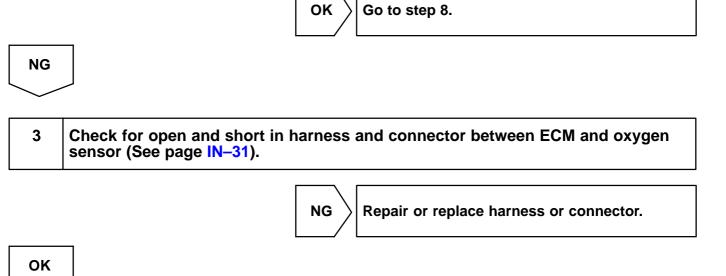
Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

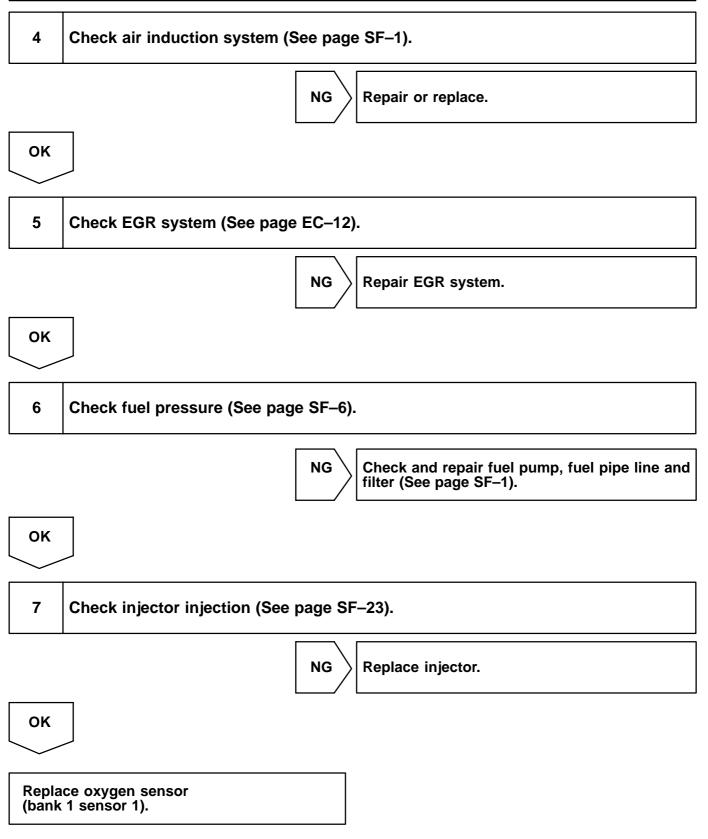
1 Are there any other codes (besides DTC P0130) being output? YES Go to relevant DTC chart.

2 Check the output voltage of heated oxygen sensor during idling.

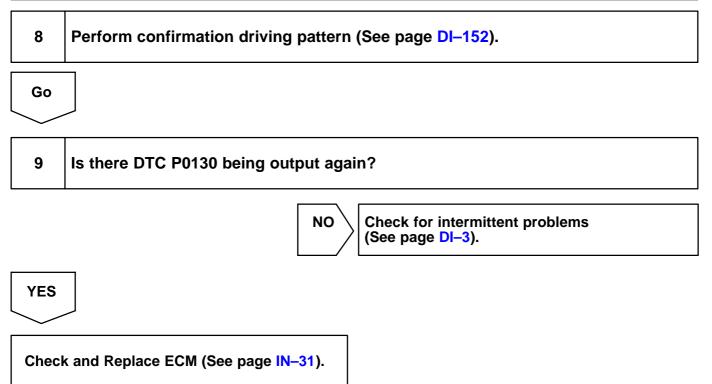
PREPARATION:


Warm up the heated oxygen sensor the engine at 2,500 rpm for approx. 90 sec.


CHECK:


Use the OBD II scan tool or TOYOTA hand-held tester to read the output voltage of the heated oxygen sensor during idling.

<u>OK:</u>


Heated oxygen sensor output voltage: Alternates repeatedly between less than 0.4 V and more than 0.55 V (See the following table).

304

DI4NF-01

DTC P0133 Heated Oxygen Sensor Circuit Slow Response (Bank 1 Sensor 1) (Ex. CA Spec.)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI–55.

DTC No.	DTC Detecting Condition	Trouble Area
P0133	Response time for heated oxygen sensor's voltage output to change from rich to lean, or from lean to rich, is 1 sec. or more during idling after engine is warmed up (2 trip detection logic)	Heated oxygen sensorFuel trim malfunction

HINT:

Sensor 1 refers to the sensor closer to the engine body.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scantool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1

Are there any other codes (besides DTC P0133) being output?

YES

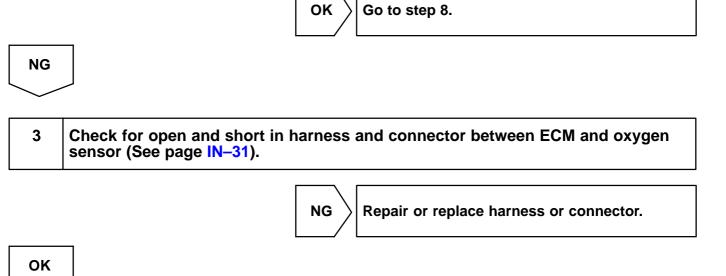
Go to relevant DTC chart.

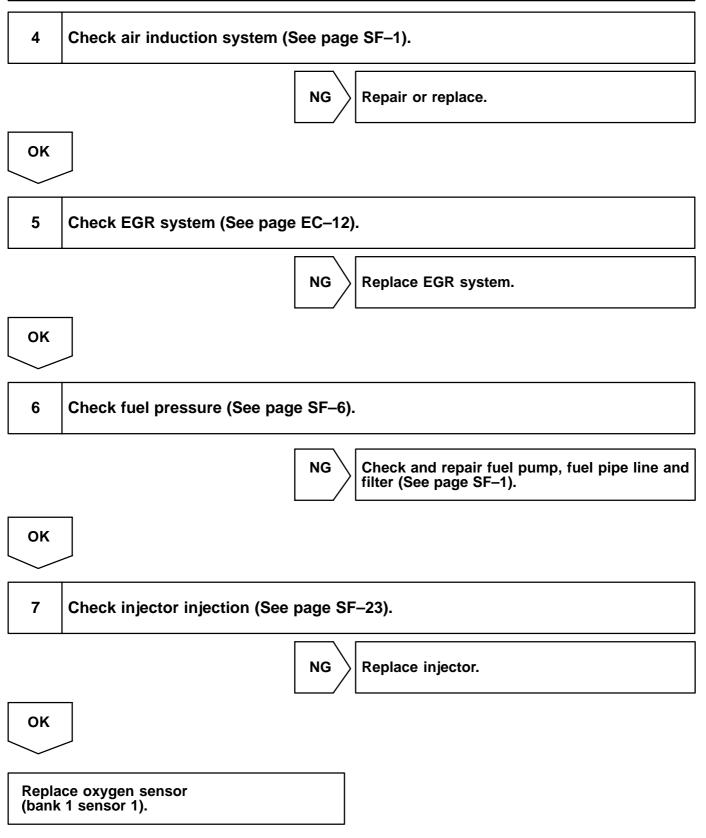
NO

2 Check output voltage of heated oxygen sensor during idling.

PREPARATION:

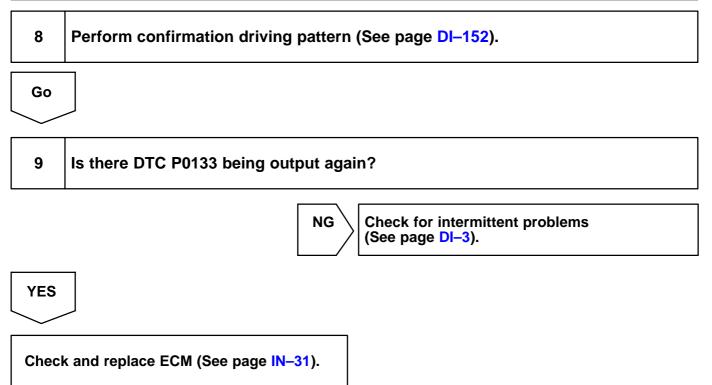

Warm up the heated oxygen sensor the engine at 2,500 rpm for approx. 90 sec.


CHECK:


Use the OBD II scan tool or TOYOTA hand-held tester to read the output voltage of the heated oxygen sensor during idling.

<u>OK:</u>

Heated oxygen sensor output voltage: Alternates repeatedly between less than 0.4 V and more than 0.55 V (See the following table).



308

DI-74

DTC	P0135	Heated Oxygen Sensor Heater Circuit Mal- function (Bank 1 Sensor 1) (Ex. CA Spec.)
-----	-------	---

DTC	P0141	Heated Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 2)
-----	-------	--

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI–55.

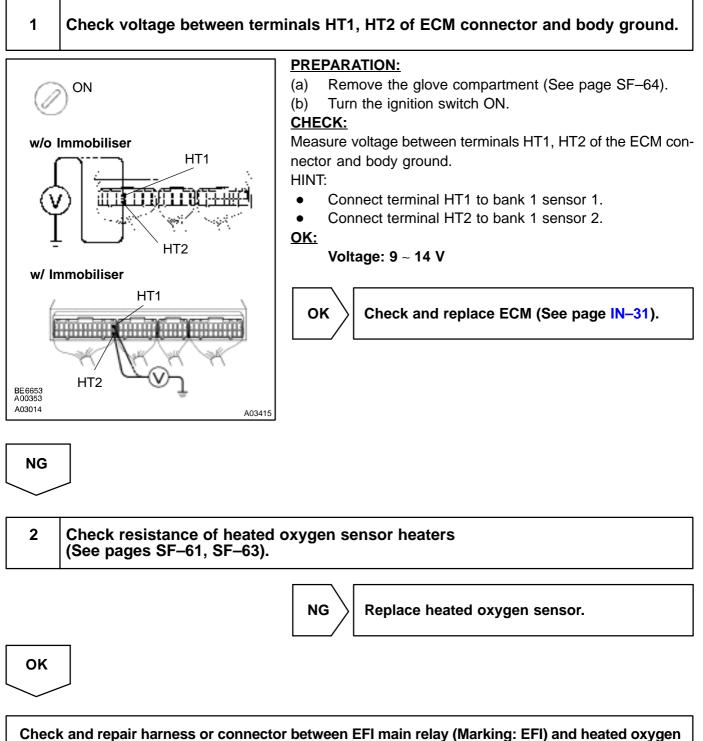
DTC No.	DTC Detecting Condition	Trouble Area
P0135 P0141	When heater operates, heater current exceeds 2 A (2 trip detection logic)	•Open or short in heater circuit of heated oxygen sensor
P0135 P0141	Heater current of 0.2 A or less when heater operates (2 trip detection logic)	Heated oxygen sensor heaterECM

HINT:

- Sensor 1 refers to the sensor closer to the engine body.
- Sensor 2 refers to the sensor farther away from the engine body.

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI-55.


INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Date :

DI00X-04

sensor, and heated oxygen sensor and ECM. (See page IN-31).

DI00Y-08

DTC P0136 Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI-55.

DTC No.	DTC Detecting Condition	Trouble Area
P0136	Voltage output of heated oxygen sensor remains at 0.45*1/0.40*2 V or more, or 0.60*1/0.50*2 V or less when ve- hicle is driven at 40 km/h (25 mph) or more after engine is warmed up *1: for California Spec. *2: except California Spec. (2 trip detection logic).	 Heated oxygen sensor

HINT:

Sensor 2 refers to the sensor farther away from the engine body.

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI–55.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Go to relevant DTC chart.

NO

2	Check for open and short in harness and connector between ECM and heated oxygen sensor (See page IN–31).
	NG Repair or replace harness or connector.
ОК	
3	Check output voltage of heated oxygen sensor.
PREPA	RATION:
(a) Co	onnect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
	arm up the engine to normal operating temp.
CHECK	_
	bltage output of the heated oxygen sensor when the engine suddenly raced.
HINT:	quick reasing to 4,000 rpm 2 min. using the appelerator nodel
OK:	quick racing to 4,000 rpm 3 min. using the accelerator pedal.
	eated oxygen sensor output voltage:
	ternates from $0.45^{*1}/0.40^{*2}$ V or less to $0.60^{*1}/0.50^{*2}$ V or more.
*1:	for California Spec.
*2:	except California Spec.
	OK Check that each connector is properly connected.
NG	

Replace heated oxygen sensor.

DTC		System too Lean (Fuel Trim) (Only for California Spec.)
-----	--	--

DTC	System too Rich (Fuel Trim) (Only for California Spec.)

Fuel trim refers to the feedback compensation value compared against the basic injection time. Fuel trim includes short-term fuel trim and long-term fuel trim.

Short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at its ideal theoretical value.

The signal from the A/F sensor is approximately proportional to the existing air-fuel ratio, and ECM comparing it with the ideal theoretical value, the ECM reduces fuel volume immediately if the air-fuel ratio is rich and increases fuel volume if it is lean.

Long-term fuel trim compensates the deviation from the central value of the short-term fuel trim stored up by each engine tolerance, and the deviation from the central value due to the passage of time and changes of using environment.

If both the short-term fuel trim and long-term fuel trim exceed a certain value, it is detected as a malfunction and the MIL lights up.

DTC No.	DTC Detecting Condition	Trouble Area
P0171	When air–fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on rich side (2 trip detection logic)	 Gas leakage on exhaust system Air intake (loose hoses) Fuel line pressure Injector blockage Manifold absolute pressure sensor Engine coolant temp. sensor A/F sensor
P0172	When air-fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on lean side (2 trip detection logic)	 Gas leakage on exhaust system Fuel line pressure Injector leak, blockage Manifold absolute pressure sensor Engine coolant temp. sensor A/F sensor

HINT:

- When the DTC P0171 is recorded, the actual air-fuel ratio is on the lean side. When DTC P0172 is recorded, the actual air-fuel ratio is on the rich side.
- If the vehicle runs out of fuel, the air-fuel ratio is lean and DTC P0171 is recorded. The MIL then comes
 on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within ± 38 %, the system is functioning normally.
- The A/F sensor output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.
- The ECM controls the voltage of AF~ and AF> terminals of ECM to the fixed voltage. Therefore, it
 is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held
 tester.

DI1JW-03

• OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the TOYOTA hand-held tester.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air⁻fuel ratio lean or rich, etc. at the time of the malfunction.

1	Check air induction system (See page SF–1).
	NG Repair or replace.
ОК	
2	Check injector injection (See page SF-23).
	NG Replace injector.
ОК	
3	Check manifold absolute pressure sensor and engine coolant temp. sensor (See pages SF–53 and SF–49).
	NG Repair or replace.
ОК	
4	Check for spark and ignition (See page IG–1).
	NG Repair or replace.
ОК	

Date :

5	Check fuel pressure (See page SF–6).
	NG Check and repair fuel pump, pressure regulator, fuel pipe line and filter.
ОК	
6	Check gas leakage on exhaust system.
ок	NG Repair or replace.

Check and replace ECM (See page IN-31).

DI-81

7

Check output voltage of A/F sensor.

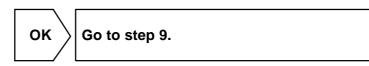
PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Warm up the A/F sensor with the engine at 2,500 rpm for approx. 90 sec.

CHECK:

Read voltage value of A/F sensor on the screen of OBD II scan tool or TOYOTA hand-held tester when you perform all the following conditions.

HINT:


The voltage of AF \sim terminal of ECM is 3.3 V fixed and AF > terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AF \sim /AF >) of ECM.

<u>OK:</u>

Condition	A/F Sensor Voltage value
Engine idling	
Engine racing	 Not remains at 3.30 V (* 0.660 V) Not remains at 3.8 V (* 0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	 Not remains at 3.8 V (* 0.76 V) or more Not remains at 2.8 V (* 0.56 V) or less *: When you use OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensor is below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of A/F sensor is above 3.8 V (* 0.76 V), it is normally.
- If output voltage of A/F sensor remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F sensor circuit may be open.
- If output voltage of A/F sensor remains at 3.8 V (* 0.76 V) or more, or 2.8 V (* 0.56 V) or less even after performing all the above conditions, A/F sensor circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).

NG

8	Check for open and short in harness and connector between ECM and oxygen sensor (See page IN–31).
	NG Repair or replace harness or connector.
ОК	
Repla	ce A/F sensor.
9	Perform confirmation driving pattern (See page DI–152).
Go	
10	Is there DTC P0171 or P0172 being output again?
	YES Check and replace ECM.
NO	
11	Did vehicle runs out of fuel in the past?
	NO Check for intermittent problems.
YES	
DTC I	P0171 or P0172 is caused by running out of fuel.

DTC	P0171	System too Lean (Fuel Trim) (Except California Spec.)
-----	-------	--

DTC	P0172	System too Rich (Fuel Trim) (Except California Spec.)
		(Except California Spec.)

Fuel trim refers to the feedback compensation value compared against the basic injection time. Fuel trim includes short-term fuel trim and long-term fuel trim.

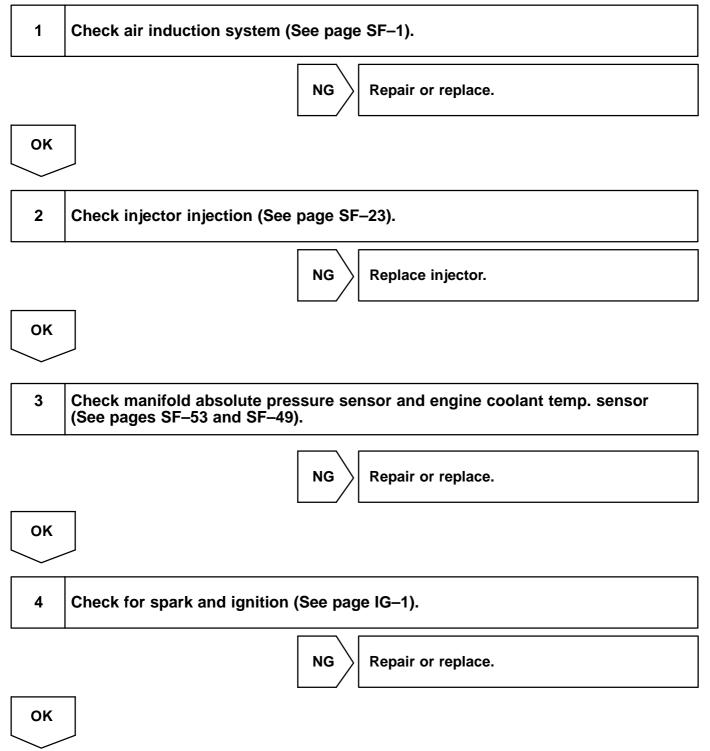
Short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at its ideal theoretical value. The signal from the heated oxygen sensor indicates whether the air-fuel ratio is RICH or LEAN compared to the ideal theoretical value, triggering a reduction in fuel volume if the air-fuel ratio is rich, and an increase in fuel volume if it is lean.

Long-term fuel trim is overall fuel compensation carried out long-term to compensate for continual deviation of the short-term fuel trim from the central value due to individual engine differences, wear over time and changes in the usage environment.

If both the short-term fuel trim and long-term fuel trim are LEAN or RICH beyond a certain value, it is detected as a malfunction and the MIL lights up.

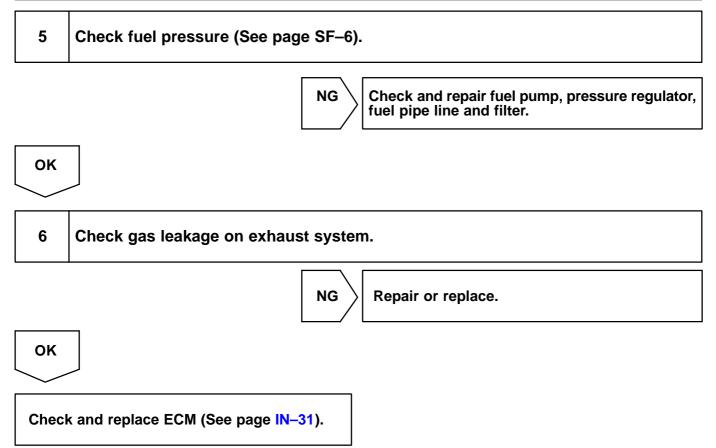
DTC No.	DTC Detecting Condition	Trouble Area
P0171	When air–fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Gas leakage on exhaust system Air intake (hose loose) Fuel line pressure Injector blockage Heated oxygen sensor (bank 1 sensor 1) Manifold absolute pressure sensor Engine coolant temp. sensor
P0172	When air-fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Gas leakage on exhaust system Fuel line pressure Injector leak, blockage Heated oxygen sensor (bank 1 sensor 1) Manifold absolute pressure sensor Engine coolant temp. sensor

HINT:


- When the DTC P0171 is recorded, the actual air-fuel ratio is on the LEAN side. When DTC P0172 is recorded, the actual air-fuel ratio is on the RICH side.
- If the vehicle runs out of fuel, the air-fuel ratio is LEAN and DTC P0171 is recorded. The MIL then comes on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within ± 38 %, the system is functioning normally.
- The heated oxygen sensor (bank 1 sensor 1) output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.

Date :

INSPECTION PROCEDURE


HINT:

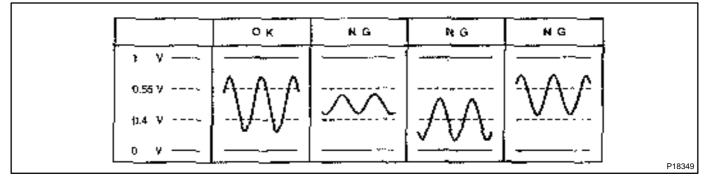
Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

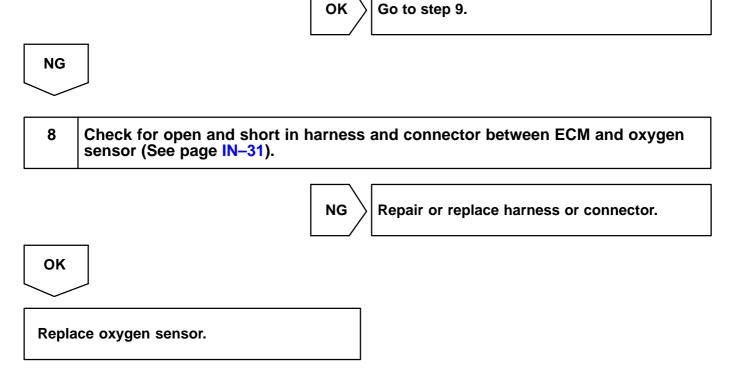
320

DI-86

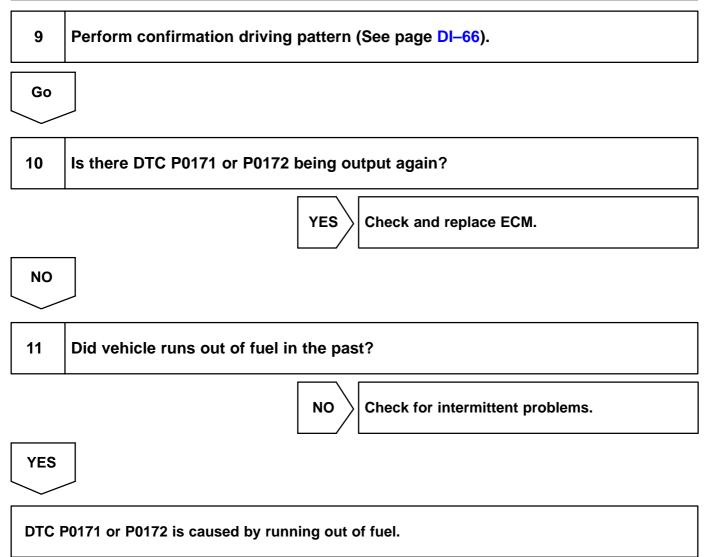
7 Check the output voltage of heated oxygen sensor during idling.

PREPARATION:


Warm up the heated oxygen sensor the engine at 2,500 rpm for approx. 90 sec.


CHECK:

Use the OBD II scan tool or TOYOTA hand-held tester to read the output voltage of the heated oxygen sensor during idling.


<u>OK:</u>

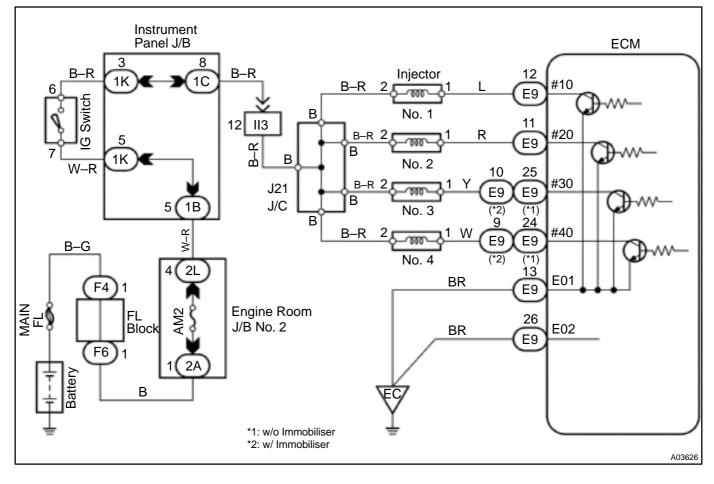
Heated oxygen sensor output voltage: Alternates repeatedly between less than 0.4 V and more than 0.55 V (See the following table).

DI-88

		DI011-07
DTC	P0300	Random/Multiple Cylinder Misfire Detected
DTC	P0301	Cylinder 1 Misfire Detected
	-	
DTC	P0302	Cylinder 2 Misfire Detected
	•	
DTC	P0303	Cylinder 3 Misfire Detected
	•	•
DTC	P0304	Cylinder 4 Misfire Detected

Misfire: The ECM uses the crankshaft position sensor and camshaft position sensor to monitor changes in the crankshaft rotation for each cylinder.

The ECM counts the number of times the engine speed change rate indicates that misfire has occurred. And when the misfire rate equals or exceeds the count indicating that the engine condition has deteriorated, the MIL lights up.


If the misfire rate is high enough and the driving conditions will cause catalyst overheating, the MIL blinks when misfiring occurs.

DTC No.	DTC Detecting Condition	Trouble Area
P0300 P0301 P0302 P0303 P0304	Misfiring of random cylinders is detected during any particular 200 or 1,000 revolutions For any particular 200 revolutions for engine, misfiring is de- tected which can cause catalyst overheating (This causes MIL to blink)	 Ignition system Injector Fuel line pressure EGR Compression pressure Valve clearance not to specification Valve timing Manifold absolute pressure sensor Engine coolant temp. sensor Open or short in engine wire Connector connection ECM

HINT:

When the 2 or more codes for a misfiring cylinder are recorded repeatedly but no random misfire code is recorded, it indicates that the misfires were detected and recorded at different times.

WIRING DIAGRAM

CONFIRMATION DRIVING PATTERN

- (1) Connect the TOYOTA hand-held tester or OBD II scan tool.
- (2) Record DTC and the freeze frame data.
- (3) Use the TOYOTA hand-held tester to set to Check Mode. (See page DI-3)
- (4) Drive the vehicle several times with the engine speed, load and its surrounding range shown with ENGINE SPD, CALC LOAD in the freeze frame data or MISFIRE RPM, MISFIRE LOAD in the data list. If you have no TOYOTA hand-held tester, turn the ignition switch OFF after the symptom is simulated the first time. Then repeat the simulation process again.

HINT:

In order to memorize DTC of misfire, it is necessary to drive around MISFIRE RPM, MISFIRE LOAD in the data list for the following period of time.

Engine Speed	Time
Idling	3 minutes 30 seconds or more
1000 rpm	3 minutes or more
2000 rpm	1 minutes 30 seconds or more
3000 rpm	1 minutes or more

(5) Check whether there is misfire or not by monitoring DTC and the freeze frame data. After that, record them.

(6) Turn the ignition switch OFF and wait at least 5 seconds.

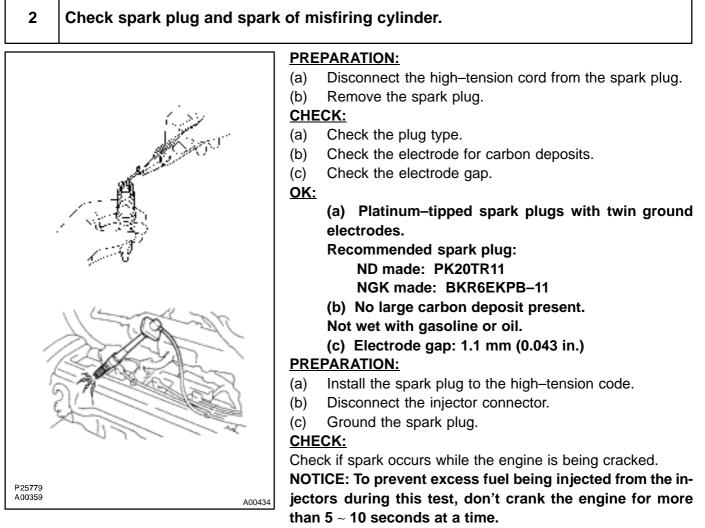
INSPECTION PROCEDURE

HINT:

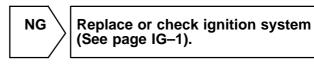
- If is the case that DTC besides misfire is memorized simultaneously, first perform the troubleshooting for them.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame data records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the vehicle is brought to the workshop and the misfire is not occurred, misfire can be confirmed by reproducing the condition or freeze frame data. Also, after finishing the repair, confirm that there is no misfire. (See the confirmation driving pattern)
- When either of SHORT FT #1, LONG FT #1, SHORT FT #2 or LONG FT #2 in the freeze frame data is besides the range of ±20%, there is a possibility that the air-fuel ratio is inclining either to "rich" (-20% or less) or "lean" (+20% or more).
- When COOLANT TEMP in the freeze frame data is less than 80°C (176°F), there is a possibility or misfire only during warming up.
- In the case that misfire cannot be reproduced, the reason may be because of the driving with lack or fuel, the use of improper fuel, a stain of ignition plug, and etc.

Check wire harness, connector and vacuum hose in engine room.

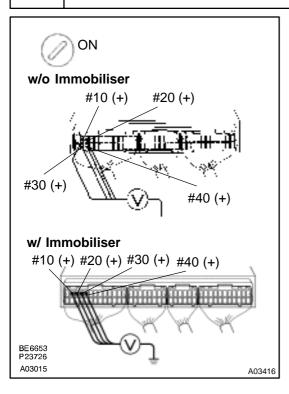
CHECK:


1

- (a) Check the connection conditions of the wire harness and connector.
- (b) Check the disconnection, piping and break of the vacuum hose.


Repair or replace, then confirm that there is no misfire (See the confirmation driving pattern).

OK


<u>OK:</u>

Spark jumps across electrode gap.

ок

PREPARATION:

(a) Remove the glove compartment (See page SF-64).

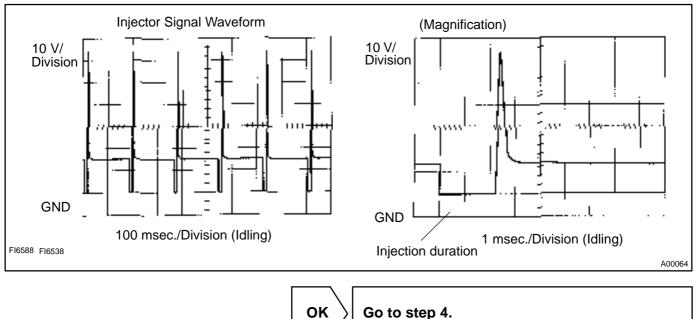
(b) Turn the ignition switch ON.

CHECK:

Check voltage of ECM terminal for injector of failed cylinder.

Measure voltage between applicable terminal of the ECM connector and body ground.

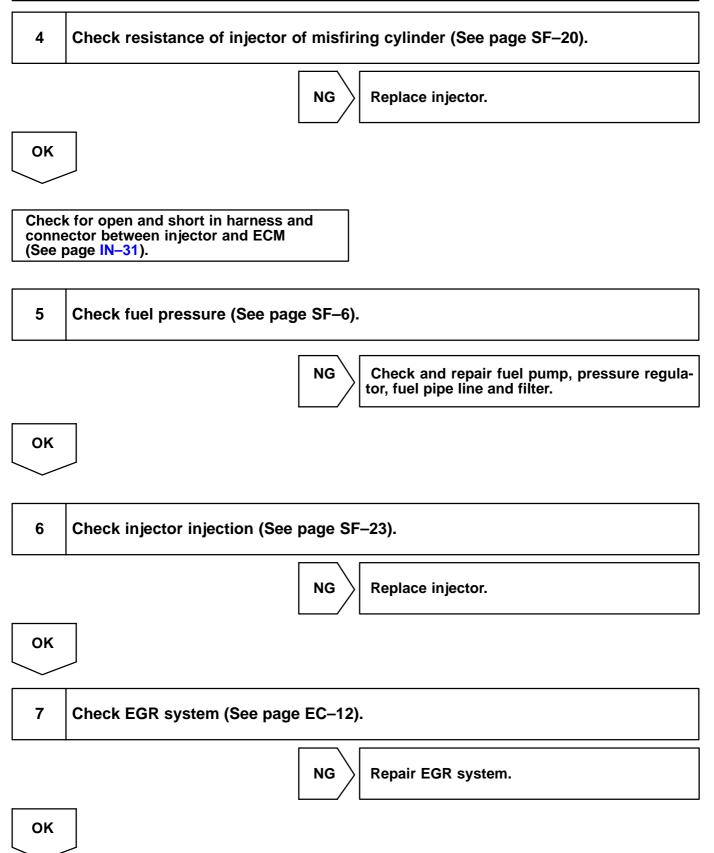
<u>OK:</u>


Voltage: 9 ~ 14 V

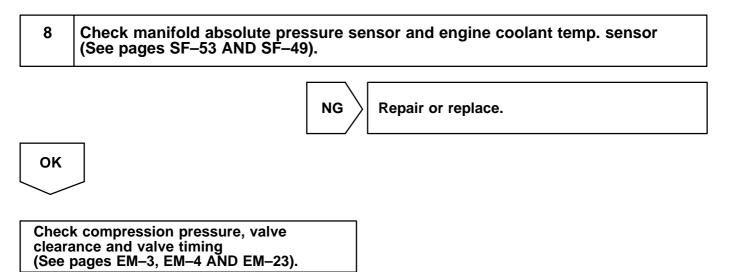
Reference: INSPECTION USING OSCILLOSCOPE INJECTOR SIGNAL WAVEFORM

With the engine idling, measure between terminals $\#10 \sim \#40$ and E01 of the ECM connector. HINT:

The correct waveforms are shown.


NG

Author:


329

Date :

330

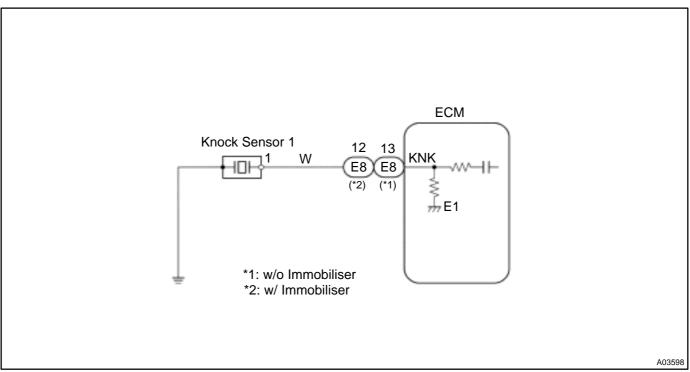
DI-95

DT	\mathbf{r}
וע	L.

P0325

Knock Sensor 1 Circuit Malfunction

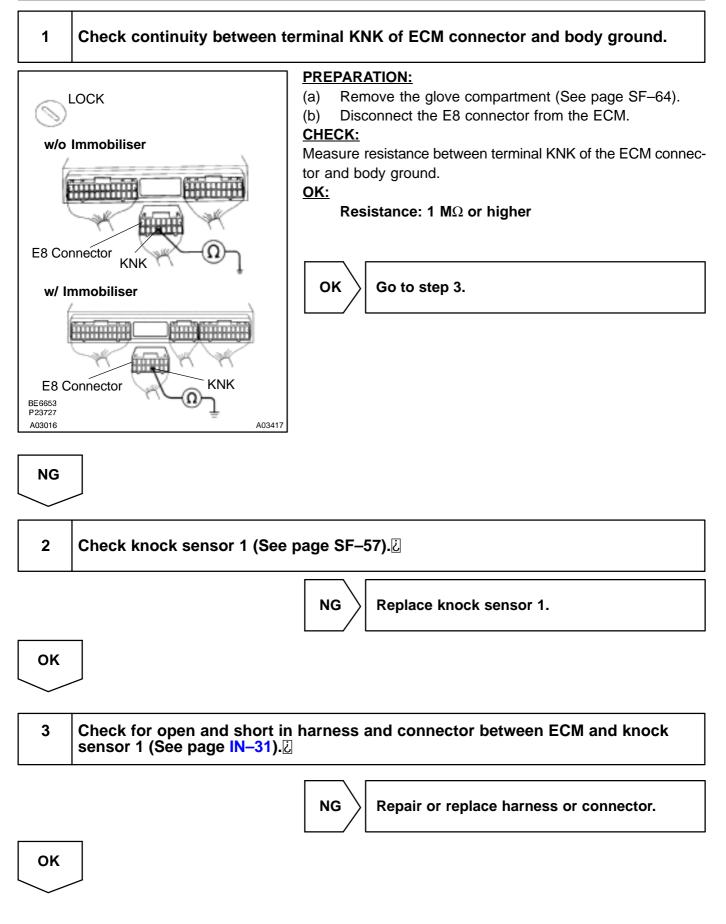
CIRCUIT DESCRIPTION

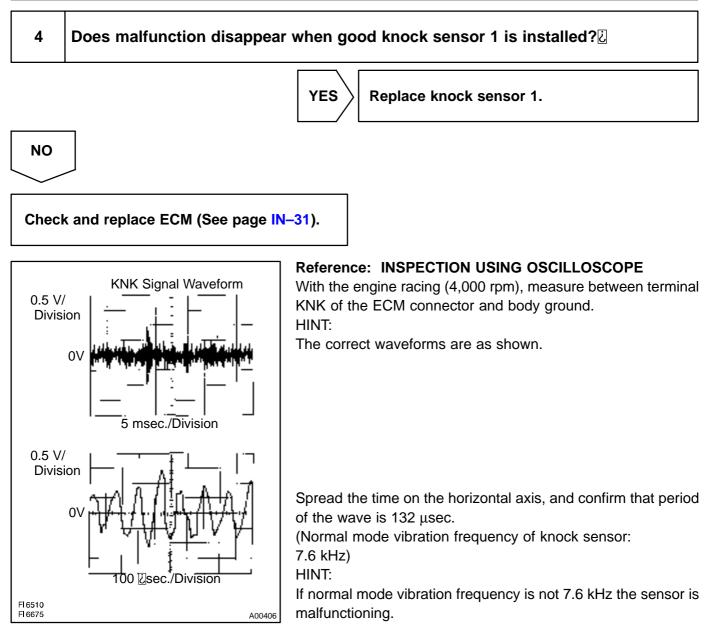

The knock sensor is fitted to the cylinder block to detect engine knocking. This sensor contains a piezoelectric element which generates a voltage when it becomes deformed, which occurs when the cylinder block vibrates due to knocking. If engine knocking occurs, ignition timing is retarded to suppress it.

DTC No.	DTC Detecting Condition	Trouble Area
P0325	o o i i i i	 Open or short in knock sensor 1 circuit Knock sensor 1 (looseness)
	(2 trip detection logic)	●ECM

HINT:

If the ECM detects above diagnosis conditions, it operates the fail safe function in which the corrective retard angle value is set to the maximum value.

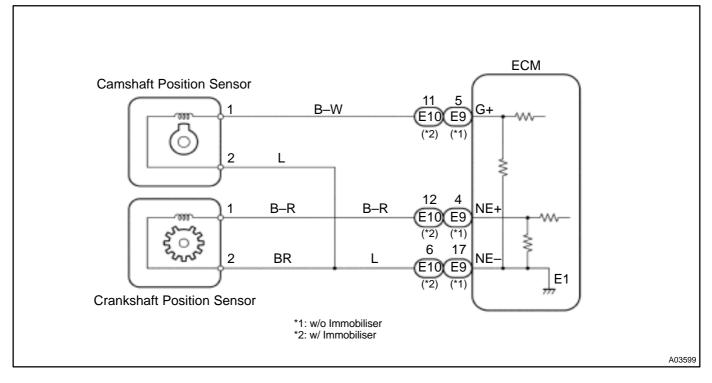

WIRING DIAGRAM


INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Date :

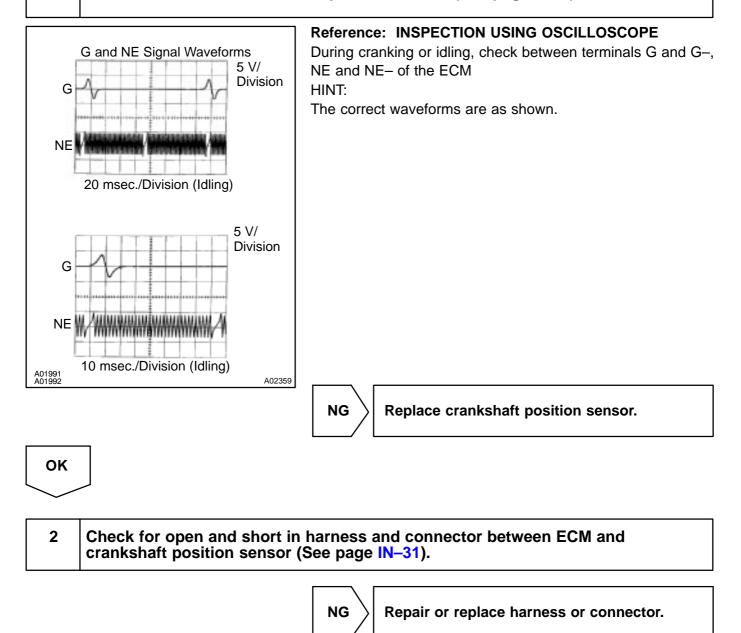

DTC	P0335	Crankshaft Position Sensor "A" Circuit Malfunction
-----	-------	--

Crankshaft position sensor (NE signal) consist of a signal plate and pickup coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals of every engine revolution. The ECM detects the standard crankshaft angle based on the G signals, and the actual crankshaft angle the engine speed by the NE signals.

DTC No.	DTC Detecting Condition	Trouble Area
P0335	No crankshaft position sensor signal to ECM during cranking (2 trip detection logic) No crankshaft position sensor signal to ECM with engine speed 600 rpm or more (2 trip detection logic)	 Open or short in crankshaft position sensor circuit. Crankshaft position sensor Starter ECM

WIRING DIAGRAM


DI013-10

INSPECTION PROCEDURE

HINT:

- Perform troubleshooting of DTC 335 first. If notrouble is found, troubleshoot the following mechanical system.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.
 - 1

Check resistance of crankshaft position sensor (See page IG-1).

3	Inspect sensor installation and teeth of crankshaft timing pulley (See pages IG–10 and EM–15).

Tighten the sensor. Replace crankshaft timing pulley.

ΟΚ

Check and replace ECM (See page IN-31).

DTC	P0340	Camshaft Position Sensor Circuit Malfunction
-----	-------	---

Camshaft position sensor (G signal) consist of signal plate and pickup coil.

The G signal plate has one tooth on its outer circumference and is mounted on the exhaust camshaft. When the camshafts rotate, the protrusion on the signal plate and the air gap on the pickup coil change, causing fluctuations in the magnetic field and generating an electromotive force in the pickup coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals for every engine revolution. The ECM detects the standard crankshaft angle based on the G signals and the actual crankshaft angle and the engine speed by the NE signals.

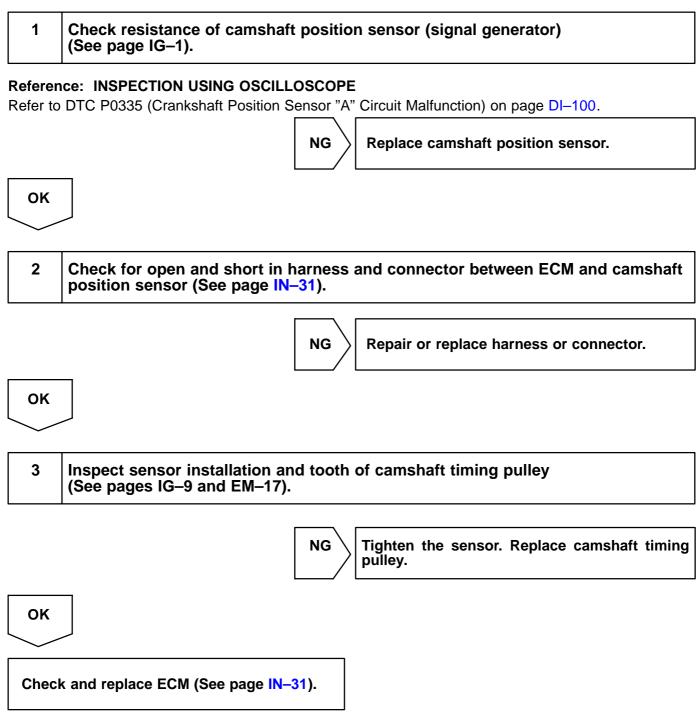
DTC No.	DTC Detecting Condition	Trouble Area
P0340	No camshaft position sensor signal to ECM during cranking (2 trip detection logic)	 Open or short in camshaft position sensor circuit Camshaft position sensor Distributor Starter ECM
	No camshaft position sensor signal to ECM with engine speed 600 rpm or more	

WIRING DIAGRAM

Refer to DTC P0335 (Crankshaft Position Sensor "A" Circuit Malfunction) on page DI-100.

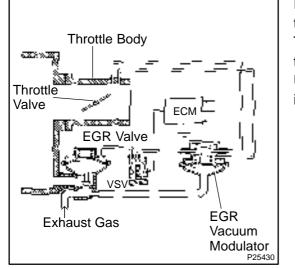
Date :

Author :


338

DI014-09

INSPECTION PROCEDURE


HINT:

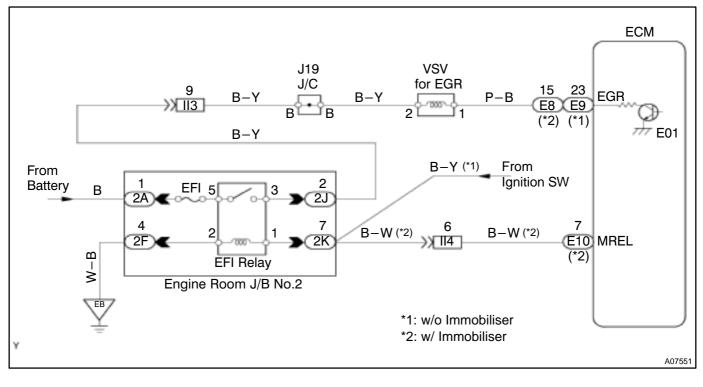
Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DTC	P0401	Exhaust Gas Recirculation Flow Insufficient Detected
-----	-------	--

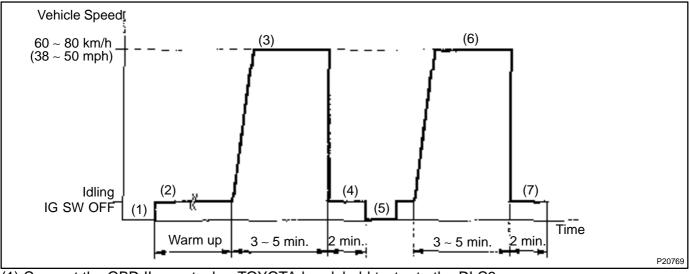
The EGR system recirculates exhaust gas, which is controlled to the proper quantity to suit the driving conditions, into the intake air mixture to slow down combustion, reduce the combustion temperature and reduce NOx emissions. The amount of EGR is regulated by the EGR vacuum modulator according to the engine load.

If even one of the following conditions is fulfilled, the VSV is turned ON by a signal from the ECM.

This results in atmospheric air acting on the EGR valve, closing the EGR valve and shutting off the exhaust gas (EGR cut–off). Under the following conditions, EGR is cut to maintain driveability.


- Before engine is warmed up.
- During deceleration (throttle valve closed).
- Light engine load (amount of intake air very small).
- Engine idling.
- Engine speed over 4,400 rpm.
- High engine load (amount of intake air very large).

DTC No.	DTC Detecting Condition	Trouble Area
P0401	After engine is warmed up, intake manifold absolute pressure is larger than value calculated by ECM while EGR system is ON (2 trip detection logic)	 EGR valve stuck closed Open or short in VSV circuit for EGR Vacuum or EGR hose disconnected Manifold absolute pressure sensor VSV for EGR open or close malfunction ECM


Author :

DI015-05

WIRING DIAGRAM

SYSTEM CHECK DRIVING PATTERN

(1) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

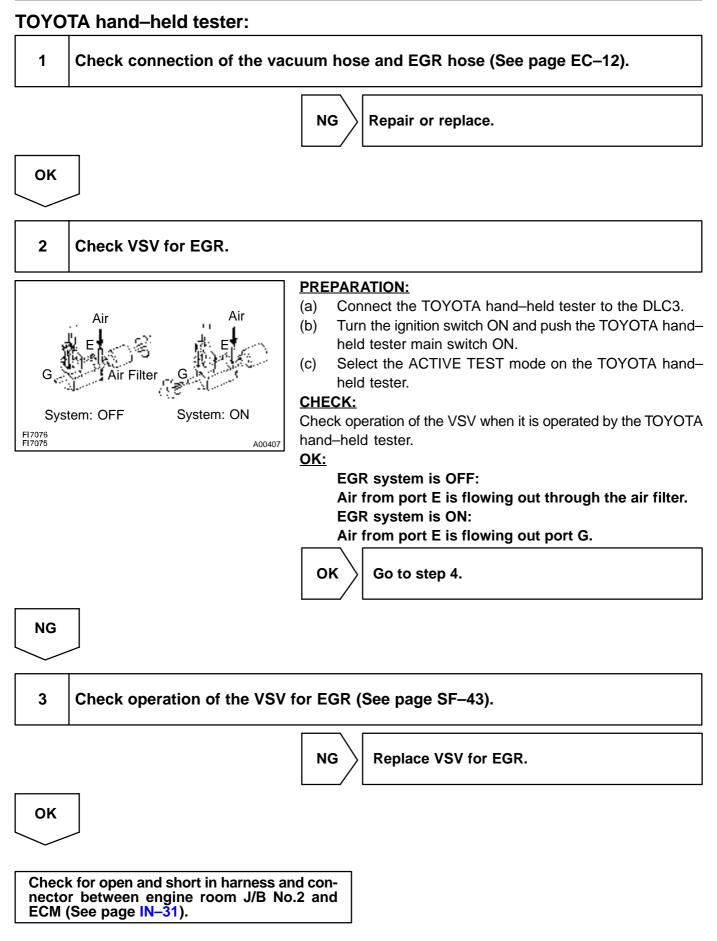
- (2) Start and warm up the engine with all accessories switched OFF.
- (3) Run the vehicle at 60 \sim 80 km/h (38 \sim 50 mph) for 3 min. or more.
- (4) Idle the engine for about 2 min.
- (5) Do steps (3) and (4) again.
- (6) Stop at safe place and turn the ignition switch OFF.
- (7) Do steps (2) to (5) again.

(8) Check the READINESS TESTS mode on the OBD II scan tool or TOYOTA hand-held tester.

If COMPL is displayed and the MIL does not light up, the system is normal.

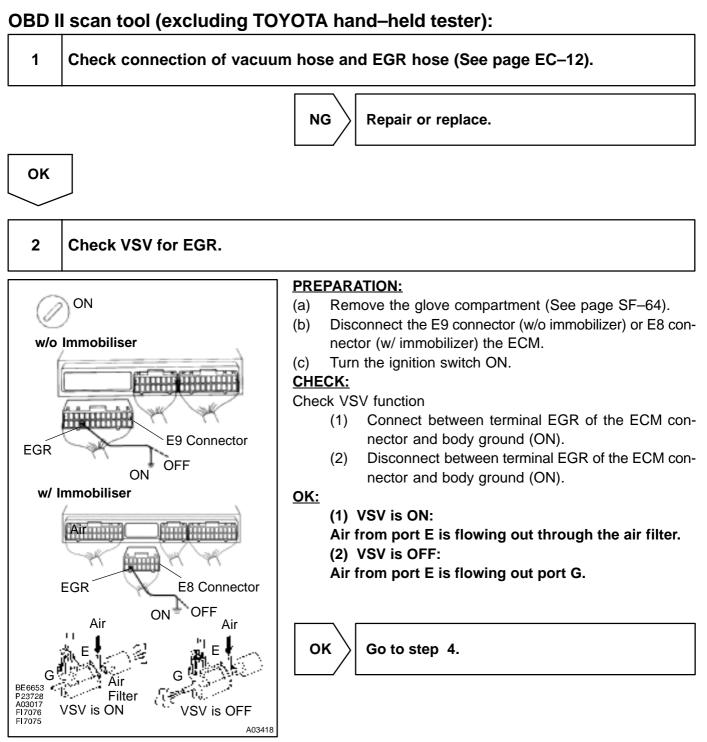
If INCMPL is displayed and the MIL does not light up, run the vehicle again and check it. HINT:

INCMPL is displayed when either condition (a) or (b) exists.

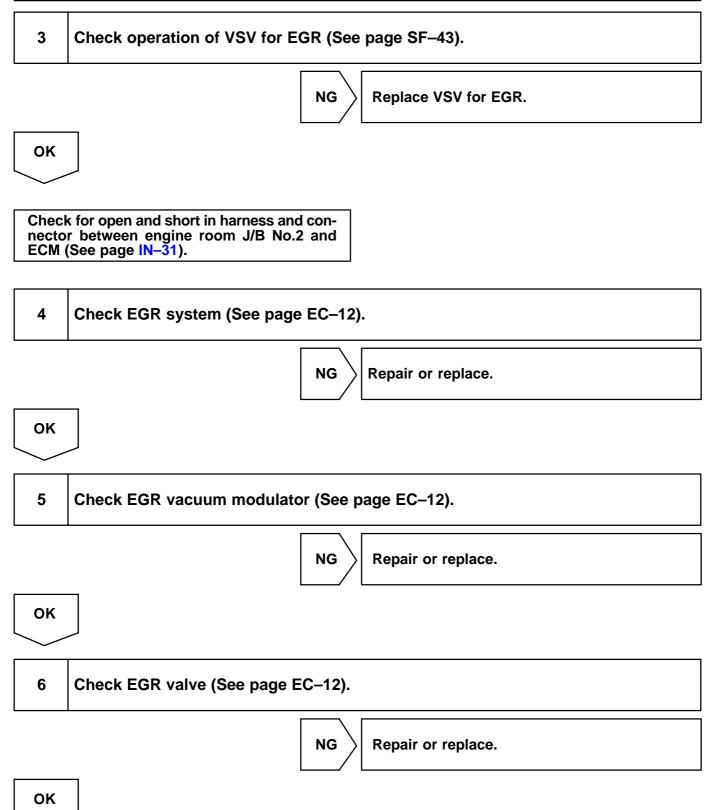

- (a) The system check is incomplete.
- (b) There is a malfunction in the system.

If there is a malfunction in the system, the MIL will light up after steps (2) to (5) above are done. (2 trip detection logic)

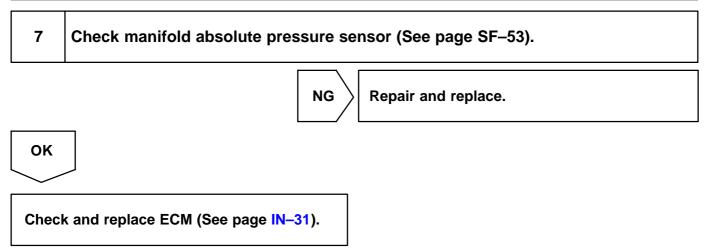
INSPECTION PROCEDURE


HINT:

- If DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure/Barometric Pressure Circuit Range/Performance Problem) and P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) are output simultaneously, perform troubleshooting of DTC P0105 first.
- If DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) and P0402 (Exhaust Gas Recirculation Flow Excessive Detected) are output simultaneously, perform troubleshooting of DTC P0402 first.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.



4	Check EGR system (See page EC–12).
	NG Repair or replace.
ОК	
5	Check EGR vacuum modulator (See page EC–12).
	NG Repair or replace.
ОК	
6	Check EGR valve (See page EC–12).
	NG Repair or replace.
ОК	
7	Check manifold absolute pressure sensor (See page SF–53).
	NG Repair or replace.
ОК	
Checl	k and replace ECM (See page IN–31).


344

NG

346

DI016-04

DTC P0402 Exhaust Gas Recirculation Flow Excessive Detected

CIRCUIT DESCRIPTION

Refer to DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) on page DI-105.

DTC No.	DTC Detecting Condition	Trouble Area
P0402	After engine is warmed up, conditions (a) and (b) continue: (a) Intake manifold absolute pressure is larger than value cal- culated by ECM while EGR system is ON (b) Misfiring is detected during idling (2 trip detection logic)	 EGR valve stuck open Vacuum or EGR hose is connected to wrong post Manifold absolute pressure sensor ECM

WIRING DIAGRAM

Refer to DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) on DI-105.

SYSTEM CHECK DRIVING PATTEM

Refer to DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) on DI-105.

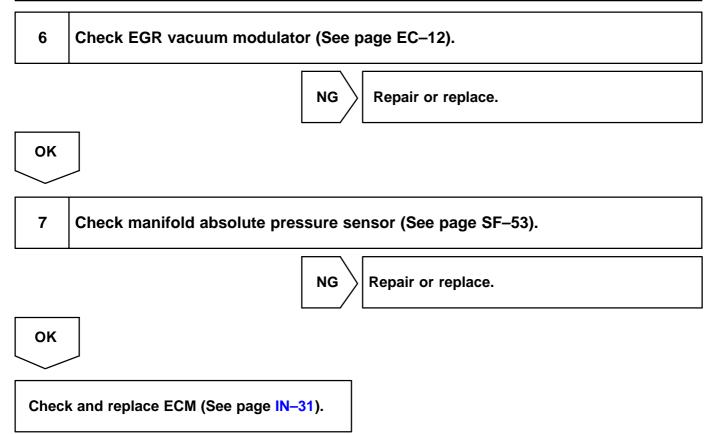
INSPECTION PROCEDURE

HINT:

- If DTC P0105 (Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction), P0106 (Manifold Absolute Pressure/Barometric Pressure Circuit Range/Performance Problem) and P0402 (Exhaust Gas Recirculation Flow Excessive Detected) are output simultaneously, perform troubleshooting of DTC P0105 first.
- If DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) and P0402 (Exhaust Gas Recirculation Flow Excessive Detected) are output simultaneously, perform troubleshooting of DTC P0402 first.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

1

Check connection of vacuum hose and EGR hose (See page EC-12).


NG

Repair or replace.

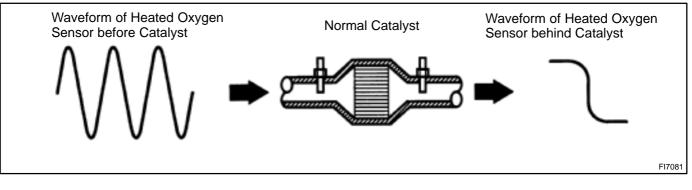
ОК

DI-114

2	Check EGR valve (See page EC–12).
	NG Repair or replace.
ОК	
3	Check VSV for EGR*.
-	have TOYOTA hand-held tester, see page DI-105, step 2. have no TOYOTA hand-held tester, see page DI-105, step 2.
	OK Go to step 4.
NG	
4	Check operation of VSV for EGR (See page SF–43).
	NG Replace VSV for EGR.
ОК	
necto	k for open and short in harness and con- r between engine room J/B No.2 and (See page IN–31).
5	Check EGR system (See page EC–12.)
	NG Repair or replace.
ОК	

350

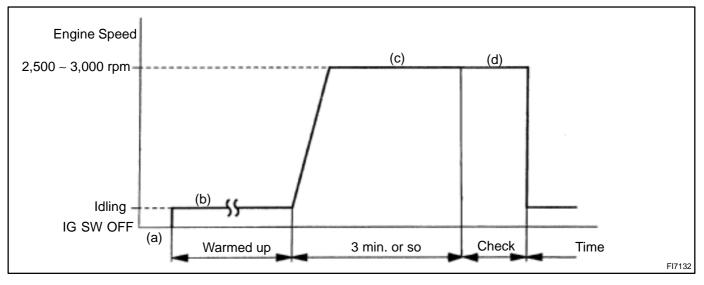
(Except California Spec.)	DTC		Catalyst System Efficiency Below Threshold (Except California Spec.)
---------------------------	-----	--	--

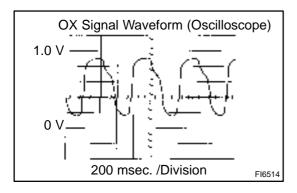

CIRCUIT DESCRIPTION

The ECM compares the waveform of the heated oxygen sensor located before the catalyst with the waveform of the heated oxygen sensor located behind the catalyst to determine whether or not catalyst performance has deteriorated.

Air-fuel ratio feedback compensation keeps the waveform of the heated oxygen sensor before the catalyst repeatedly changing back and forth from rich to lean.

If the catalyst is functioning normally, the waveform of the heated oxygen sensor behind the catalyst switches back and forth between rich and lean much more slowly than the waveform of the heated oxygen sensor before the catalyst.

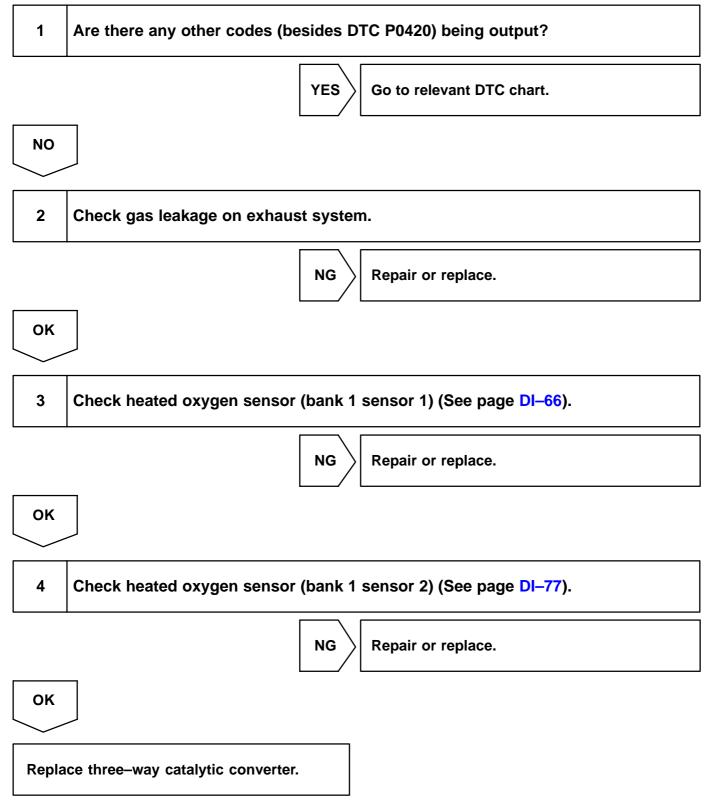

But when both waveforms change at a similar rate, it indicates that catalyst performance has deteriorated.


DTC No.	DTC Detecting Condition	Trouble Area
P0420	After engine and catalyst are warmed up, and while vehicle is driven within set vehicle and engine speed range, waveforms of heated oxygen sensors (bank 1 sensor 1, 2) have same amplitude (2 trip detection logic)	 Three-way catalytic converter Open or short in heated oxygen sensor circuit Heated oxygen sensor

DI1JX-03

CONFIRMATION ENGINE RACING PATTERN

- (a) Connect the TOYOTA hand-held tester to the DLC3, or connect the probe of the oscilloscope between terminals OX1, OX2 and E1 of the ECM connector.
- (b) Start engine and warm it up with all accessories switched OFF until water temp. is stable.
- (c) Race the engine at $2,500 \sim 3,000$ rpm for about 3 min.
- (d) After confirming that the waveforms of the heated oxygen sensor (bank 1 sensor 1 (OX1)), oscillate around 0.5 V during feedback to the ECM, check the waveform of the heated oxygen sensor (bank 1 sensor 2 (OX2)).

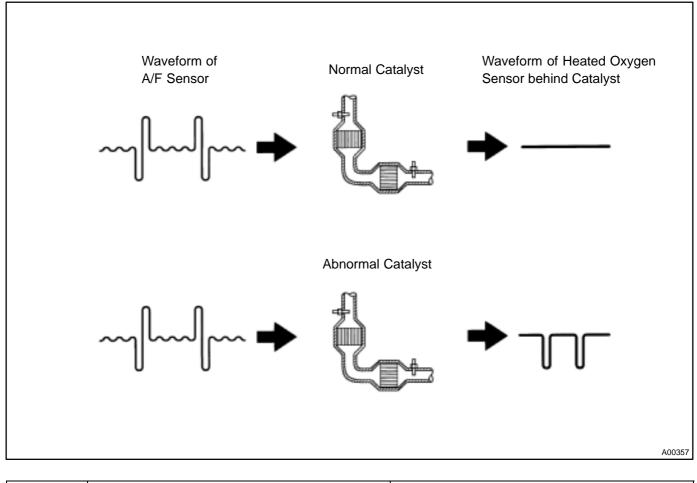

HINT:

- If there is a malfunction in the system, the waveform of the heated oxygen sensor (bank 1 sensor 2 (OX2)) is almost the same as that of the heated oxygen sensor (bank 1 sensor 1 (OX1)) on the left.
- There are some cases where, even though a malfunction exists, the MIL may either light up or not light up.

INSPECTION PROCEDURE

HINT:

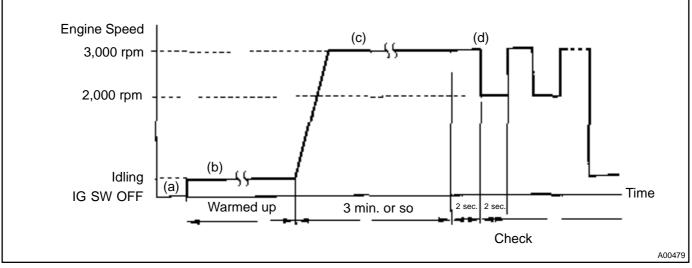
Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.


DTC		Catalyst System Efficiency Below Threshold (Only for California Spec.)
-----	--	--

CIRCUIT DESCRIPTION

The ECM observes the waveform of the heated oxygen sensor located behind the catalyst to determine whether the catalyst performance has deteriorated.

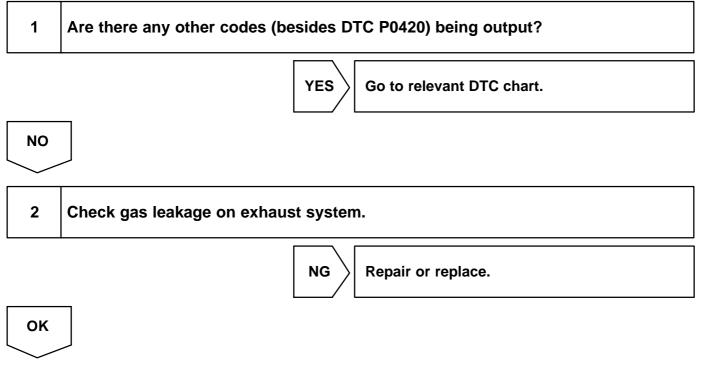
If the catalyst is functioning normally, the waveform of the heated oxygen sensor located behind the catalyst switches back and forth between rich and lean much more slowly.


When the waveform of the heated oxygen sensor located behind the catalyst alternates flutteringly between rich and lean, it indicates that catalyst performance has deteriorated.

DTC No.	DTC Detecting Condition	Trouble Area
P0420	After engine and catalyst are warmed up, and while vehicle is driven within set vehicle and engine speed range, waveform of heated oxygen sensor (bank 1 sensor 2) alternates flutteringly between rich and lean (2 trip detection logic)	 Three–way catalytic converter Open or short in heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Open or short in A/F sensor circuit A/F sensor

DI1JY-03

CONFIRMATION ENGINE RACING PATTERN



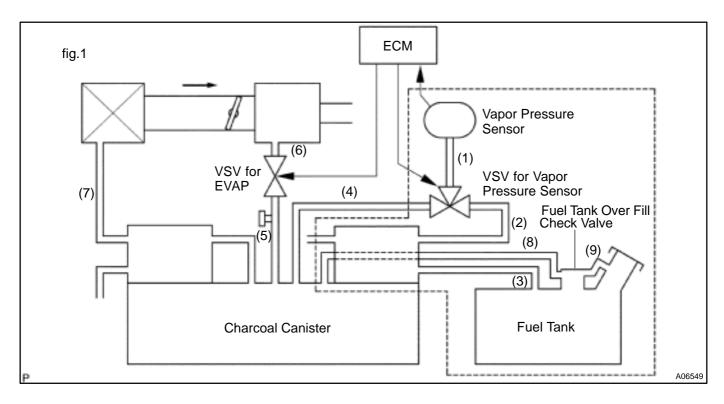
- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Start the engine and warm it up with all accessories switched OFF until water temp. is stable.
- (c) Race the engine at 2,500 ~ 3,000 rpm for about 3 min.
- (d) When racing the engine at 3,000 rpm for 2 sec. and 2,000 rpm for 2 sec. alternately, check the waveform of the heated oxygen sensor (bank 1 sensor 2).

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

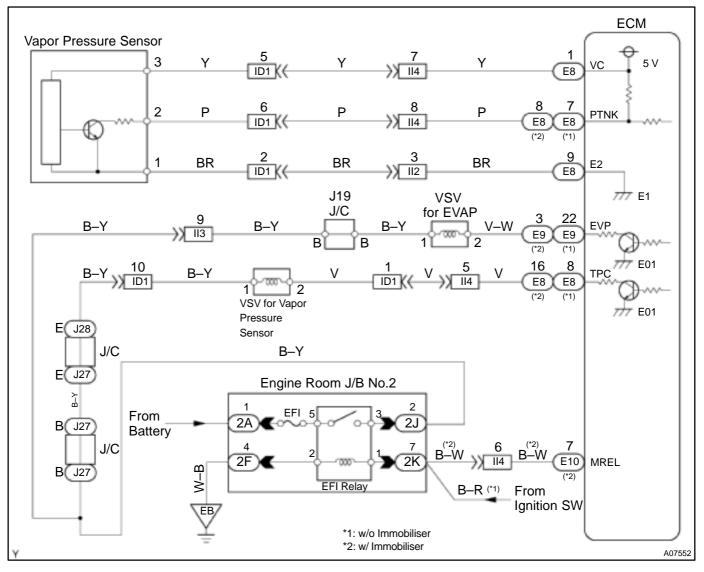
3	Check A/F sensor (See page DI–66).
	NG Repair or replace.
ОК	
4	Check heated oxygen sensor (bank 1 sensor 2) (See page DI-77).
	NG Repair or replace.
ОК	
Repla	ce three-way catalytic converter.


DTC	P0440	Evaporative Emission Control System Malfunction
-----	-------	--

CIRCUIT DESCRIPTION

The vapor pressure sensor and VSV for vapor pressure sensor are used to detect abnormalities in the evaporative emission control system.

The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.


DTC P0440 is recorded by the ECM when evaporative emissions leak from the components within the dotted line in fig. 1 below, or when the vapor pressure sensor malfunctions.

DTC No.	DTC Detecting Condition	Trouble Area
P0440	Fuel tank pressure is atmospheric pressure after vehicle is driven for 20 min. (2 trip detection logic)	 Vapor pressure sensor Fuel tank cap incorrectly installed Fuel tank cap cracked or damaged Vacuum hose cracked, holed, blocked, damaged or disconnected ((1) or (2) in fig. 1) Hose or tube cracked, holed, damaged or loose seal ((3) in fig. 1) Fuel tank cracked, holed or damaged Charcoal canister cracked, holed or damaged Fuel tank over fill check valve cracked or damaged

DI1JZ-04

WIRING DIAGRAM

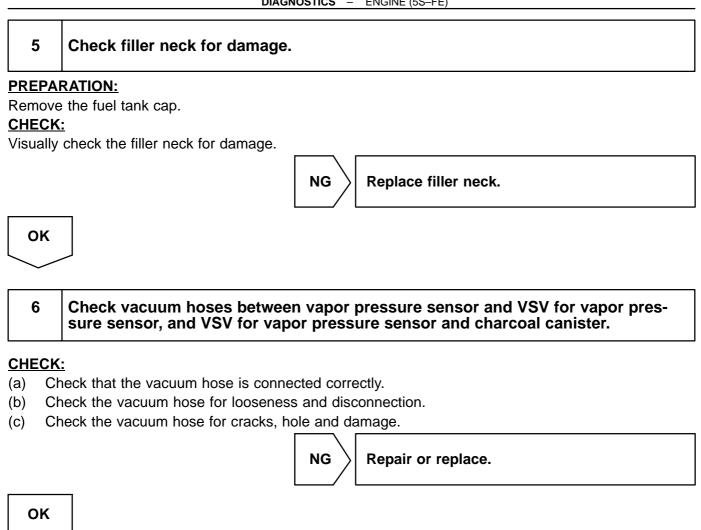
INSPECTION PROCEDURE

HINT:

- If DTC P0441 (Evaporative Emission Control System Incorrect Purge Flow), P0446 (Evaporative Emission Control System Vent Control Malfunction), P0450 (Evaporative Emission Control System Pressure Sensor Malfunction) or P0451 is output after DTC P0440 (Evaporative Emission Control System Malfunction), first troubleshoot DTC P0441, P0446, P0450 or P0451. If no malfunction is detected, troubleshoot DTC P0440 next.
- Ask the customer whether, after the MIL came on, the customer found the fuel tank cap loose and tightened it. Also ask the customer whether the fuel tank cap was loose when refuelling. If the fuel tank cap was not loose, it was the cause of the DTC. If the fuel tank cap was not loose or if the customer was not sure if it was loose, troubleshoot according to the following procedure.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the VSV for EVAP, charcoal canister and vapor pressure sensor.

1 Check whether hose close to fuel tank have been modified, and check whether there are signs of any accident near the fuel tank or charcoal canister. Image: CHECK: Check for cracks, deformation and loose connection of the following parts. Image: CHECK: Fuel tank Image: CHECK: Check for cracks, deformation and loose connection of the following parts. Image: CHECK: Image: Check for cracks, deformation and loose connection of the following parts. Image: Check for cracks, check for cracks, deformation and loose connection of the following parts. Image: Check for cracks, check for check for check for check for cracks, check for check

- Fuel tank filler pipe
- Hoses and tubes around fuel tank and charcoal canister

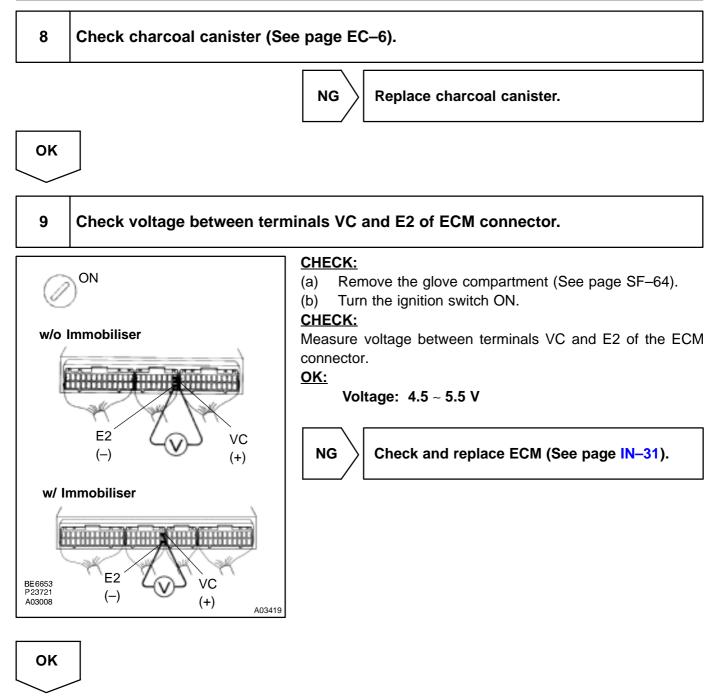


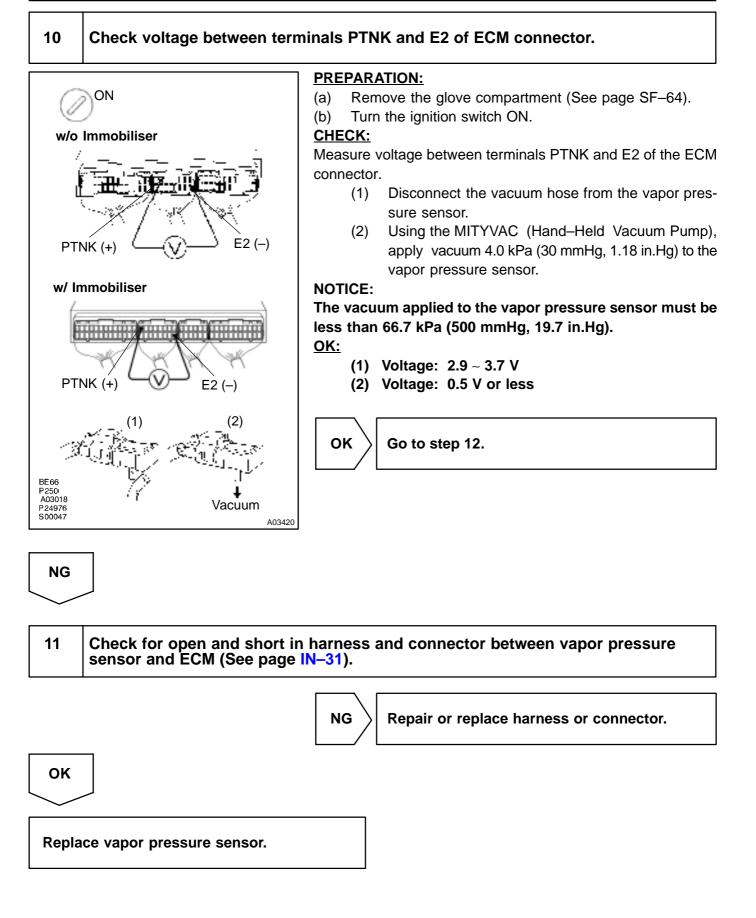
A01653

OK

\sim	
2	Check that fuel tank cap is TOYOTA genuine parts.
	NG Replace to TOYOTA genuine parts.
ОК	
3	Check that fuel tank cap is correctly installed.
	NG Correctly install fuel tank cap.
ОК	
4	Check fuel tank cap (See page EC–6).
	NG Replace fuel tank cap.
ок	

Date :


7 Check hose and tube between fuel tank and charcoal canister.


CHECK:

- (a) Check for proper connection of the fuel tank and fuel evap pipe, fuel evap pipe and fuel tube under the floor, fuel tube under the floor and charcoal canister.
- (b) Check the hose and tube for cracks, hole and damage.

OK

Date :

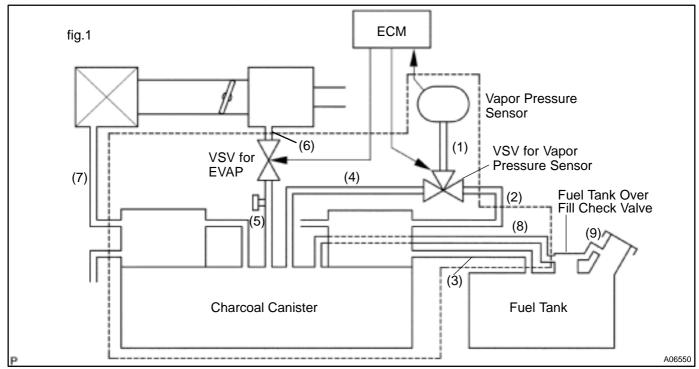
12	Check fuel tank and fuel tank over fill check valve for cracks and damage
	(See page EC–6).

Replace fuel tank or fuel tank over fill check valve.

ок

It is likely that vehicle user did not properly close fuel tank cap. Please explain to customer how to properly install fuel tank cap.

DTC	P0441	Evaporative Emission Control System Incorrect Purge Flow
-----	-------	---


DTC	Evaporative Emission Control System Vent Control Malfunction

CIRCUIT DESCRIPTION

The vapor pressure sensor and VSV for vapor pressure sensor are used to detect abnormalities in the evaporative emission control system.

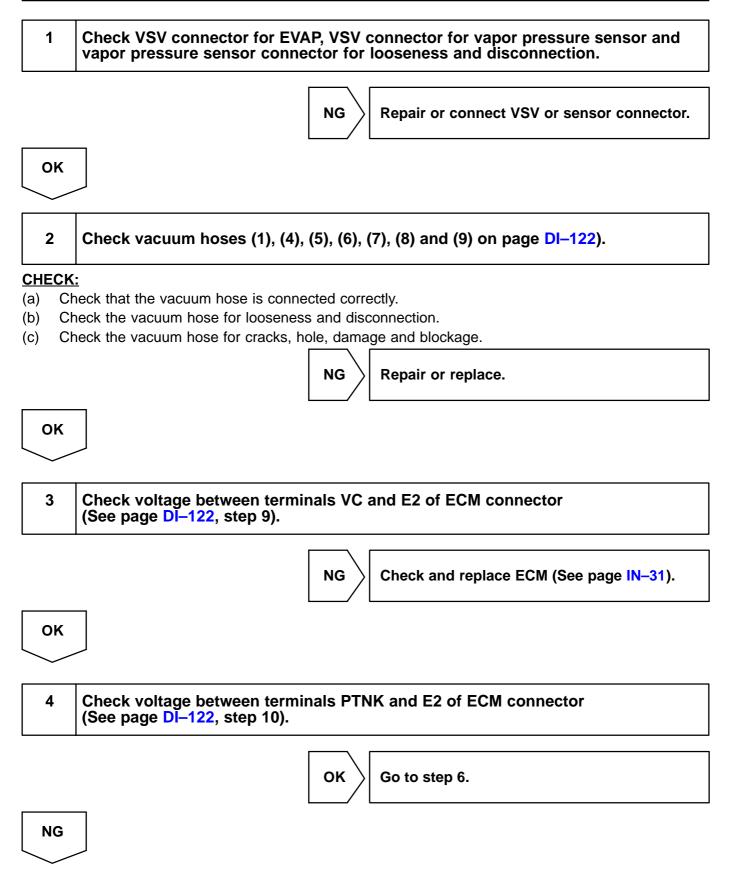
The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTCs P0441 and P0446 are recorded by the ECM when evaporative emissions leak from the components within the dotted line in fig. 1 below, or when there is a malfunction in either the VSV for EVAP, the VSV for vapor pressure sensor, or in the vapor pressure sensor itself.

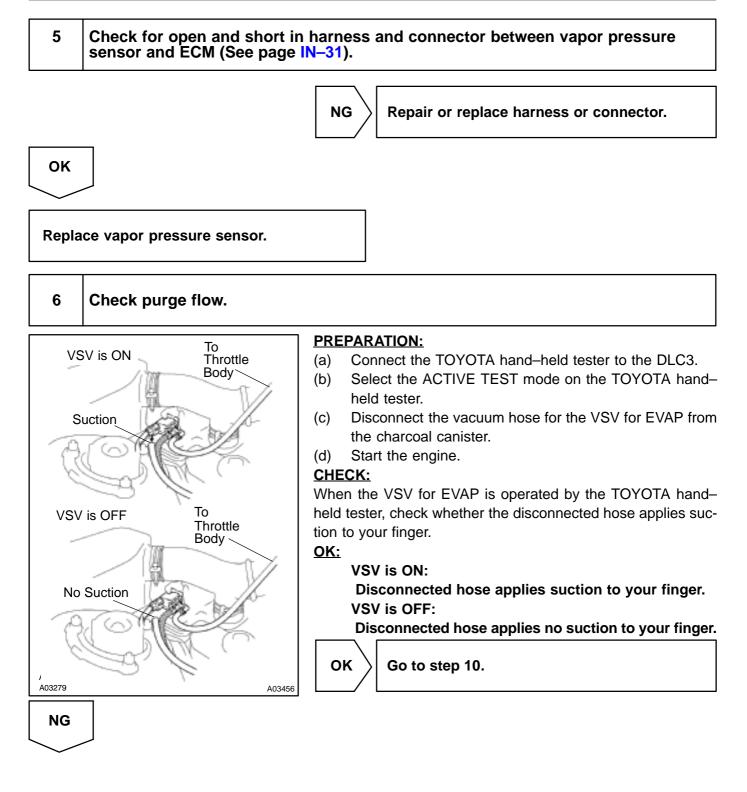
DI019-10

DTC No.	DTC Detecting Condition	Trouble Area	
	Pressure in the charcoal canister does not drop during purge control (2 trip detection logic)		
P0441	During purge cut–off, pressure in charcoal canister is very low compared with atmospheric pressure (2 trip detection logic)	 Open or short in VSV circuit for vapor pressure sensor VSV for vapor pressure sensor 	
	When VSV for vapor pressure sensor is OFF, ECM judges that there is no continuity between vapor pressure sensor and charcoal canister (2 trip detection logic)	 Open or short in vapor pressure sensor circuit Vapor pressure sensor Open or short in VSV circuit for EVAP VSV for EVAP Variant base creaks help blocked demaged or 	
P0446	When VSV for vapor pressure sensor is ON, ECM judges that there is no continuity between vapor pressure sensor and fuel tank (2 trip detection logic)	 Vacuum hose cracks, hole, blocked, damaged or disconnected ((1), (4), (5) holed (6) and (7) in fig. 1) Charcoal canister cracked, holed or damaged Fuel tank over fill check valve cracked or damaged 	
	After purge cut off operates, pressure in charcoal canister is maintained at atmospheric pressure (2 trip detection logic)		

WIRING DIAGRAM


Refer to DTC P0440 (Evaporative Emission Control System Malfunction) on page DI-122.

INSPECTION PROCEDURE

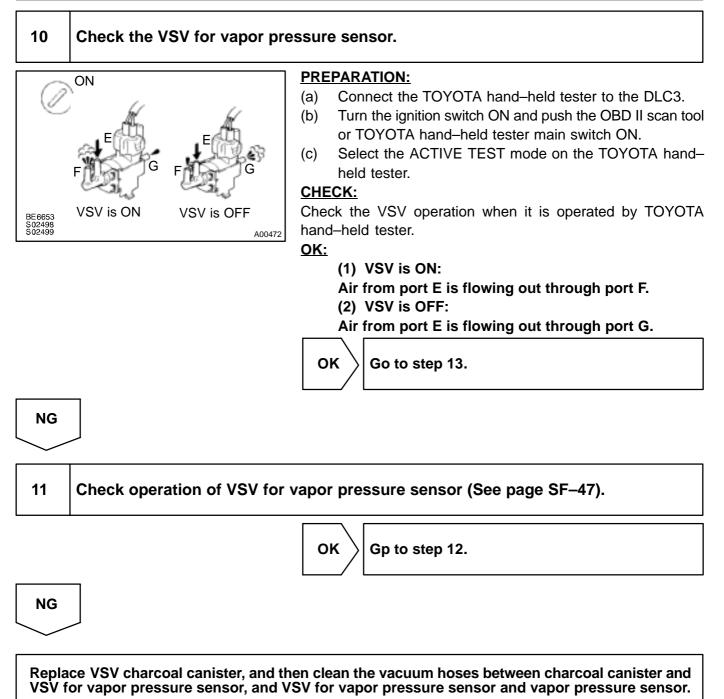

TOYOTA hand-held tester:

HINT:

- If DTC P0441 (Evaporative Emission Control System Incorrect Purge Flow), P0446 (Evaporative Emission Control System Vent Control Malfunction), P0450 (Evaporative Emission Control System Pressure Sensor Malfunction) or P0451 is output after DTC P0440 (Evaporative Emission Control System Malfunction), first troubleshoot DTC P0441, P0446, P0450 or P0451. If no malfunction is detected, troubleshoot DTC P0440 next.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the VSV for EVAP, charcoal canister and vapor pressure sensor.

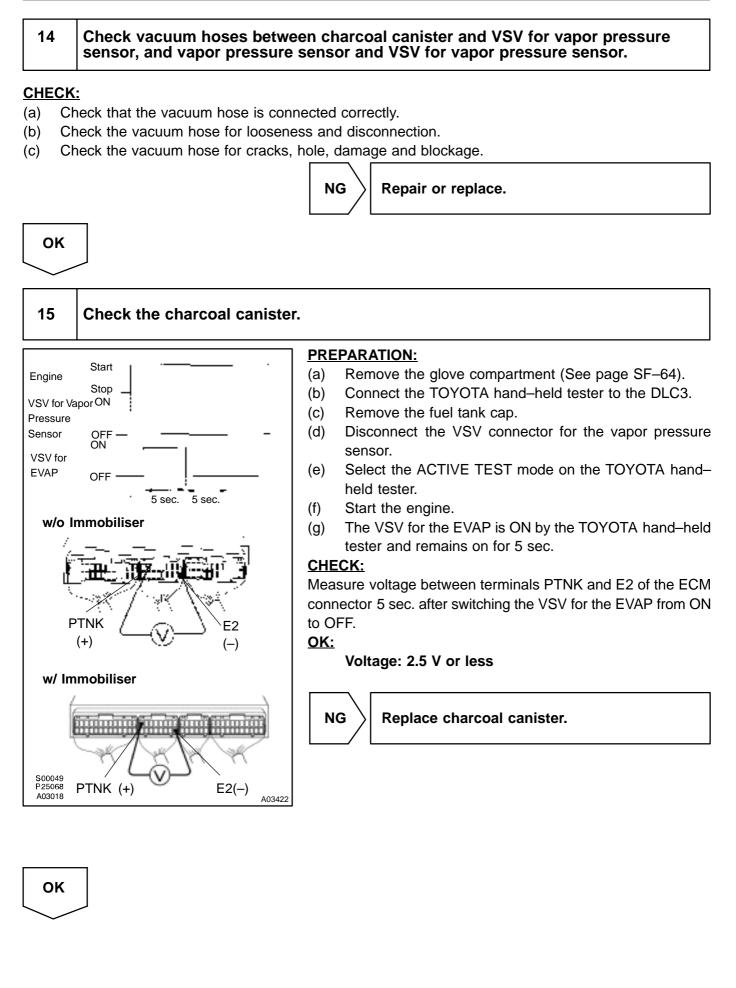
366

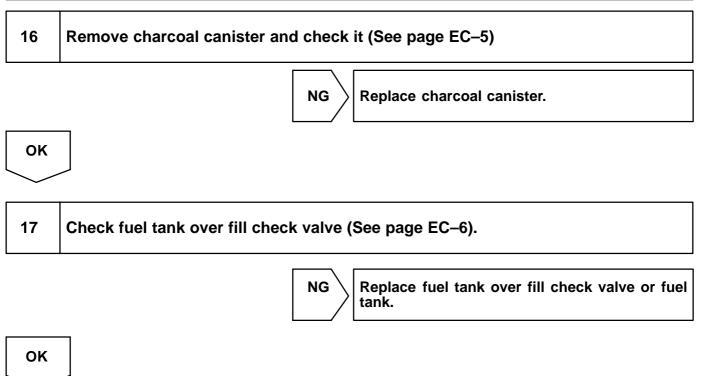
Check vacuum hose between intake manifold and VSV for EVAP, and VSV for


7

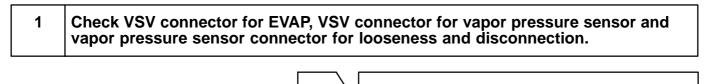

EVAP and charcoal canister.

CHECK: (a) Check that the vacuum hose is connected correctly. (b) Check the vacuum hose for looseness and disconnection. Check the vacuum hose for cracks, hole, damage and blockage. (c) NG Repair or replace. ΟΚ 8 Check operation of VSV for EVAP (See page SF-45). OK Go to step 9. NG Replace VSV, charcoal canister and then clean the vacuum hose between throttle body and VSV for EVAP, and VSV for EVAP and charcoal canister. 9 Check for open and short in harness and connector between EFI main relay (Marking: EFI) and VSV for EVAP, and VSV for EVAP and ECM (See page IN-31). NG Repair or replace harness or connector. OK Check and replace ECM (See page IN-31).


368


Date :

NG

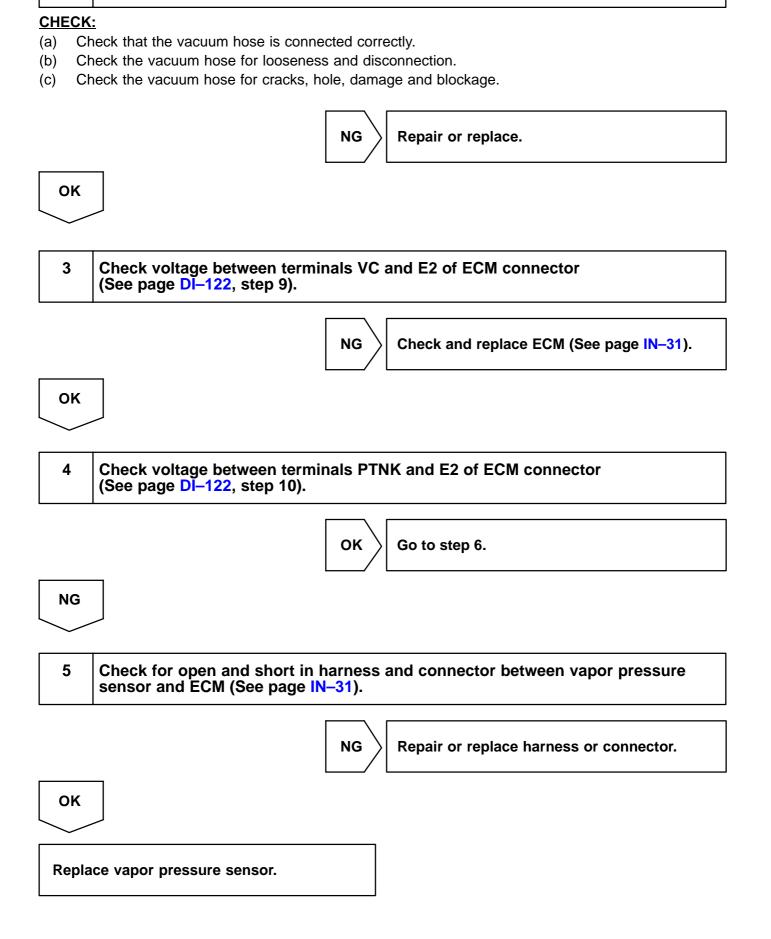


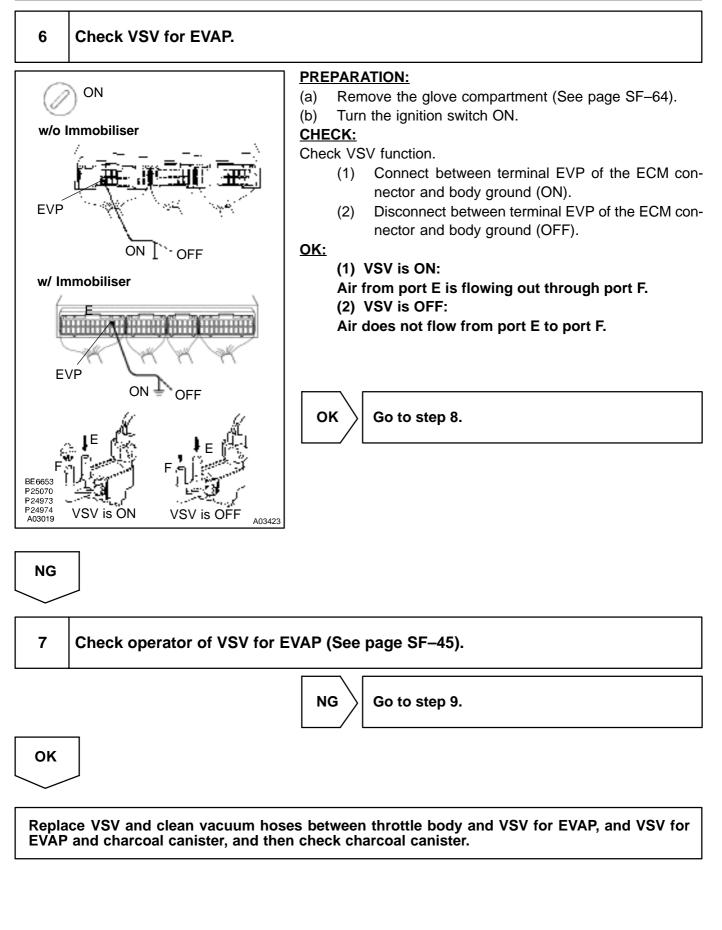
Check and replace ECM (See page IN-31).

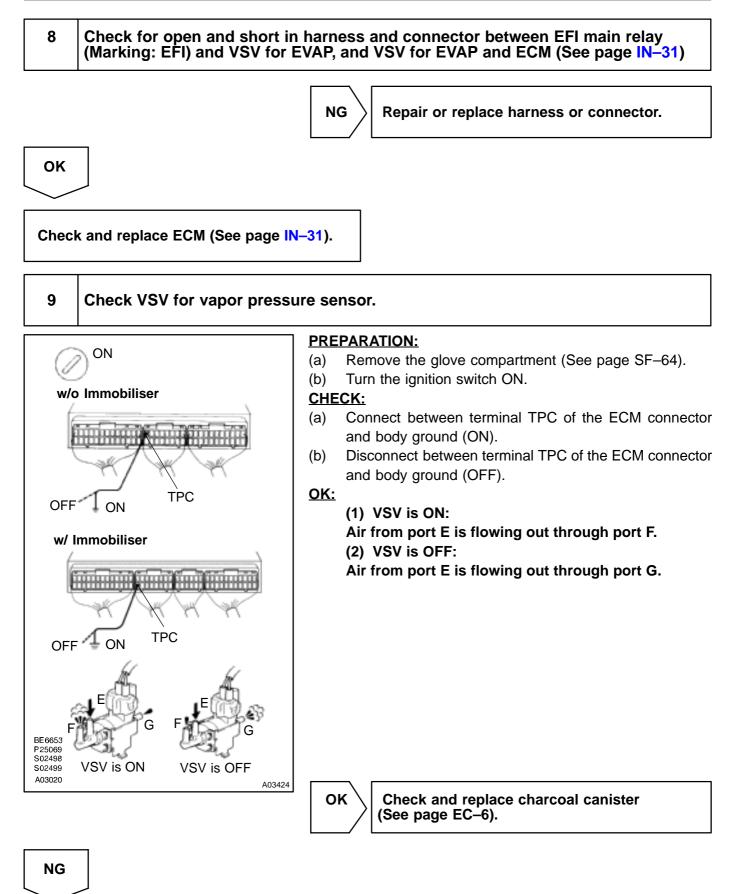
OBD II scan tool (excluding TOYOTA hand-held tester):

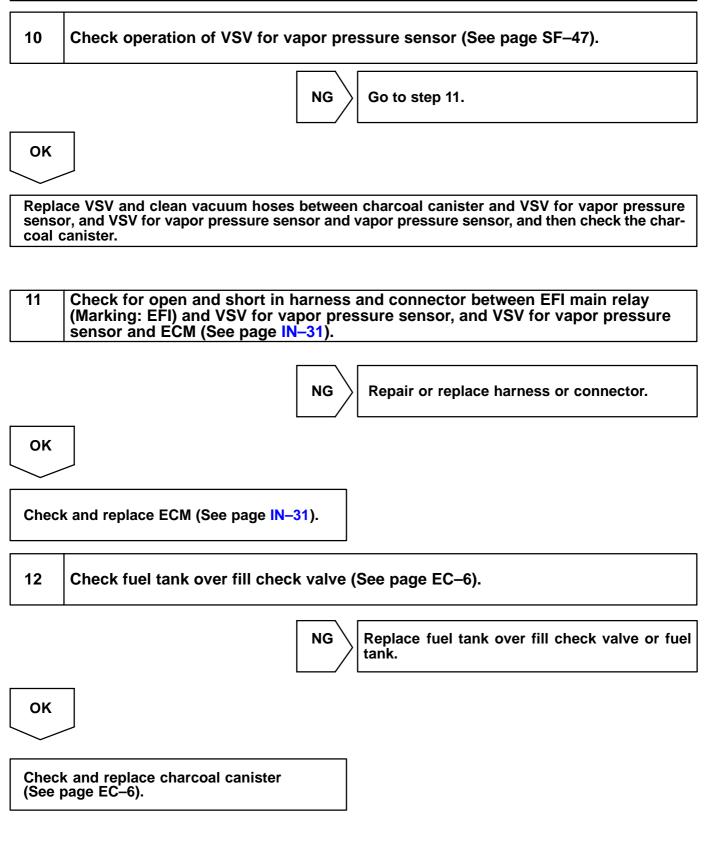
HINT:

If DTC P0441 (Evaporative Emission Control System Incorrect Purge Flow), P0446 (Evaporative Emission Control System Vent Control Malfunction) or P0450 (Evaporative Emission Control System Pressure Sensor Malfunction) is output after DTC P0440 (Evaporative Emission Control System Malfunction), first trouble-shoot DTC P0441, P0446 or P0450. If no malfunction is detected, troubleshoot DTC P0440 next.


NG


ок


Repair or connect VSV or sensor connector.

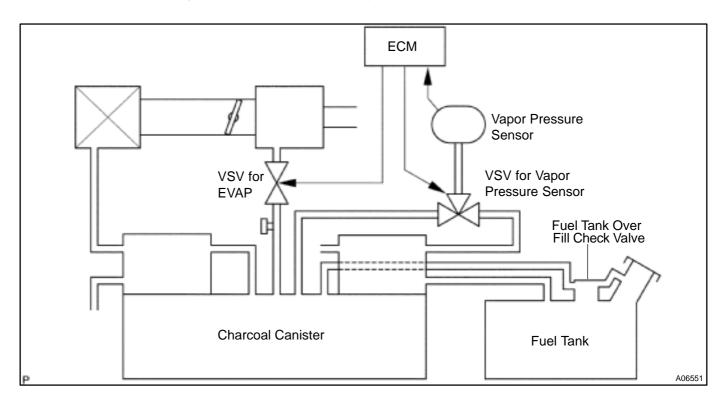

2

Check vacuum hoses ((1), (4), (5), (6), (7), (8) and (9) on page DI-122).

Date :

DI-141

DTC		Evaporative Emission Control System Pressure Sensor Malfunction
-----	--	--


DTC	P0451	Evaporative Emission Control System Pressure Sensor Range/Performance	

CIRCUIT DESCRIPTION

The vapor pressure sensor and VSV for vapor pressure sensor are used to detect abnormalities in the evaporative emission control system.

The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTC P0450 is recorded by the ECM when the vapor pressure sensor malfunction.

Date :

DI1K0-04

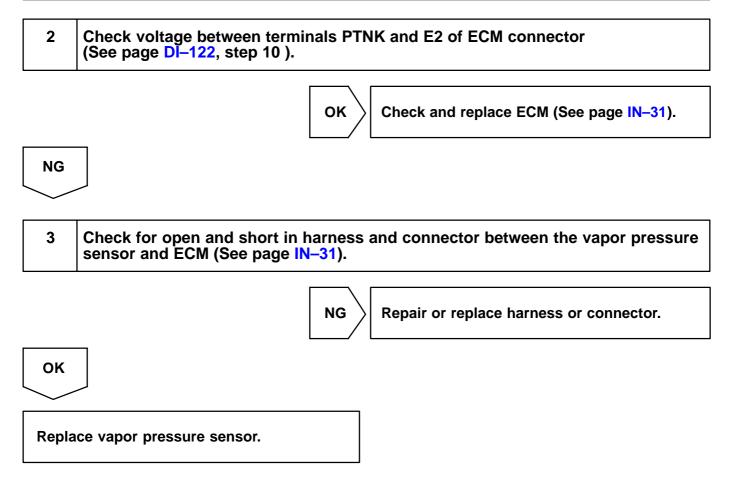
DTC No.	DTC Detecting Condition	Trouble Area
P0450	10 seconds or more after engine starting codition (a) or (b) continues for 7 seconds or more: (2 trip detection logic) (a) vapor pressure sensor value < -4 kpa (-30 mmHg, -1.0 in.Hg) (b) Vapor pressure sensor value ~ 2.1 kpa (-15 mmHg, 0.4 in.Hg)	 Open or short in vapor pressure sensor circuit Vapor pressure sensor ECM
P0451	Vapor pressure sensor output extremely changes under condi- tions of (a), (b) and (c): (2 trip detection logic) (a) Vehicle speed: 0 km/h (0 mph) (b) Engine speed: idling (c) VSV for vapor pressure sensor is ON	Fuel tank over fill check valve cracked or damaged.

WIRING DIAGRAM

Refer to DTC P0440 (Evaporative Emission Control System Malfunction) on page DI-122.

INSPECTION PROCEDURE

HINT:


- If DTC P0441 (Evaporative Emission Control System Incorrect Purge Flow), P0446 (Evaporative • Emission Control System Vent Control Malfunction), P0450 (Evaporative Emission Control System Pressure Sensor Malfunction) or P0451 is output after DTC P0440 (Evaporative Emission Control System Malfunction), first troubleshoot DTC P0441, P0446, P0450 or P0451. If no malfunction is detected, troubleshoot DTC P0440 next.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the VSV for EVAP, charcoal canister and vapor pressure sensor.

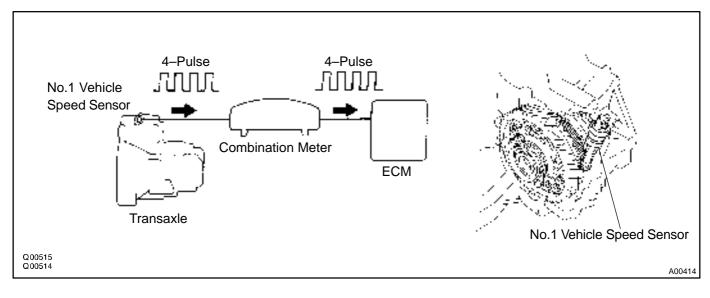
1	Check voltage between terminals VC and E2 of ECM connector
	(See page <mark>DI</mark> –122, step 9).

NG

Check and replace ECM (See page IN-31).

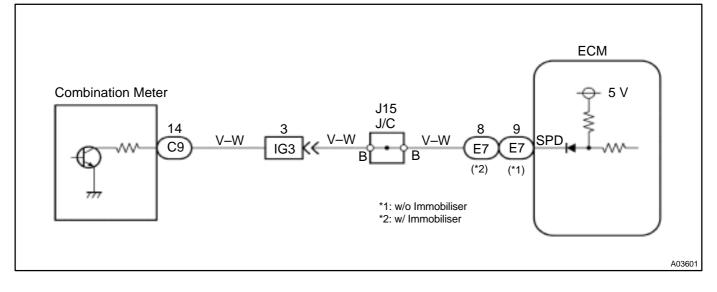
OK

DI01B-10


DTC

P0500

Vehicle Speed Sensor Malfunction


CIRCUIT DESCRIPTION

The No.1 vehicle speed sensor outputs a 4–pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. After this signal is converted into a more precise rectangular waveform by the waveform shaping circuit inside the combination meter, it is then transmitted to the ECM. The ECM determines the vehicle speed based on the frequency of these pluse signals.

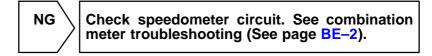
DTC No.	DTC Detecting Condition	Trouble Area
P0500	During vehicle is being driven, no vehicle speed sensor signal to ECM (2 trip detection logic)	 Combination meter Open or short in No.1 vehicle speed sensor circuit No.1 vehicle speed sensor ECM

WIRING DIAGRAM

INSPECTION PROCEDURE

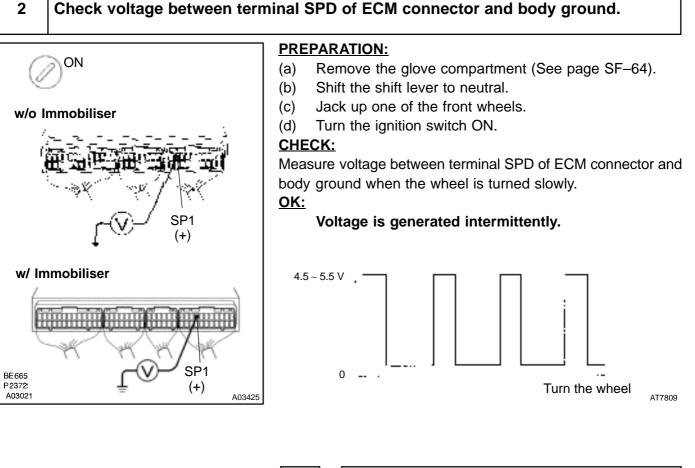
HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.


1

Check operation of speedometer.

CHECK:


Drive the vehicle and check if the operation of the speedmeter in the combination meter is normal. HINT:

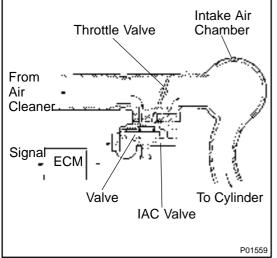
The vehicle speed sensor is operating normally if the speedometer display is normal.


OK

2

NG

Check and repair harness and connector between combination meter and ECM.

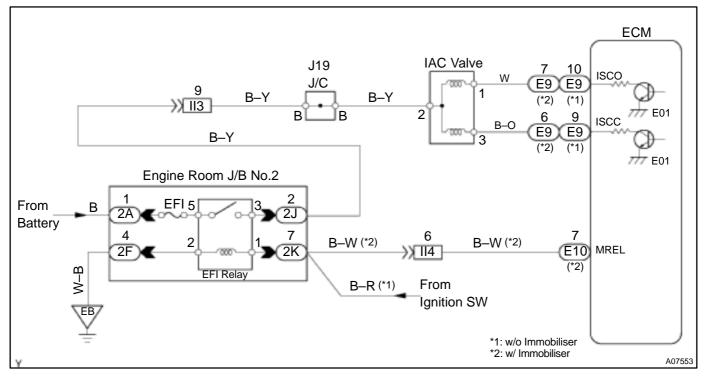


DTC

P0505

Idle Control System Malfunction

CIRCUIT DESCRIPTION


The rotary solenoid type IAC valve is located on the throttle body and intake air bypassing the throttle valve is directed to the IAC valve through a passage.

In this way the intake air volume bypassing the throttle valve is regulated, controlling the engine speed.

The ECM operates only the IAC valve to perform idle–up and provide feedback for the target idling speed.

DTC No.	DTC Detecting Condition	Trouble AreaTrouble Area
P0505	Idle speed continues to vary greatly from the target speed (2 trip detection logic)	 IAC valve is stuck or closed Open or short in IAC valve circuit Open or short in A/C switch circuit Air intake (hose loose) ECM

WIRING DIAGRAM

INSPECTION PROCEDURE

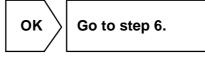
HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

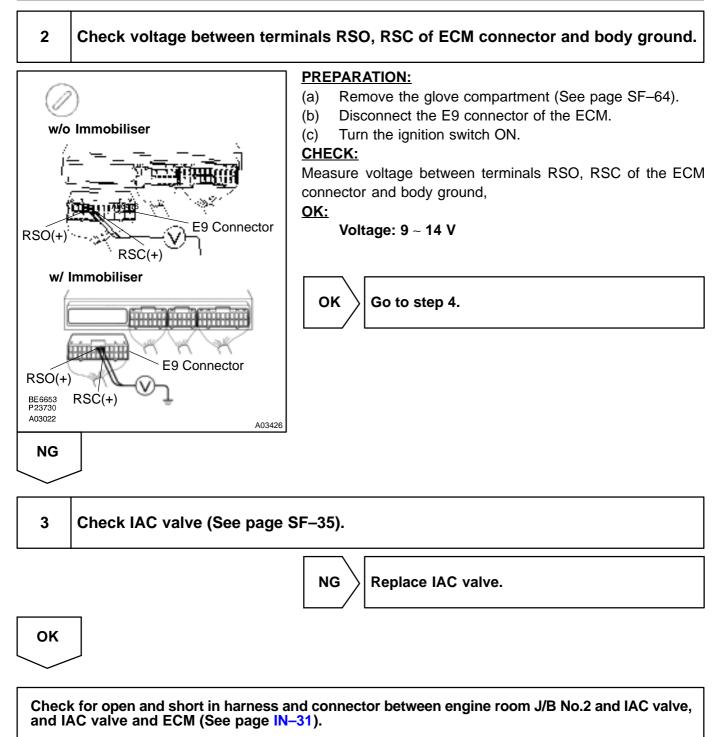
1

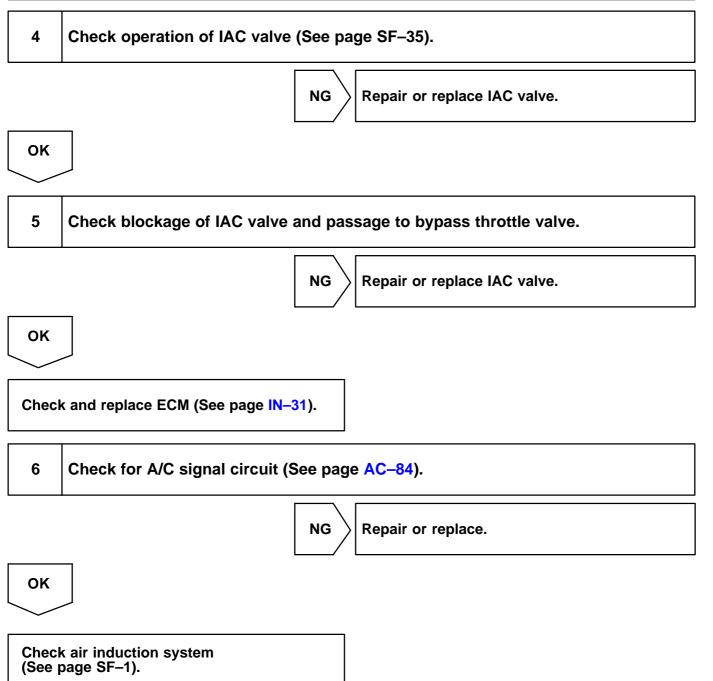
Check idle speed.

PREPARATION:


- (a) Warm up the engine to normal operating temperature.
- (b) Switch off all the accessories.
- (c) Switch off the air conditioning.
- (d) Shift the transmission into N or neutral position.
- (e) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3 on the vehicle.
- (f) Using SST, connect terminals TE1 and E1 of the DLC1.

CHECK:


Check the difference of engine speed between the ones less than 5 sec. and more than 5 sec. after connecting terminals TE1 and E1 of the DLC1.


<u> 0K:</u>

Difference of engine speed: More than 100 rpm

	NG	
~		

386

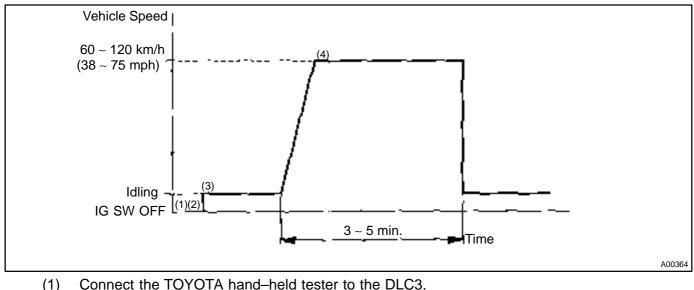
DI01D-06

DTC P1130 A/F Sensor Circuit Range/Performance Malfunction (Only for California Spec.)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI–61.

DTC No.	DTC Detecting Condition	Trouble Area
P1130	Voltage output* of A/F sensor remains at 3.8 V or more, or 2.8 V or less, during engine running after engine is warmed up (2 trip detection logic) *: Output value changes at the inside of ECM only Voltage output* of A/F sensor does not change from 3.30 V, during engine running after engine is warmed up (2 trip detection logic) *: Output value changes at inside of ECM only	 Open or short in A/F sensor circuit A/F sensor ECM
	Open or short in A/F sensor circuit (2 trip detection logic)	


HINT:

- After confirming DTC P1130, use the OBD II scan tool or TOYOTA hand—held tester to confirm voltage output of A/F sensor (AFS B1 S1 / O2S B1 S1) from the CURRENT DATA.
- The A/F sensor's output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.
- The ECM controls the voltage of AF ~ and AF > terminals of ECM to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held tester.
- OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the TOYOTA hand-held tester.

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI–61.

CONFIRMATION DRIVING PATTERN

- (1) Connect the FOTOTA hand-held tester to the DLCs.
 (2) Switch the TOYOTA hand-held tester from normal mode to check mode (See page DI-3).
- (3) Start the engine and warm it up with all accessory switches OFF.
- (4) Drive the vehicle at 60 ~ 120 km/h (38 ~ 75 mph) and engine speed at 1,600 ~ 3,200 rpm for 3 ~ 5 min.

HINT:

If a malfunction exists, the MIL will light up during step (4).

NOTICE:

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a TOYOTA hand-held tester, turn the ignition switch OFF after performing steps (3) and (4), then perform steps (3) and (4) again.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Are there any other codes (besides DTC P1130) being output?

YES

Go to relevant DTC chart.

NO

2 Connect OBD II scan tool or TOYOTA hand-held tester, and read value for voltage output of A/F sensor.

PREPARATION:

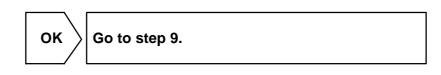
(a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

(b) Warm up the A/F sensor with the engine at 2,500 rpm for approx. 90 sec.

CHECK:

Read voltage value of the A/F sensor on the screen of OBD II scan tool or TOYOTA hand-held tester when you perform all the following conditions.

HINT:

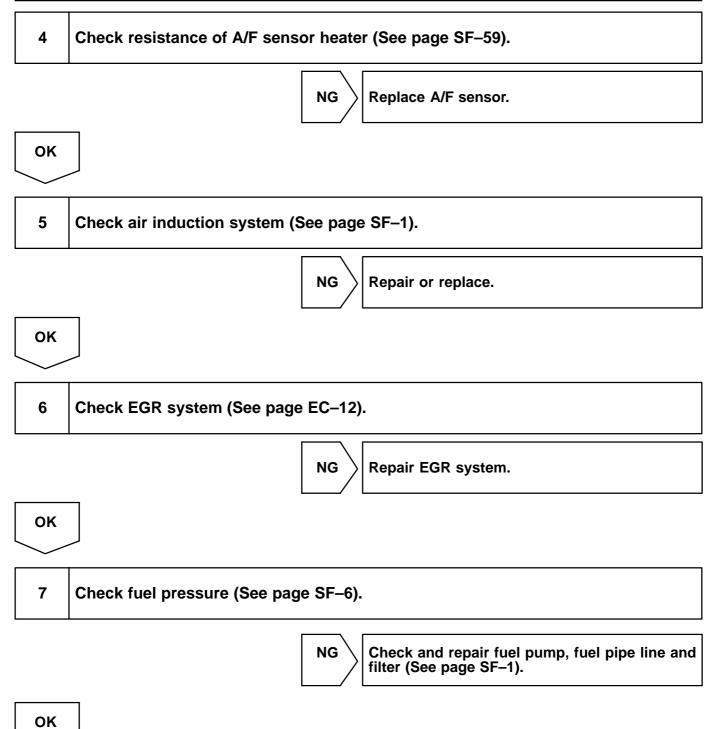

The voltage of AF \sim terminal of ECM is 3.3 V fixed and AF > terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AF \sim /AF >) of ECM.

<u> 0K:</u>

Condition	A/F Sensor Voltage Value
Engine idling	
Engine racing	 Not remains at 3.30 V (* 0.660 V) Not remains at 3.8 V (* 0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	 Not remains at 2.8 V (* 0.56 V) or less *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of the A/F sensor is above 3.8 V (* 0.76 V), it is normally.
- If output voltage of the A/F sensor remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F sensor circuit may be open.
- If output voltage of the A/F sensor remains at 3.8 V (* 0.76 V) or more, or 2.8 V (* 0.56 V) or less even after performing all the above conditions, A/F sensor circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).



NG

3 Check for open and short in harness and connector between ECM and A/F sensor (See page IN–31).

OK

DI-155

8	Check injector injection (See page SF–23).	
	NG Replace injector.	
ОК		
Repla	ice A/F sensor.	
9	Perform confirmation driving pattern (See page DI–152).	
Go		
10	Is there DTC P1130 being output again?	
	YES Check and replace ECM.	
NO		
11	Did vehicle runs out of fuel in the past?	
	NO Check for intermittent problems.	
YES		
DTC P0125 is caused by running out of fuel.		

DI01E-06

DTC P1133 A/F Sensor Circuit Response Malfunction (Only for California Spec.)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI-61.

DTC No.	DTC Detecting Condition	Trouble Area
P1133	After engine is warmed up, and during vehicle driving at en- gine speed 1,600 rpm or more and vehicle speed 60 km/h (38 mph) or more, if response characteristic of A/F sensor be- comes deteriorated (2 trip detection logic)	•A/F sensor

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the, malfunction.

	1	Are there any other codes (besides DTC P1133) being output?
I		

YES

Go to relevant DTC chart.

NO

Connect OBD II scan tool or TOYOTA nand-held teter, and read value for voltage
output of A/F sensor.

PREPARATION:

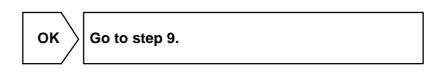
(a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

(b) Warm up the A/F sensor with the engine at 2,500 rpm for approx. 90 sec.

CHECK:

Read voltage value of the A/F sensor on the screen of OBD II scan tool or TOYOTA hand-held tester when you perform all the following conditions.

HINT:

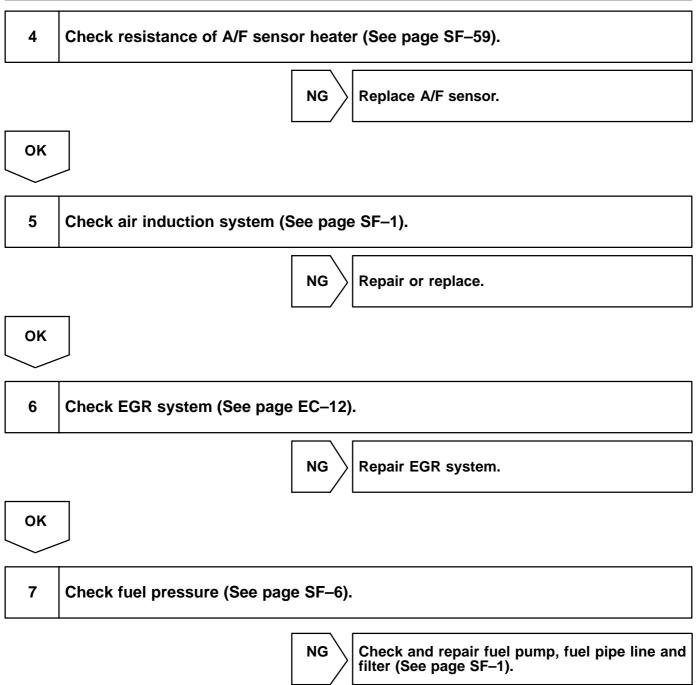

The voltage of AF \sim terminal of ECM is 3.3 V fixed and AF > terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AF \sim /AF >) of ECM.

<u> 0K:</u>

Condition	A/F Sensor Voltage Value
Engine idling	
Engine racing	•Not remains at 3.30 V (* 0.660 V) •Not remains at 3.8 V (* 0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close	•Not remains at 2.8 V (* 0.56 V) or less *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of the A/F sensor is above 3.8 V (* 0.76 V), it is normally.
- If output voltage of the A/F sensor remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F sensor circuit may be open.
- If output voltage of the A/F sensor remains at 3.8 V (* 0.76 V) or more, or 2.8 V (* 0.56 V) or less even after performing all the above conditions, A/F sensor circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).



NG

3 Check for open and short in harness and connector between ECM and A/F sensor (See page IN–31).

OK

OK

DI-159

8	Check injector injection (See page SF–23).		
	NG Replace injector.		
ОК			
Repla	ice A/F sensor.		
9	Perform confirmation driving pattern (See page DI–152).		
Go			
10	Is there DTC P1133 being output again?		
	YES Check and replace ECM.		
NO			
11	Did vehicle runs out of fuel in the past?		
	NO Check for intermittent problems.		
YES			
DTC F	DTC P1133 is caused by running out of fuel.		

DI01F-05

DTC P1135 A/F Sensor Heater Circuit Malfunction (Only for California Spec.)

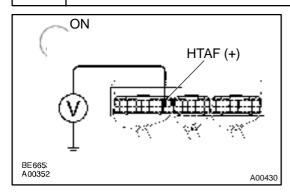
CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI–61.

DTC No.	DTC Detecting Condition	Trouble Area
When heater operates, heater current exceeds 8 A (2 trip detection logic)		•Open or short in heater circuit of A/F sensor
P1135	Heater current of 0.25 A or less when heater operates (2 trip detection logic)	●A/F sensor heater ●ECM

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI–61.


INSPECTION PROCEDURE

HINT:

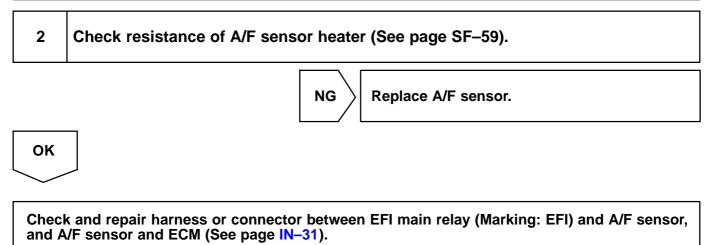
Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Check voltage between terminal HTAF of ECM connector and body ground.

PREPARATION:

- (a) Remove the glove compartment (See page SF-64).
- (b) Turn the ignition switch ON.

CHECK:


Measure voltage between terminals HTAF of the ECM connector and body ground.

<u> 0K:</u>

Voltage: 9 ~ 14 V

NG

DTC	P1300	Igniter Circuit Malfunction No.1
-----	-------	----------------------------------

	DTC	P1310	Igniter Circuit Malfunction No.2
L			·g·····

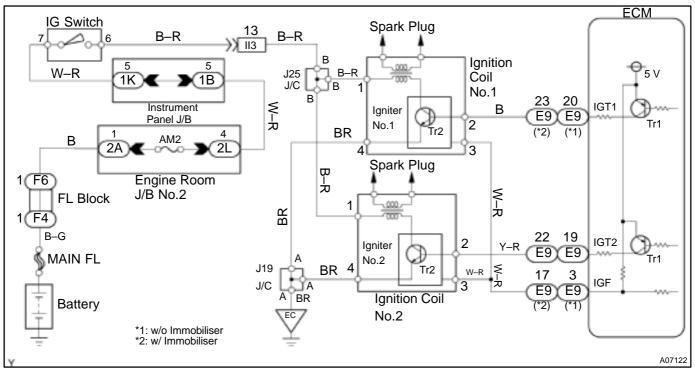
CIRCUIT DESCRIPTION

The ECM determines the ignition timing, turns on Tr1 at a predetermined angle (°CA) before the desired ignition timing and outputs and ignition signal (IGT) 1 to the igniter.

Since the width of the IGT signal is constant, the dwell angle control circuit in the igniter determines the time the control circuit starts primary current flow to the ignition coil based on the engine rpm and ignition timing one revolution ago, that is, the time the Tr2 turns on.

When it reaches the ignition timing, the ECM turns Tr1 off and outputs the IGT signal O.

This turns Tr2 off, interrupting the primary current flow and generating a high voltage in the secondary coil which causes the spark plug to spark. Also, by the counter electromotive force generated when the primary current is interrupted, the igniter sends an ignition confirmation signal (IGF) to the ECM. The ECM stops fuel injection as a fail safe function when the IGF signal is not input to the ECM.


DTC No.	DTC Detecting Condition	Trouble Area
P1300	No IGF signal to ECM for 4 consecutive IGT1 signals during engine running	 Open or short in IGF or IGT circuit from igniter to ECM Ignition coil No.1 (Igniter No.1) ECM
P1310	No IGF signal to ECM for 4 consecutive IGT2 signals during engine running	 Open or short in IGF or IGT circuit from igniter to ECM Ignition coil No.2 (Igniter No.2) ECM

HINT:

Ignition coil No.1 is for cylinder No.1 and No.4, and ignition coil No.2 is for cylinder No.2 and No.3.

DI01G-06

WIRING DIAGRAM

INSPECTION PROCEDURE

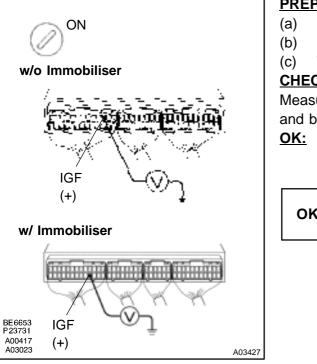
HINT:

- If DTC P1300 is displayed, check ignition coil No.1 circuit.
- If DTC P1300 is displayed, check ignition coil No.2 circuit.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

NG

Go to step 4.

ΟΚ


2 Check for open and short in harness and connector in IGF signal circuit between ECM and ignition coils (See page IN–31).

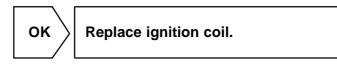
ΟΚ

Repair or replace harness or connector.

Disconnect ignition coil connectors, and check voltage between terminal IGF of

3

ECM connector and body ground.


PREPARATION:

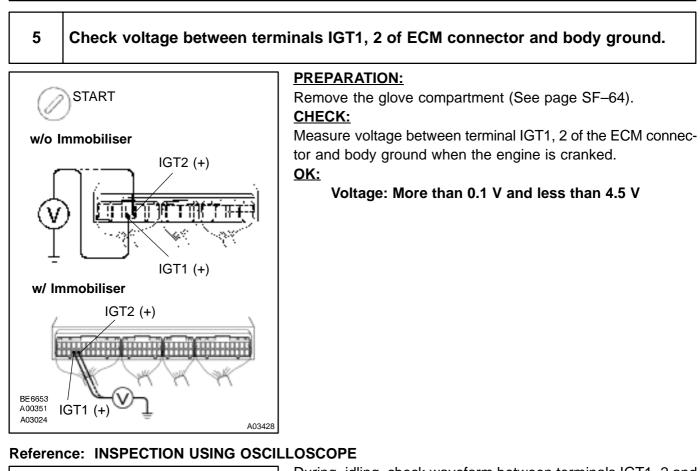
- Disconnect the ignition coil connector.
- Remove the glove compartment (See page SF-64).
- Turn the ignition switch ON.

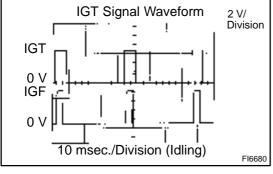
CHECK:

Measure voltage between terminal IGF of the ECM connector and body ground.

Voltage: 4.5 ~ 5.5 V

NG


Check and replace ECM (See page IN-31).


Check for open and short in harness and connector in IGT1, 2 signal circuit be-4 tween ECM and ignition coils (See page IN-31).

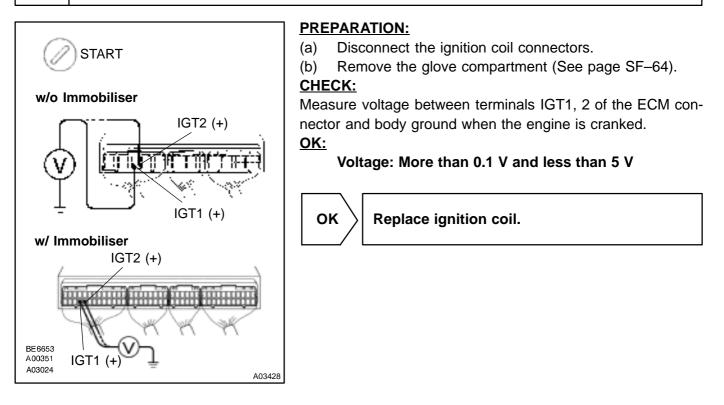
NG

Repair or replace harness or connector.

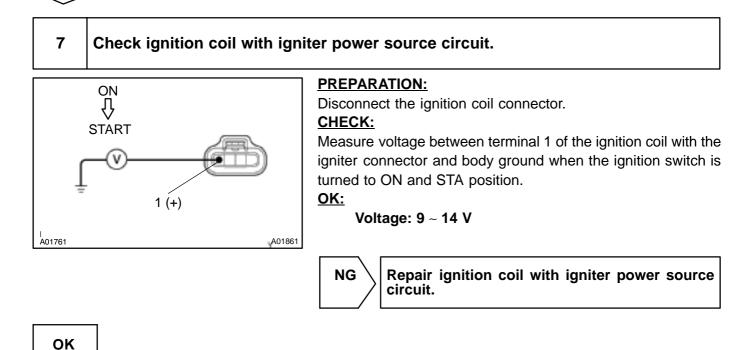
OK

During idling, check waveform between terminals IGT1, 2 and E1 of the ECM. HINT:

The correct waveforms are as shown.

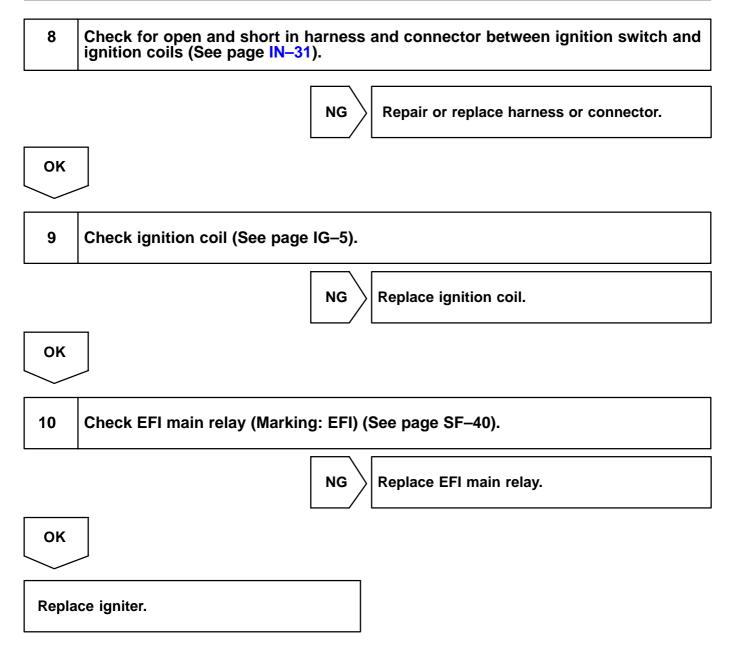

NG

Check and replace ECM (See page IN-31).


NG

6

Disconnect ignition coil connectors, and check voltage between terminals IGT1, 2 of ECM connector and body ground.



NG

Date :

DI-167

DI1K1-02

DTC P1335 Crankshaft Position Sensor Circuit Malfunction (During engine running)

CIRCUIT DESCRIPTION

Refer to DTC P0335 (Crankshaft Position "A" Circuit Malfunction) on page DI-100.

DTC No.	DTC Detecting Condition	Trouble Area
P1335	If conditions (a) through (c) are met: (a) NE ~ 1,000 rpm (b) NE signal is not detected for over 50 m sec. (c) Not during cranking	 Open or short in crankshaft position sensor circuit Crankshaft position sensor ECM

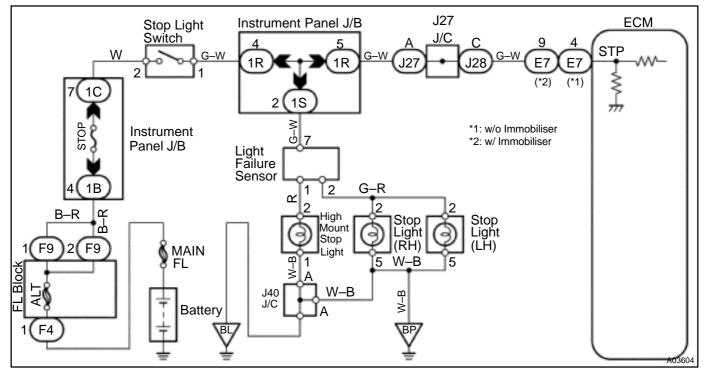
WIRING DIAGRAM

Refer to DTC P0335 (Crankshaft Position "A" Circuit Malfunction) on page DI-100.

INSPECTION PROCEDURE

Refer to DTC P0335 (Crankshaft Position "A" Circuit Malfunction) on page DI-100.

DTC	P1520	Stop Light Switch Signal Malfunction (Only for A/T)
-----	-------	---


CIRCUIT DESCRIPTION

This signal is used to detect when the brakes have been applied. The STP signal voltage is the same as the voltage supplied to the stop lights.

The STP signal is used mainly to control the fuel cut–off engine speed. (The fuel cut–off engine speed is reduced slightly when the vehicle is braking.)

DTC N	0.	DTC Detecting Condition	Trouble Area
P152	0	Stop light switch does not turn off even once vehicle is driven (2 trip detection logic)	Short in stop light switch signal circuitStop light switchECM

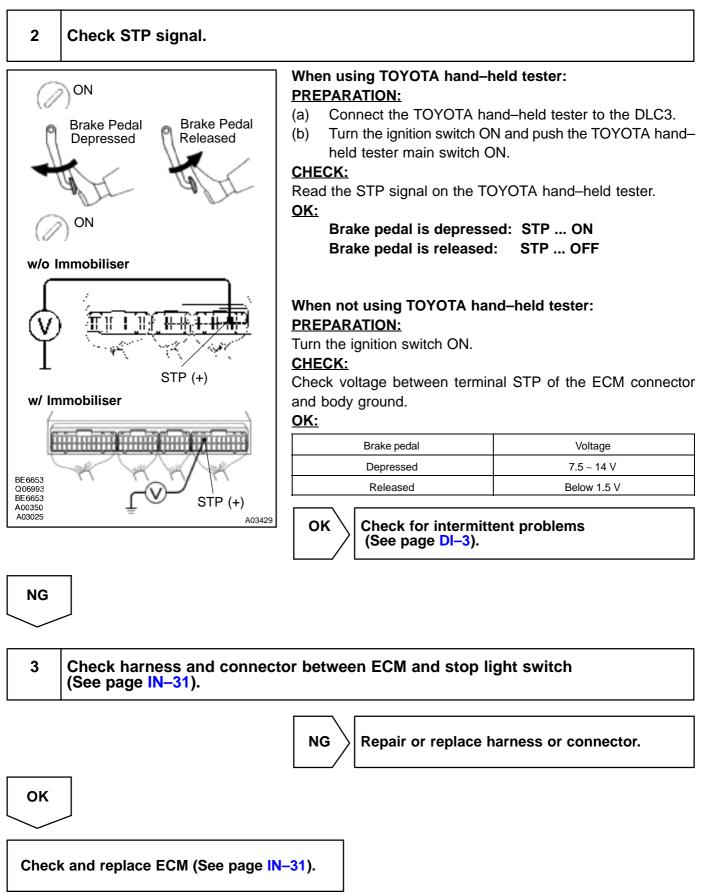
WIRING DIAGRAM

DI01H-07

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.



Check operation of stop light.

PREPARATION:

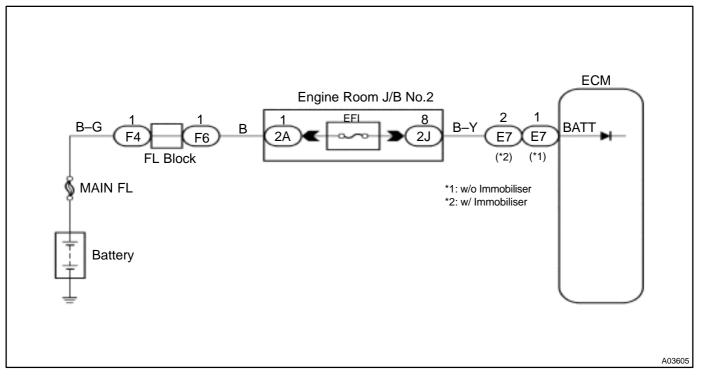
Check if the stop lights go on and off normally when the brake pedal is operated and released.

רח	
וע	

P1600

ECM BATT Malfunction

CIRCUIT DESCRIPTION

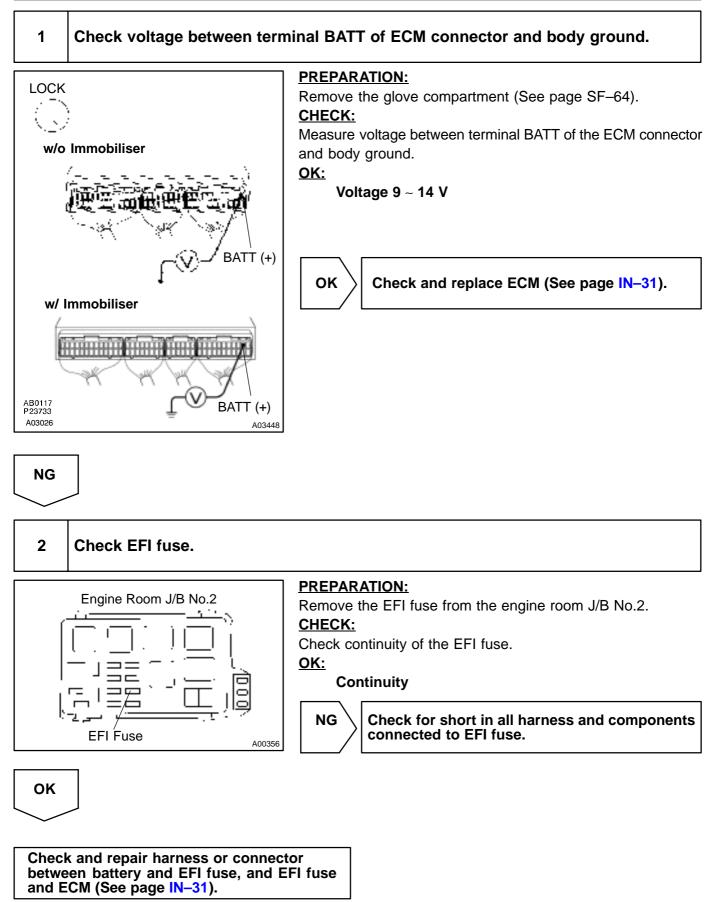

Battery positive voltage is supplied to terminal BATT of the ECM even when the ignition switch is OFF for use by the DTC memory and air-fuel ratio adaptive control value memory, etc.

DTC No.	DTC Detecting Condition	Trouble Area
P1600	Open in back up power source circuit	•Open in back up power source circuit •ECM

HINT:

If DTC P1600 appear, the ECM does not store another DTC.

WIRING DIAGRAM



INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DI01I-10

DTC		Park/Neutral Position Switch Malfunction (Only for A/T)
-----	--	--

CIRCUIT DESCRIPTION

The park/neutral position switch goes on when the shift lever is in the N or P shift position. When it goes on terminal NSW of the ECM is grounded to body ground via the starter relay thus the terminal NSW voltage becomes 0V. When the shift lever is in the D, 2, L or R position, the park/neutral position switch goes off, so the voltage of ECM. Terminal NSW becomes battery positive voltage, the voltage of the ECM internal power source.

If the shift lever is moved from the N position to the D position, this signal is used for air-fuel ratio correction and for idle speed control (estimated control), etc.

DTC No.	DTC Detecting Condition	Trouble Area
	2 or more switches are ON simultaneously for P, R, N, D, 2 and L positions (2 trip detection logic)	
P1780	 When driving under conditions (a) and (b) for 30 sec. or more park/neutral position switch is ON (N position): (2 trip detection logic) (a) Vehicle speed: 80 km/h (50 mph) or more (b) Engine speed: 2,000 ~ 5,000 rpm 	 Short in park/neutral position switch circuit Park/neutral position switch ECM

HINT:

After confirming DTC P1780, use the TOYOTA hand-held tester to confirm the PNP switch signal from the CURRENT DATA.

WIRING DIAGRAM

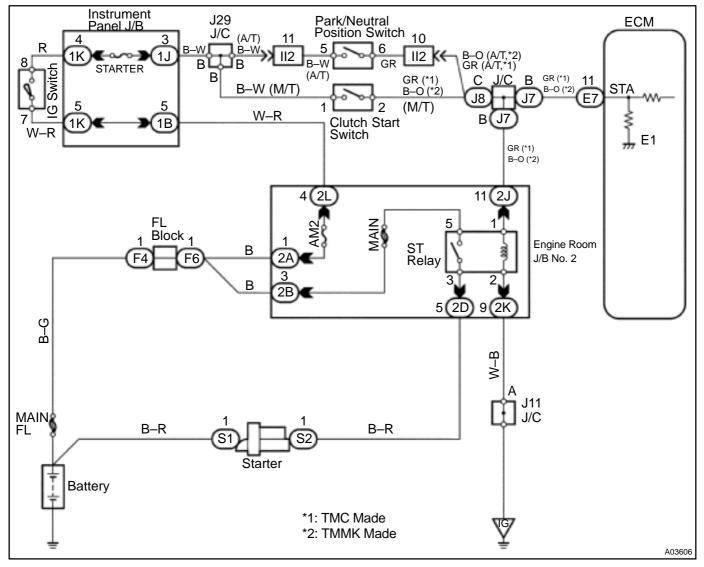
Refer to DTC P1780 on page DI-424.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Refer to DTC P1780 on DI-424.


DI-175

Starter Signal Circuit

CIRCUIT DESCRIPTION

When the engine is cranked, the intake air flow is slow, so fuel vaporization is poor. A rich mixture is therefore necessary in order to achieve good startability. While the engine is being cranked, the battery positive voltage is applied to terminal STA of the ECM. The starter signal is mainly used to increase the fuel injection volume for the starting injection control and after–start injection control.

WIRING DIAGRAM

DI01K-10

INSPECTION PROCEDURE

HINT:

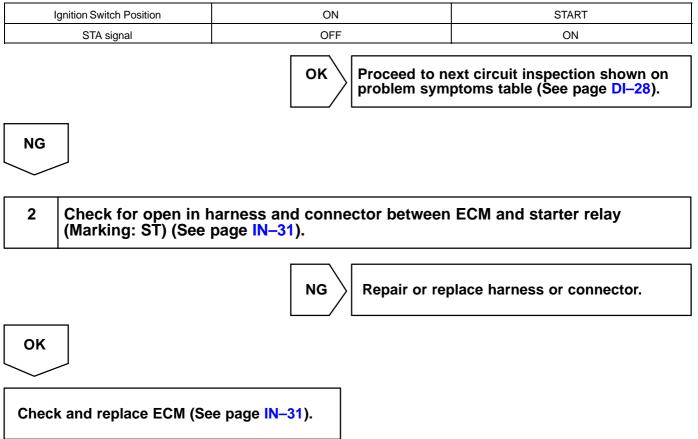
This diagnostic chart is based on the premise that the engine is cranked normally. If the engine is not cranked, proceed to the problem symptoms table on page DI–28.

TOYOTA hand-held tester:

Connect TOYOTA hand-held tester, and check STA signal.

PREPARATION:

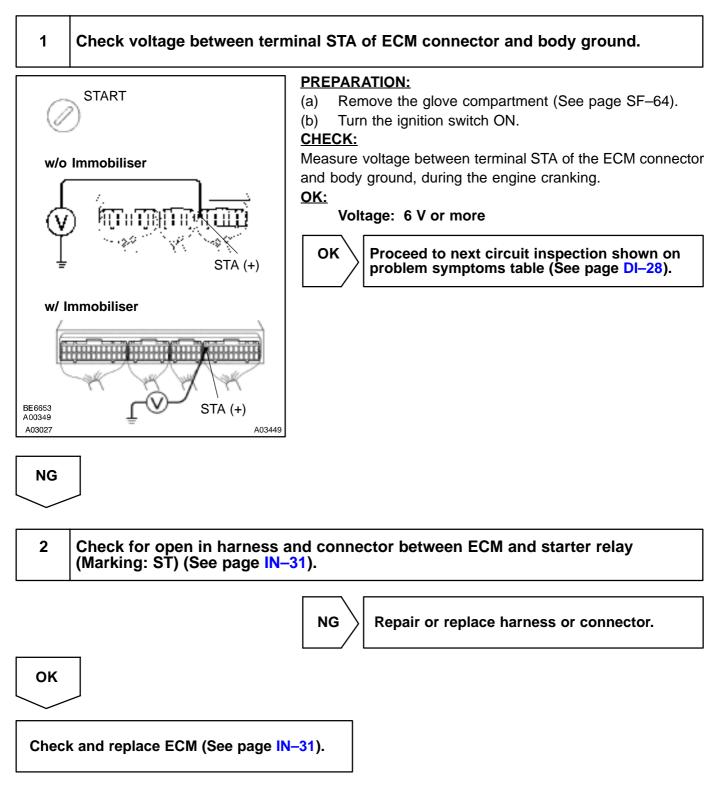
(a) Connect the TOYOTA hand-held tester to the DLC3.


(b) Turn the ignition switch ON and push the TOYOTA hand-held tester main switch ON.

CHECK:

1

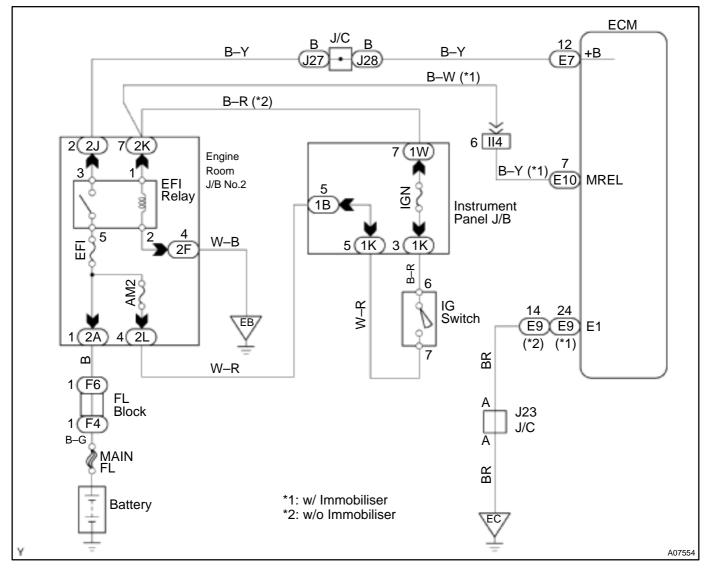
Read STA signal on the TOYOTA hand-held tester while the starter operates.


<u>OK:</u>

OBD II scan tool (excluding TOYOTA hand-held tester):

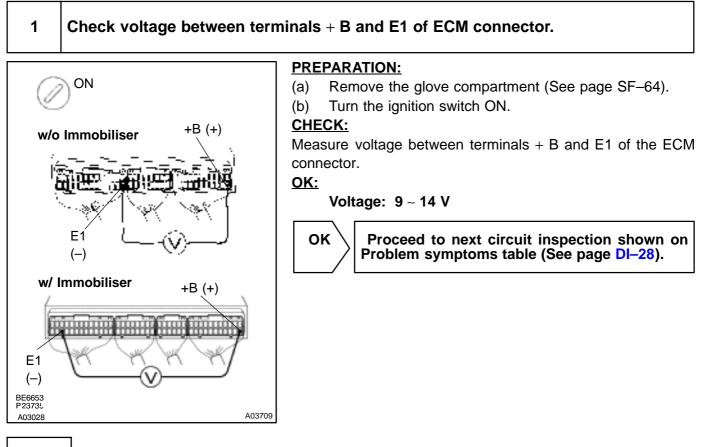
HINT:

This diagnostic chart is based on the premise that the engine is cranked normally. If the engine is not cranked, proceed to the problem symptoms table on page DI-28.

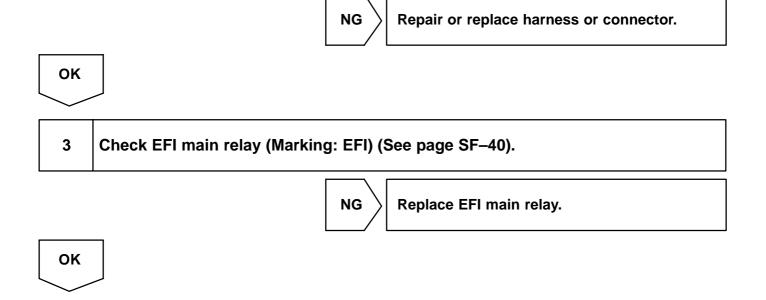


ECM Power Source Circuit

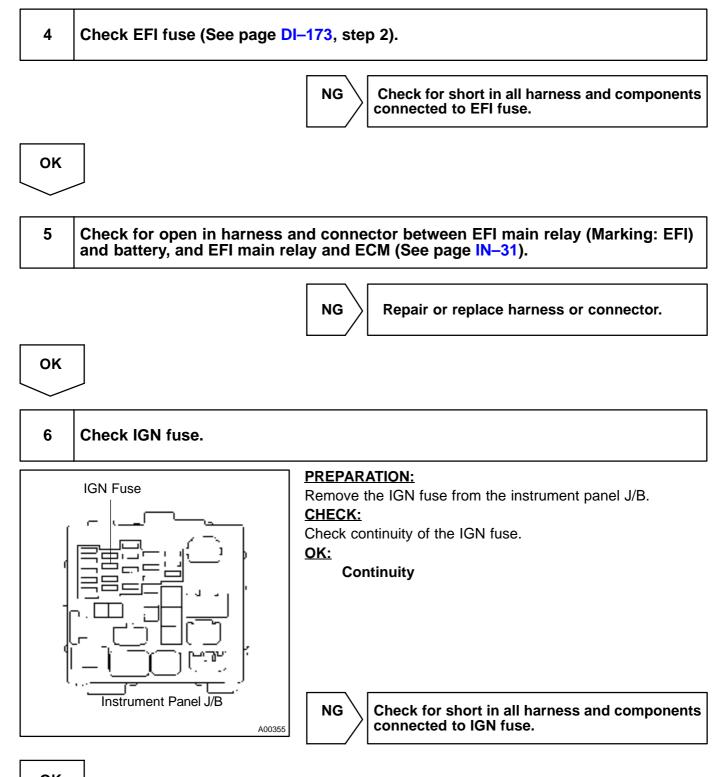
CIRCUIT DESCRIPTION


When the ignition switch is turned ON, battery positive voltage is applied to the coil, closing the contacts of the EFI main relay (Marking: EFI) and supplying power to terminal +B of the ECM.

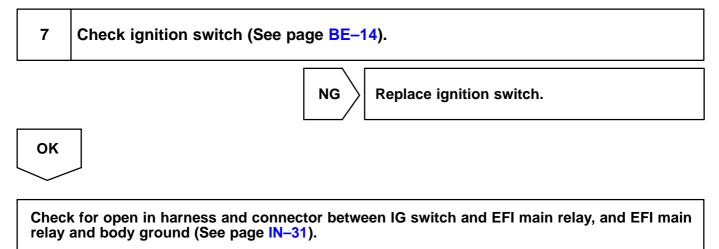
WIRING DIAGRAM


DI01L-05

INSPECTION PROCEDURE

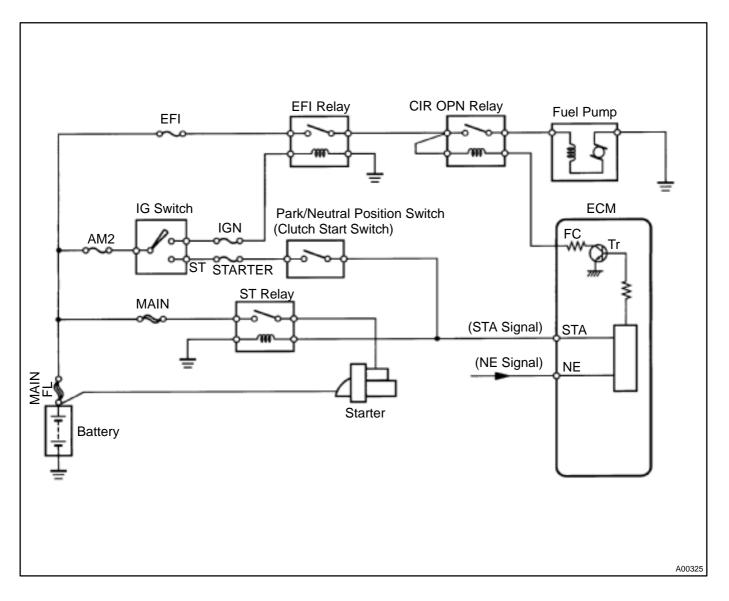


NG

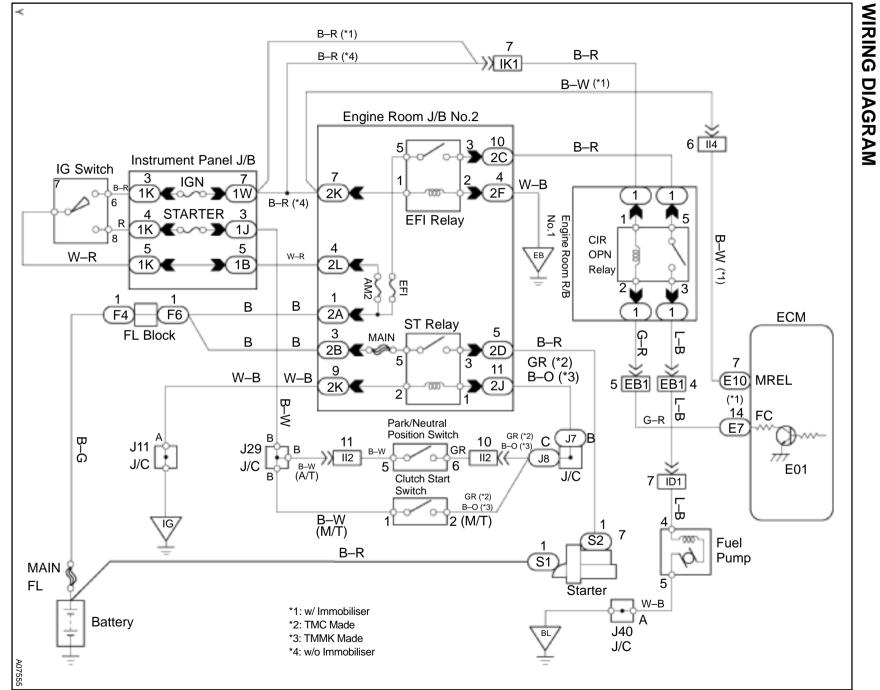


Date :

ΟΚ


Fuel Pump Control Circuit

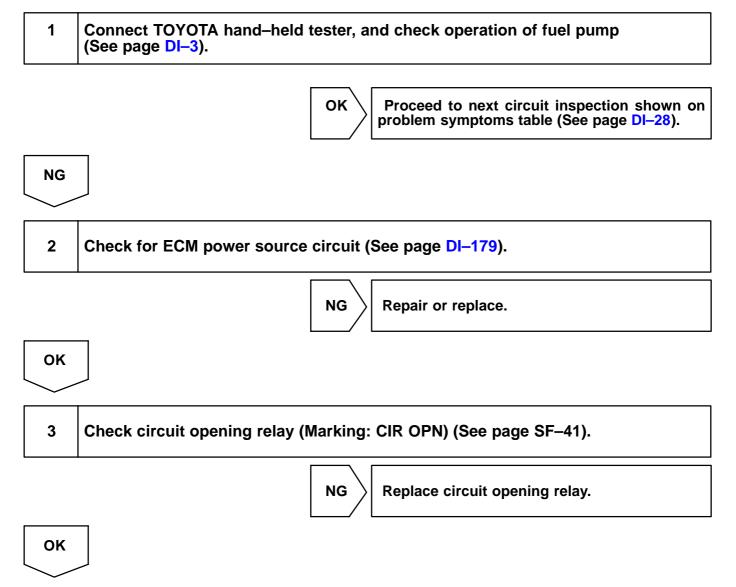
CIRCUIT DESCRIPTION


In the diagram below, when the engine is cranked, current flows from terminal ST of the ignition switch to the starter relay coil and also current flows to terminal STA of ECM (STA signal).

When the STA signal and NE signal are input to the ECM, Tr is turned ON, current flows to coil of the circuit opening relay, the relay switches on, power is supplied to the fuel pump and the fuel pump operates.

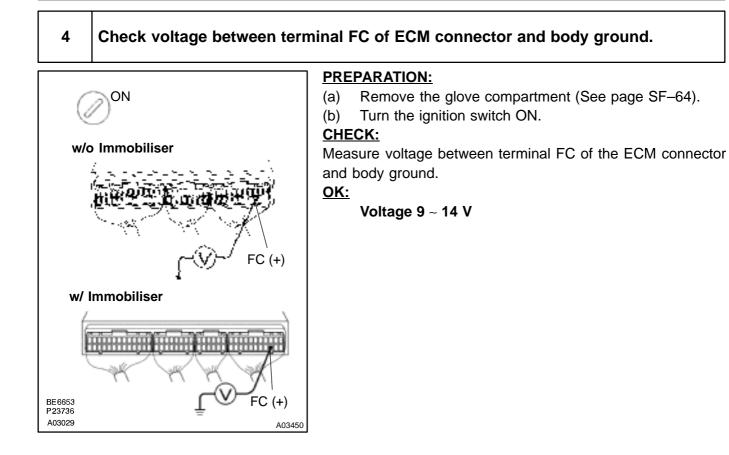
While the NE signal is generated (engine running), the ECM keeps Tr ON (circuit opening relay ON) and the fuel pump also keeps operating.

DI01M-05



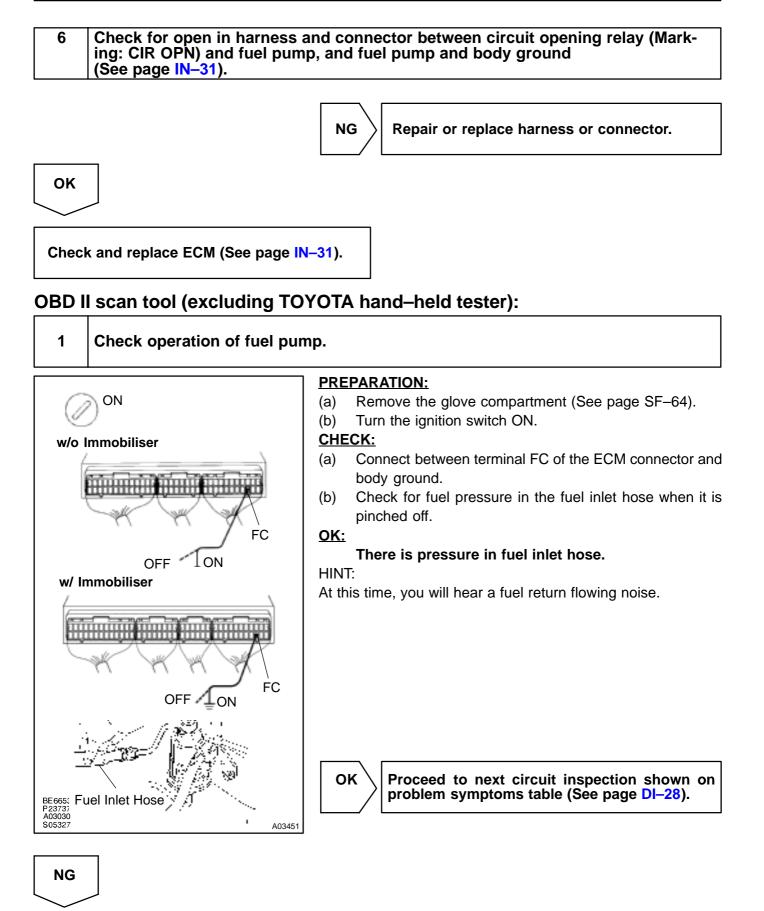
DIAGNOSTICS T ENGINE (5S-FE)

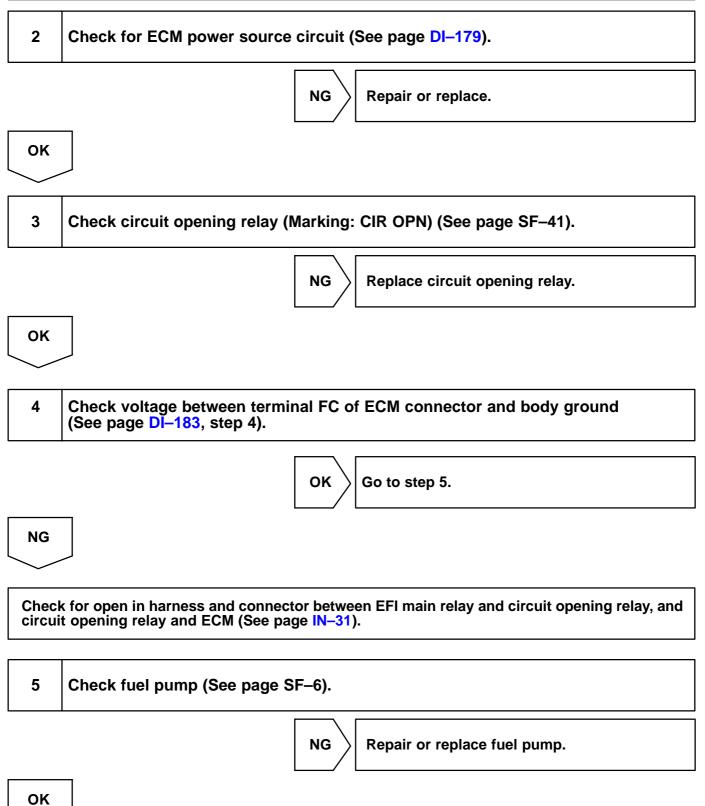
DI-184


Author :

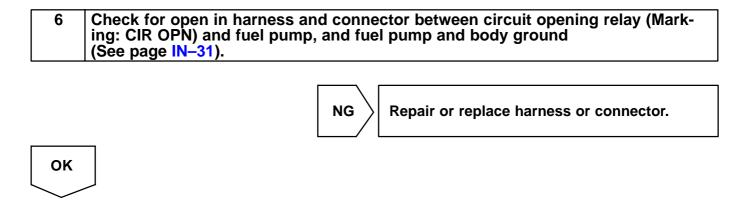
INSPECTION PROCEDURE TOYOTA hand-held tester:

NG


OK

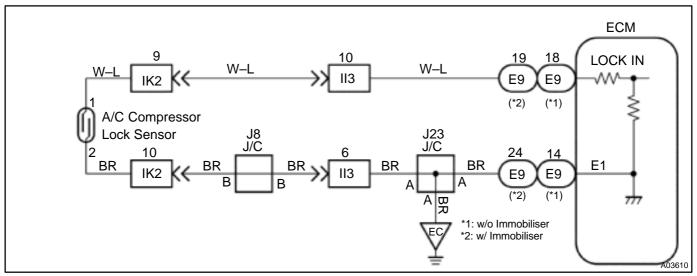


Check for open in harness and connector between EFI main relay, and circuit opening relay and circuit opening relay and ECM (See page IN-31).


5	Check fuel pump (See page SF–6).		
	NG Repair or replace fuel pump.		

DI-188

Author :


Check and replace ECM (See page IN-31).

A/C Compressor Lock Sencor Circuit

CIRCUIT DESCRIPTION

This sensor sends 1 pulse par engine revolution to the ECM. If the number ratio of the compressor speed divided by the engine speed is smaller than a predetermined value, the ECM turns the compressor off. And, the indicator flashes at about 1 second intervals.

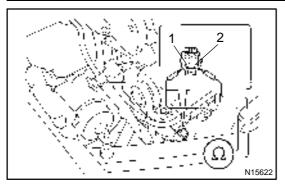
WIRING DIAGRAM

INSPECTION PROCEDURE

pressor.

PREPARATION:

- (a) Check the compressor drive belt tension (See page AC-16).
- (b) Check if the compressor does not lock during operation with the engine started and blower switch and A/C switch ON.



ОК

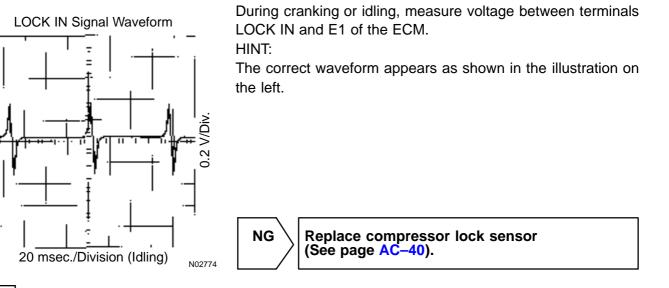
DI01N-04

Check compressor lock sensor.

2

PREPARATION:

Disconnect the compressor lock sensor connector.

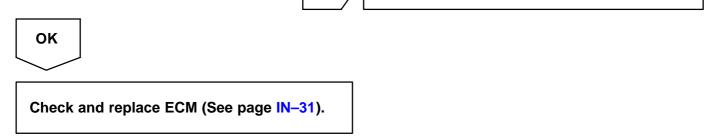

CHECK:

Measure resistance between terminals 1 and 2 of the compressor lock sensor connector.

<u> 0K:</u>

Resistance: 65 – 125 Ω at 20°C (68°F)

Reference: Inspection using oscilloscope

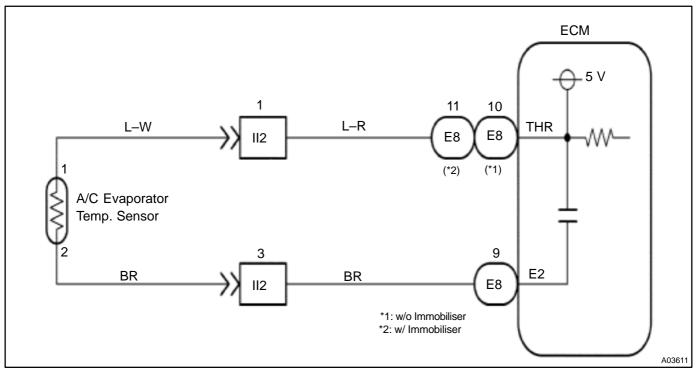


0	Κ	

3 Check harness and connector between A/C compressor lock sensor and ECM (See page IN–31).

NG

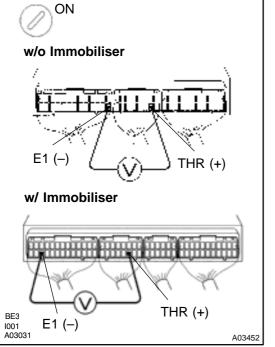
Repair or replace harness or connector.



A/C Evaporator Temp. Sensor Circuit

CIRCUIT DESCRIPTION

This sensor detects the temperature inside the cooling unit and sends the appropriate signals to the ECM.


WIRING DIAGRAM

INSPECTION PROCEDURE

Check voltage between terminals THR and E2 of ECM connector.

PREPARATION:

- (a) Remove the glove compartment (See page SF-64).
- (b) Turn the ignition switch ON.

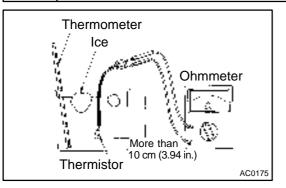
CHECK:

Measure voltage between terminals THR and E1 of the ECM connector at each temperature.

<u>OK:</u>

Voltage at 0°C (32 F): 2.2 – 2.6 V

HINT:


As the temperature increases, the voltage decreases.

NG

2

Check A/C evaporator temp. sensor.

PREPARATION:

Remove the A/C evaporator temp. sensor (See page AC-30).

CHECK:

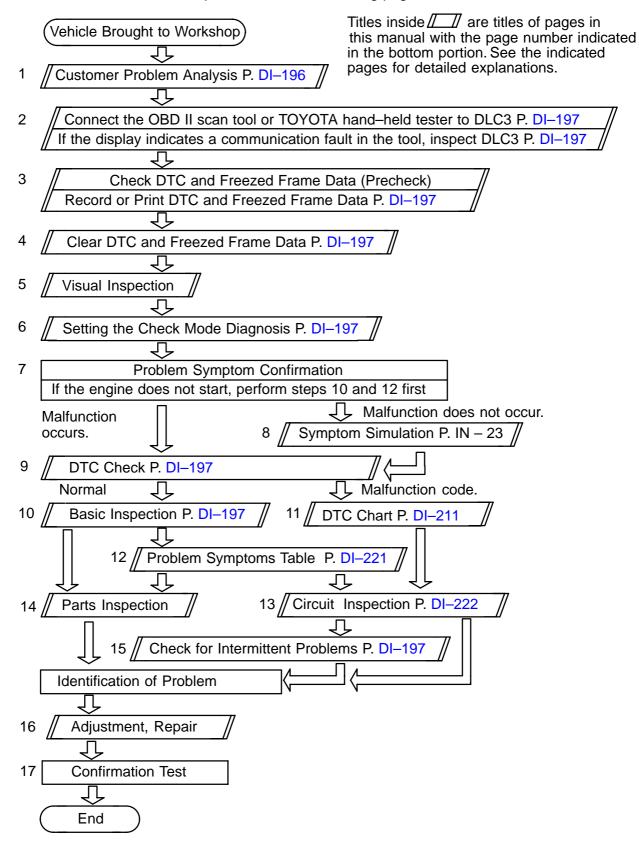
Check resistance between terminals 1 and 2 of the A/C evaporator temp. sensor connector at each temperature. <u>OK:</u>

<u>n.</u> –

Resistance

at 0°C (32°F): 4.6 – 5.1 Ω at 15°C (59°F): 2.1 – 2.6 Ω

HINT:


As the temperature increases, the voltage decreases.

NG Replace A/C evaporator temp. sensor.

3	Check harness and connector between A/C evaporator temp. sensor and ECM (See page IN-31).				
	NG Repair or replace harness or connector.				
ОК					
Chec	k and replace ECM (See page IN–31).				

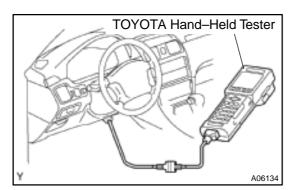
ENGINE (1MZ–FE) HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following page.

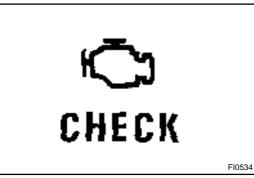
DI078-08

CUSTOMER PROBLEM ANALYSIS CHECK

ENGINE CONTROL SYSTEM Check Sh			Check She	eet Ins Na	pector's me			
Customer's Name					Model and Model Year			
Driv	er's Name				Frame No.			
	e Vehicle ught in				Engine Model			
Lice	nse No.				Odometer Readin	g		km miles
	Engine does not Start	Engine do	es not crank		No initial combustion	□ No	complete combustio	n
	Difficult to Start	Engine cra Other						
ptoms	Poor Idling	□ Incorrect f □ Rough idli	iirst idle 🛛 🛛	□ Idling rpm is		h(rpm	, ,	rpm)
Problem Symptoms	Poor Driveability	☐ Hesitation ☐ Knocking	n 🗆 Ba	ck fire	☐ Muffler explosion	(after-fire)		
Proble	Engine Stall	After acce	r starting lerator pedal	☐ After ac I released	celerator pedal depres	ssed tion		
	☐ Others							
	es Problem urred							
Prot	olem Frequency		stant 🛛 er	Sometimes (times per da	y/month)	Once only	
	Weather	□ Fine		oudy 🗆 R	ainy 🛛 Snowy	□ Various/Ot	her	
en urs	Outdoor Temperature	□ Hot	🗆 Wa	arm 🗆 C	ool 🛛 🗆 Cold (app	rox°F/	°C)	
Condition When Problem Occurs	Place		nway □ gh road		□ Inner city			
Condi Proble	Engine Temperature		d 🗆 Wa		After warming up			
□ Starting □ Just after starting (min.) □ Idling				□ Racing Deceleration				
Condition of MIL		□ Remains o	n 🛛 Sometime	es light up	Does not light	up		
DTO	Inconcetion	Normal Mo (Precheck		Normal	Malfunctio Freezed fr	on code(s) (code rame data ()	
DTC Inspection Check Mod		de	Normal	Malfunctio Freezed fr	on code(s) (code rame data ()		


DI079-02

PRE-CHECK


1. DIAGNOSIS SYSTEM

- (a) Description
 - When troubleshooting OBD II vehicles, the only difference from the usual troubleshooting procedure is that you connect to the vehicle the OBD II scan tool complying with SAE J1978 or TOYOTA hand– held tester, and read off various data output from the vehicle's ECM.
 - OBD II regulations require that the vehicle's onboard computer lights up the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in the emission control system/components or in the powertrain control components which affect vehicle emissions, or a malfunction in the computer. In addition to the MIL lighting up when a malfunction is detected, the applicable Diagnostic Trouble Codes (DTC) prescribed by SAE J2012 are recorded in the ECM memory (See page DI-211).

If the malfunction does not reoccur in 3 consecutive trips, the MIL goes off but the DTCs remain recorded in the ECM memory.

 To check the DTC, connect the OBD II scan tool or TOYOTA hand-held tester to Data Link Connector 3 (DLC3) on the vehicle. The OBD II scan tool or TOYOTA hand-held tester also enables you to erase the DTC and check freezed frame data and various forms of engine data (For operating instructions, see the OBD II scan tool's instruction book.). DTC include SAE controlled codes and manufacturer controlled codes. SAE controlled codes must be set as prescribed by the SAE, while manufacturer controlled codes can be set freely by the manufacturer within the prescribed limits (See DTC chart on page DI-211).

DI07A-06

432

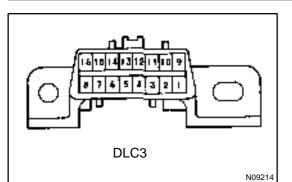
- The diagnosis system operates in normal mode during normal vehicle use. It also has a check mode for technicians to simulate malfunction symptoms and troubleshoot. Most DTC use 2 trip detection logic* to prevent erroneous detection, and ensure thorough malfunction detection. By switching the ECM to check mode when troubleshooting, the technician can cause the MIL to light up for a malfunction that is only detected once or momentarily (TOYOTA hand-held tester only). (See page DI-197)
- *2 trip detection logic:

When a malfunction is first detected, the malfunction is temporarily stored in the ECM memory. (1st trip)

If the same malfunction is detected again during the second drive test, this second detection causes the MIL to light up. (2nd trip) (However, the IG switch must be turned OFF between the 1st trip and the 2nd trip.).

• Freeze frame data:

Freeze frame data records the engine condition when a misfire (DTCs P0300 ~ P0306) or fuel trim malfunction (DTCs P0171, P0172) or other malfunction (first malfunction only), is detected.


Because freeze frame data records the engine conditions (fuel system, calculated load, engine coolant temperature, fuel trim, engine speed, vehicle speed, etc.) when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

• Priorities for troubleshooting:

If troubleshooting priorities for multiple DTC are given in the applicable DTC chart, these should be followed.

If no instructions are given troubleshoot DTC according to the following priorities.

- DTC other than fuel trim malfunction (DTCs P0171, P0172), EGR (DTCs P0401, P0402) and misfire (DTCs P0300 ~ P0306).
- (2) Fuel trim malfunction (DTCs P0171, P0172) and EGR (DTCs P0401, P0402).
- (3) Misfire (DTCs P0300 ~ P0306).

(b) Check the DLC3.

The vehicle's ECM uses ISO 9141–2 for communication. The terminal arrangement of DLC3 complies with SAE J1962 and matches the ISO 9141–2 format.

Terminal No.	Connection / Voltage or Resistance	Condition
7	Bus \oplus Line / Pulse generation	During transmission
4	Chassis Ground \leftrightarrow Body Ground /1 Ω or less	Always
5	Signal Ground \leftrightarrow Body Ground /1 Ω or less	Always
16	Battery Positive \leftrightarrow Body Ground /9 ~ 14 V	Always

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of the OBD II scan tool or TOYOTA hand-held tester to DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

2. INSPECT DIAGNOSIS (Normal Mode)

- (a) Check the MIL.
 - (1) The MIL comes on when the ignition switch is turned ON and the engine is not running.

HINT:

If the MIL does not light up, troubleshoot the combination meter (See page BE-46).

- (2) When the engine started, the MIL should go off. If the lamp remains on, the diagnosis system has detected a malfunction or abnormality in the system.
- (b) Check the DTC.

NOTICE:

TOYOTA hand-held tester only: When the diagnosis system is switched from normal mode to check mode, it erases all DTC and freezed frame data recorded in normal mode. So before switching modes, always check the DTC and freezed frame data, and note them down.

Prepare the OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester.

- (2) Connect the OBD II scan tool or TOYOTA handheld tester to DLC3 at the lower center of the instrument panel.
- (3) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester switch ON.
- (4) Use the OBD II scan tool or TOYOTA hand-held tester to check the DTC and freezed frame data and note them down (For operating instructions, see the OBD II scan tool's instruction book.).

(5) See page DI–197 to confirm the details of the DTC.

NOTICE:

- When simulating symptoms with an OBD II scan tool (excluding TOYOTA hand-held tester) to check the DTC, use normal mode. For code on the DTC chart subject to "2 trip detection logic", performe the following either action.
- Turn the ignition switch OFF after the symptom is simulated the first time. Then repeat the simulation process again. When the problem has been simulated twice, the MIL lights up and the DTCs are recorded in the ECM.
- Check the 1st trip DTC using Mode 7 (Continuous Test Results) for SAE J1979.
- (c) Clear the DTC.

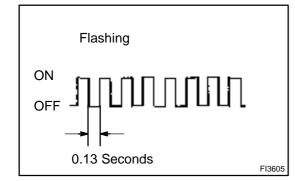
The DTCs and freezed frame data will be erased by either action.

- Operating the OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester to erase the codes. (See the OBD II scan tool's instruction book for operating instructions.)
- Disconnecting the battery terminals or EFI fuse.

NOTICE:

If the TOYOTA hand-held tester switches the ECM from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during check mode, the DTCs and freezed frame data will be erased.

3. INSPECT DIAGNOSIS (Check Mode)


HINT:

TOYOTA hand-held tester only:

Compared to the normal mode, the check mode has an increased sensitivity to detect malfunctions.

Furthermore, the same diagnostic items which are detected in the normal mode can also be detected in the check mode.

- (a) Check the DTC.
 - (1) Initial conditions.
 - Battery positive voltage 11 V or more
 - Throttle valve fully closed
 - Transmission in "P" or "N" position
 - Air conditioning switched OFF
 - (2) Turn ignition switch OFF.
 - (3) Prepare the TOYOTA hand-held tester.
 - (4) Connect the TOYOTA hand-held tester to the DLC3 at the lower center of the instrument panel.
 - (5) Turn the ignition switch ON and push the TOYOTA hand-held tester switch ON.

(6) Switch the TOYOTA hand-held tester normal mode to check mode (Check that the MIL flashes.).

NOTICE:

If the TOYOTA hand-held tester switches the ECM from normal mode to check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during check mode, the DTC and freezed frame data will be erased.

- (7) Start the engine (The MIL goes out after the engine start.).
- (8) Simulate the conditions of the malfunction described by the customer.

NOTICE:

Leave the ignition switch ON until you have checked the DTC, etc.

(9) After simulating the malfunction conditions, use the TOYOTA hand-held tester diagnosis selector to check the DTC and freezed frame data, etc.

HINT:

Take care not to turn the ignition switch OFF. Turning the ignition switch OFF switches the diagnosis system from check mode to normal mode. So all DTC, etc. are erased.

(10) After checking the DTC, inspect the applicable circuit.

4. FAIL-SAFE CHART

If any of the following codes is recorded, the ECM enters fail-safe mode.

DTC No.	Fail–Safe Operation	Fail–Safe Deactivation Conditions
P0100	Ignition timing fixed at 10° BTDC	Returned to normal condition
P0110	Intake air temperature is fixed at 20°C (68°F)	Returned to normal condition
P0115	Engine coolant temperature is fixed at 80°C (176°F)	Returned to normal condition
P0120	VTA is fixed at 0°	 The following condition must be repeated at least 2 times consecutively (a) Vehicle speed: 0km/h (0mph) (b) VTA ≥ 0.1 V and > 0.95 V
P0135 P0141 P0155	The heater circuit in which an abnormality is detected is turned off	Ignition switch OFF
P0325 P0330	Max. timing retardation	Ignition switch OFF
P1300	Fuel cut	IGF signal is detected for 6 consecutive ignition

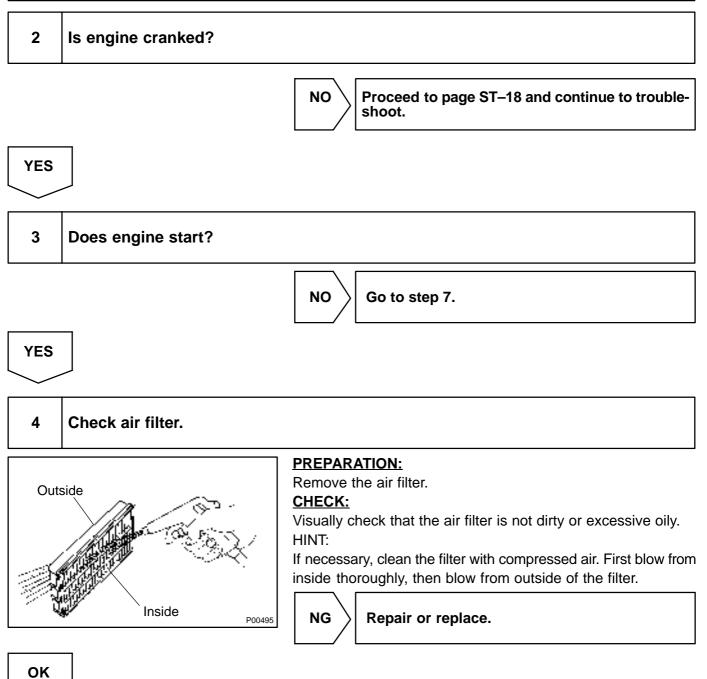
5. CHECK FOR INTERMITTENT PROBLEMS

TOYOTA HAND-HELD TESTER only:

By putting the vehicle's ECM in check mode, 1 trip detection logic is possible instead of 2 trip detection logic and sensitivity to detect open circuits is increased. This makes it easier to detect intermittent problems.

- (1) Clear the DTC (See page DI–197).
- (2) Set the check mode (See page DI–197).
- (3) Perform a simulation test (See page IN–21).
- (4) Check the connector and terminal (See page IN–31).
- (5) Handle the connector (See page IN–31).

6. BASIC INSPECTION


When the malfunction code is not confirmed in the DTC check, troubleshooting should be performed in the order for all possible circuits to be considered as the causes of the problems. In many cases, by carrying out the basic engine check shown in the following flow chart, the location causing the problem can be found quickly and efficiently. Therefore, use of this check is essential in engine troubleshooting.

1 Is battery positive voltage 11 V or more when engine is stopped ?

NO

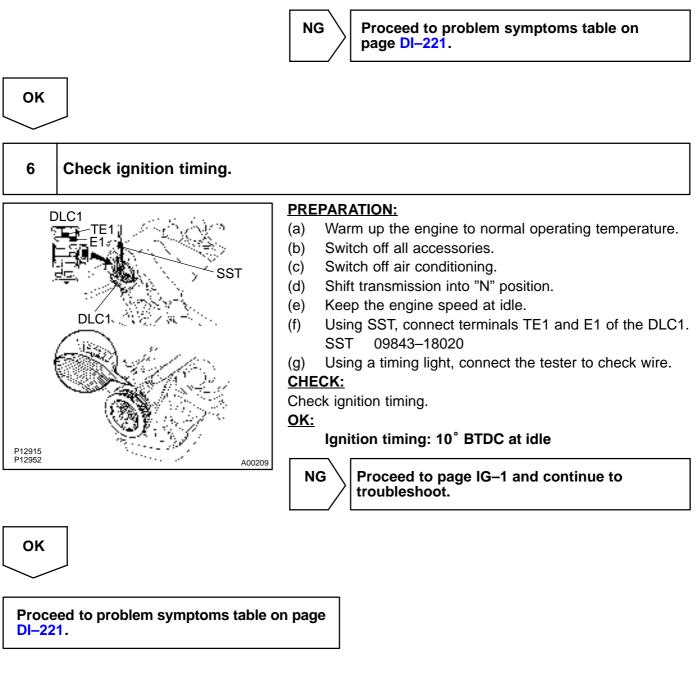
Charge or replace battery.

YES

5

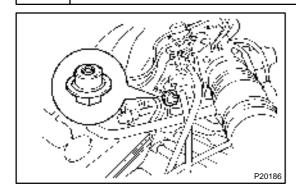
Check idle speed.

PREPARATION:


- (a) Warm up the engine to normal operating temperature.
- (b) Switch off all accessories.
- (c) Switch off air conditioning.
- (d) Shift transmission into "N" position.
- (e) Connect the OBD II scan tool or TOYOTA hand-held tester to DLC3 on the vehicle.

CHECK:

Use CURRENT DATA to check the idle speed.


<u>OK:</u>

Idle speed: 650 ~ 750 rpm

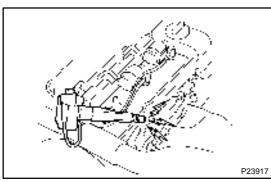
7

Check fuel pressure.

PREPARATION:

- (a) Be sure that enough fuel is in the tank.
- (b) Connect the TOYOTA hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and push the TOYOTA handheld tester main switch ON.
- (d) Use ACTIVE TEST mode to operate the fuel pump.
- (e) If you have no TOYOTA hand-held tester, connect the positive (+) and negative (-) leads from the battery to the fuel pump connector (See page SF-6).

CHECK:


Check that the pulsation damper screw rises up when the fuel pump operates.

Proceed to page SF–6 and continue to troubleshoot.

OK

8 Check for spark.

PREPARATION:

- (a) Remove the ignition coil or disconnect the high-tension cord from the spark plug.
- (b) Remove the spark plug.
- (c) Install the spark plug to the ignition coil or high-tension cord.
- (d) Disconnect the injector connector.
- (e) Hold the end about 12.5 mm (0.5 in.) from the ground.

CHECK:

Check if spark occurs while engine is being cranked. **NOTICE:**

To prevent excess fuel being injected from the injectors during this test, don't crank the engine for more than $5 \sim 10$ seconds at a time.

<u>OK:</u>

Spark jumps across electrode gap.

Proceed to page IG–1 and continue to troubleshoot.

ОК

Proceed to problem symptoms table on page DI-221.

7. ENGINE OPERATING CONDITION NOTICE:

The values given below for "Normal Condition" are representative values, so a vehicle may still be normal even if its value varies from those listed here. So do not decide whether a part is faulty or not solely according to the "Normal Condition" here.

(a) CARB mandated signals.

TOYOTA hand-held tester display	Measurement Item	Normal Condition*
FUEL SYS #1	Fuel System Bank 1 OPEN: Air–fuel ratio feedback stopped CLOSED: Air–fuel ratio feedback operating	Idling after warming up: CLOSED
FUEL SYS #2	Fuel System Bank 2 OPEN: Air–fuel ratio feedback stopped CLOSED: Air–fuel ratio feedback operating	Idling after warming up: CLOSED
CALC LOAD	Calculator Load: Current intake air volume as a proportion of max. intake air volume	Idling: 13.1 ~ 18.7% Racing without load (2,500rpm): 11.7 ~ 17.3%
COOLANT TEMP.	Engine Coolant Temp. Sensor Value	After warming up: 80 ~ 95°C (176 ~ 203°F)
SHORT FT #1	Short-term Fuel Trim Bank 1	0 ± 20%
LONG FT #1	Long-term Fuel Trim Bank 1	0 ± 20%
SHORT FT #2	Short-term Fuel Trim Bank 2	0 ± 20%
LONG FT #2	Long-term Fuel Trim Bank 2	0 ± 20%
ENGINE SPD	Engine Speed	Idling: 650 ~ 750 rpm
VEHICLE SPD	Vehicle Speed	Vehicle stopped: 0 km/h (0 mph)
IGN ADVANCE	Ignition Advance: Ignition Timing of Cylinder No. 1	Idling: BTDC 10 ~ 25.0°
INTAKE AIR	Intake Air Temp. Sensor Value	Equivalent to Ambient Temp.
MAF	Air Flow Rate Through Mass Air Flow Meter	Idling: 3.3 ~ 4.7 gm/sec. Racing without load (2,500 rpm): 10.4 ~ 15.4 gm/sec.
THROTTLE POS	Voltage Output of Throttle Position Sensor Calculated as a percentage: $0 \vee \rightarrow 0\%, 5 \vee \rightarrow 100\%$	Throttle valve fully closed: 7 ~ 11% Throttle valve fully open: 65 ~ 75%

*: If no conditions are specifically stated for "Idling", it means the shift lever is at N or P position, the A/C switch is OFF and all accessory switches are OFF.

TOYOTA hand-held tester display	Measurement Item	Normal Condition*1
O2S B1, S1	Voltage Output of Oxygen Sensor Bank 1 Sensor 1	Idling: 0.1 ~ 0.9 V (0.56 ~ 0.76 V*2)
O2FT B1, S1	Oxygen Sensor Fuel Trim Bank 1 Sensor 1 (Same as SHORT FT #1)	0 ± 20%
O2S B1, S2	Voltage Output of Oxygen Sensor Bank 1 Sensor 2	Driving 50 km/h (31 mph): 0.1 ~ 0.9 V
O2S B2, S1	Voltage Output of Oxygen Sensor Bank 2 Sensor 1	Idling: 0.1 ~ 0.9 V (0.56 ~ 0.76 V*2)
O2FT B2, S1	Oxygen Sensor Fuel Trim Bank 2 Sensor 1 (Same as SHORT FT #2)	0 ± 20%
A/FS B1, S1 *3	Voltage Output of A/F Sensor Bank 1 Sensor 1	Idling: 2.8 ~ 3.8 V
A/FS B2, S1 *3	Voltage Output of A/F Sensor Bank 2 Sensor 1	Idling: 2.8 ~ 3.8 V
A/FFT B1, S1 *3	A/F Sensor Fuel Trim Bank 1 Sensor 1 (Same as SHORT FT #1)	O ± 20%
A/FFT B2, S1 *3	A/F Sensor Fuel Trim Bank 2 Sensor 1 (Same as SHORT FT #1)	O ± 20%

*1: If no conditions are specifically stated for "Idling", it means the shift lever is shift lever is at N or P position, the A/C switch is OFF and all accessory switches are OFF.

*2: Only for California Specification vehicles, when you use the OBD II scan tool (excluding TOYOTA hand-held tester).

*3: Only for California Specification vehicles, when you use the TOYOTA hand-held tester.

OYOTA hand-held tester display	Measurement Item	Normal Condition*
MISFIRE RPM	Engine RPM for first misfire range	Misfire 0: 0 rpm
MISFIRE LOAD	Engine load for first misfire range	Misfire 0: 0 g/r
INJECTOR	Fuel injection time for cylinder No.1	Idling: 1.6 ~ 2.9 ms
IAC DUTY RATIO	Intake Air Control Valve Duty Ratio Opening ratio rotary solenoid type IAC valve	Idling: 27 ~ 47 %
STARTER SIG	Starter Signal	Cranking: ON
CTP SIG	Closed Throttle Position Signal	Throttle Fully Closed: ON
A/C SIG	A/C Switch Signal	A/C ON: ON
PNP SW	Park/Neutral Position Switch Signal	P or N position: ON
ELCTRCL LOAD SIG	Electrical Load Signal	Defogger switch ON: ON
STOP LIGHT SW	Stop Light Switch Signal	Stop light switch ON: ON
PS OIL PRESS SW	Power Steering Oil Pressure Switch Signal	Turn steering wheel: ON
FC IDL	Fuel Cut Idle: Fuel cut when throttle valve fully closed, during deceleration	Fuel cut operating: ON
FC TAU	Fuel Cut TAU: Fuel cut during very light load	Fuel cut operating: ON
CYL#1 ~ CYL#6	Abnormal revolution variation for each cylinder	0%
IGNITION	Total number of ignition for every 1,000 revolu- tions	0 ~ 3,000
EGRT GAS	EGR Gas Temperature Sensor Value	EGR not operating: Temperature between intake air temp. and engine coolant temp.
INTAKE CTRL VSV	Intake Air Control Valve VSV Signal	VSV operating: ON
EGR SYSTEM	EGR system operating condition	Idling: OFF
A/C CUT SIG	A/C Cut Signal	A/C S/W OFF: ON
FUEL PUMP	Fuel Pump Signal	Idling: ON
EVAP (PURGE) VSV	EVAP VSV Signal	VSV operating: Above 30%
VAPOR PRESS VSV	Vapor Pressure VSV Signal	VSV operating: ON (TANK)

(b) TOYOTA Enhanced Signals.

*: If no conditions are specifically stated for "Idling", it means the shift lever is at N or P position, the A/C switch is OFF and all accessory switches are OFF.

TOYOTA hand-held tester display	Measurement Item	Normal Condition*1
TOTAL FT B1	Total Fuel Trim Bank 1: Average value for fuel trim system of bank 1	Idling: 0.8 ~ 1.2
TOTAL FT B2	Total Fuel Trim Bank 1: Average value for fuel trim system of bank 2	Idling: 0.8 ~ 1.2
O2 LR B1, S1 *2	Oxygen Sensor Lean Rich Bank 2 Sensor 1 Re- sponse time for oxygen sensor output to switch from lean to rich	Idling after warmed up: 0 ~ 1,000 msec.
O2 LR B2, S1 *2	Oxygen Sensor Lean Rich Bank 2 Sensor 1 Re- sponse time for oxygen sensor output to switch from lean to rich	Idling after warmed up: 0 ~ 1,000 msec.
O2 RL B1, S1 *2	Oxygen Sensor Rich Lean Bank 1 Sensor 1 Re- sponse time for oxygen sensor output to switch from rich to lean	Idling after warmed up: 0 ~ 1,000 msec.
O2 RL B2, S1 *2	Oxygen Sensor Rich Lean Bank 2 Sensor 1 Re- sponse time for oxygen sensor output to switch from rich to lean	Idling after warmed up: 0 ~ 1,000 msec.

*1: If no conditions are specifically stated for "Idling", it means the shift lever is at N or P position, the A/C switch is OFF and all accessory switches are OFF.

*2: Except California Specification vehicles.

DIAGNOSTIC TROUBLE CODE CHART

1. SAE CONTROLLED

HINT:

Parameters listed in the chart may not be exactly the same as your reading due to the type of instrument or other factors.

If a malfunction code is displayed during the DTC check in check mode, check the circuit for that code listed in the table below. For details of each code, turn to the page referred to under the "See page " for the respective "DTC No." in the DTC chart.

DTC No. (See Page)	Detection Item	Trouble Area	MIL* ¹	Memory
P0100 (DI–222)	Mass Air Flow Circuit Malfunction	Open or short in mass air flow meter circuit Mass air flow meter ECM	0	0
P0101 (DI–227)	Mass Air Flow Circuit Range/Performance Problem	☐Mass air flow meter	0	0
P0110 (DI–228)	Intake Air Temp. Circuit Malfunction	□Open or short in intake air temp. sensor circuit □Intake air temp. sensor (built into mass air flow meter) □ECM	0	0
P0115 (DI–233)	Engine Coolant Temp. Circuit Malfunction	☐Open or short in engine coolant temp. sensor circuit ☐Engine coolant temp. sensor ☐ECM	0	0
P0116 (<mark>DI–237</mark>)	Engine Coolant Temp. Circuit Range/Performance Problem	Engine coolant temp. sensor Cooling system	0	0
P0120 (DI–239)	Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction	Open or short in throttle position sensor circuit Throttle position sensor ECM	0	0
P0121 (DI–243)	Throttle/Pedal Position Sensor/Switch "A" Circuit Range/Performance Problem	Throttle position sensor	0	0
*2 P0125 (DI–244)	Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)	 Fuel system Injector Ignition system Gas leakage on exhaust system Open or short in heated oxygen sensor circuit (bank 1, 2 sensor 1) Heated oxygen sensor (bank 1, 2 sensor 1) ECM 	0	0
*3 P0125 (DI–249)	Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)	 Fuel system Injector Ignition system Gas leakage on exhaust system Open or short in A/F sensor circuit (bank 1, 2 sensor 1) A/F sensor (bank 1, 2 sensor 1) ECM 	0	0
*2 P0130 (DI–255)	Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 1)	□Heated oxygen sensor □Fuel trim malfunction	0	0

*1: \bigcirc ~~--MIL lights up

*2: Except California specification vehicles

*3: Only for California specification vehicle

DI07B-07

DIAGNOSTICS – ENGINE (1MZ–FE)

DTC No. (See Page)	Detection Item	Trouble Area	MIL	Memory
*2 P0133 (DI–259)	Heated Oxygen Sensor Circuit Slow Response (Bank 1 Sensor 1)	□Heated oxygen sensor □Fuel trim malfunction	0	0
*2 P0135 (DI–263)	Heated Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 1)	 Open or short in heater circuit of heated oxygen sensor Heated oxygen sensor heater ECM 	0	0
P0136 (DI–265)	Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)	Heated oxygen sensor	0	0
P0141 (DI–263)	Heated Oxygen Sensor Heater Circuit Malfunction (Bank 1 Sensor 2)	⊑\$ame as DTC No. P0135	⊜*1	0
*3 P0150 (DI–255)	Heated Oxygen Sensor Circuit Malfunction (Bank 2 Sensor 1)	Same as DTC No. P0130	⊜*1	0
*3 P0153 (DI–259)	Heated Oxygen Sensor Circuit Slow Response (Bank 2 Sensor 1)	□Same as DTC No. P0133 □Fuel trim malfunction	O*1	0
*3 P0155 (DI–263)	Heated Oxygen Sensor Circuit Malfunction (Bank 2 Sensor 1)	⊑\$ame as DTC No. P0135	⊜*1	0
*3 P0171 (DI–272)	System too Lean (Fuel Trim) (Except California Spec.)	 Air intake (hose loose) Fuel line pressure Injector blockage Heated oxygen sensor (bank 1, 2 sensor 1) malfunction Mass air flow meter Engine coolant temp. sensor Gas leakage on exhaust system 	⊖*1	0
*3 P0172 (DI–272)	System too Rich (Fuel Trim) (Except California Spec.)	 Fuel line pressure Injector leak, blockage Heated oxygen sensor (bank 1, 2 sensor 1) malfunction Mass air flow meter Engine coolant temp. sensor Gas leakage on exhaust system 	⊜*1	0
*4 P0171 (DI–267)	System too Lean (Fuel Trim) (Only for California Spec.)	 Air intake (hose loose) Fuel line pressure Injector blockage Mass air flow meter Engine coolant temp. sensor A/F sensor (bank 1, 2 sensor 1) Gas leakage on exhaust system 	⊜*1	0
*4 P0172 (DI–267)	System too rich (Fuel Trim) (Only for California Spec.)	 Fuel line pressure Injector leak, blockage Heated oxygen sensor malfunction Mass air flow meter Engine coolant temp. sensor A/F sensor (bank 1, 2 sensor 1) Gas leakage on exhaust system 	⊖*1	0

*1: MIL lights up

*2: MIL light up or blinking

*3: Except California specification vehicles

*4: Only for California specification vehicle

DTC No. (See Page)	Detection Item	Trouble Area	MIL	Memory
P0300 (DI-276)	Random/Multiple Cylinder Misfire Detected	□gnition system □njector □Fuel line pressure □EGR		
P0301 P0302 P0303 P0304 P0305 P0306 (DI-276)	Misfire Detected – Cylinder 1 – Cylinder 2 – Cylinder 3 – Cylinder 4 – Cylinder 5 – Cylinder 6	Compression pressure Valve clearance not to specification Valve timing Mass air flow meter Engine coolant temp. sensor Open or short engine wire Connector connection ECM	○*2	0
P0325 (DI–283)	Knock Sensor 1 Circuit Malfunction		⊜*1	0
P0330 (DI–283)	Knock Sensor 2 Circuit Malfunction	☐Open or short in knock sensor 2 circuit ☐Knock sensor 2 (looseness) ☐ECM	⊜*1	0
P0335 (DI–287)	Crankshaft Position Sensor "A" Circuit Malfunction	Open or short in crankshaft position sensor circuit Crankshaft position sensor Starter ECM	⊜*1	0
P0340 (DI–290)	Camshaft Position Sensor Circuit Malfunction	Open or short in camshaft position sensor circuit Camshaft position sensor Starter ECM	⊜*1	0
P0401 (DI-292)	Exhaust Gas Recirculation Flow Insufficient Detected	 EGR valve (stuck closed) Open or short in EGR gas temp. sensor circuit EGR gas temp. sensor Open in VSV circuit for EGR VSV for EGR Vacuum control valve Vacuum hose disconnected or blocked ECM 	⊖*1	0
P0402 (DI–302)	Exhaust Gas Recirculation Flow Excessive Detected	 □EGR valve stuck open □VSV for EGR open malfunction □Short in VSV circuit for EGR □Open or short in EGR valve position sensor circuit □EGR valve position sensor □ECM 	⊖*1	0
*3 P0420 (DI–305)	Catalyst System Efficiency Below Threshold (Except California Spec.)	☐ hree–way catalytic converter ☐Open or short in heated oxygen sensor circuit ☐Heated oxygen sensor	⊜*2	0
*4 P0420 (DI–308)	Catalyst System Efficiency Below Threshold (Only for California Spec.)	 Three–way catalytic converter Open or short in heated oxygen sensor (bank 1, sensor 2) circuit Heated oxygen sensor (bank 1, sensor 2) Open or short in A/F sensor (bank 1, 2 sensor 1) circuit A/F sensor (bank 1, 2 sensor 1) 	⊜*2	0

*1: MIL lights up

*2: MIL lights up on U.S.A and Canadian specification vehicles

*3: Except California specification vehicles

*4: Only for California specification vehicle

DIAGNOSTICS – ENGINE (1MZ–FE)

DTC No. (See Page)	Detection Item	Trouble Area	MIL*	Memory
P0440 (DI-311)	Evaporative Emission Control System Malfunction	 Vapor pressure sensor Fuel tank cap incorrectly installed Fuel tank cap cracked or damaged Vacuum hose cracked, holed, blocked, damaged or disconnected ((1) or (2) in fig. 1) Hose or tube cracked, holed, damaged or loose seal ((3) in fig. 1) Fuel tank cracked, holed or damaged Charcoal canister cracked, holed or damaged Fuel tank over fill check valve cracked or damaged 	⊖*1	0
P0441 (DI–318)	Evaporative Emission Control System Incorrect Purge Flow	 Open or short in VSV circuit for EVAP Open or short in VSV circuit for vapor pressure sensor Open or short in vapor pressure sensor circuit VSV for EVAP VSV for vapor pressure sensor Vapor pressure sensor Vacuum hose cracks, holed blocked, damaged or disconnected ((1), (4), (5), (6) and (7) in fig.1) Charcoal canister cracks, holed or damaged Fuel tank over fill check valve cracked or damaged 	0	0
P0446 (DI–318)	Evaporative Emission Control System Vent Control Malfunction	 Open or short in VSV circuit for EVAP Open or short in VSV circuit for vapor pressure sensor Open or short in vapor pressure sensor circuit VSV for EVAP VSV for vapor pressure sensor Vapor pressure sensor Vacuum hose cracks, holed blocked, damaged or disconnected ((1), (4), (5), (6) and (7) in fig.1) Charcoal canister cracks, holed or damaged Fuel tank over fill check valve cracked or damaged 	0	0
P0450 (DI–331)	Evaporative Emission Control System Pressure Sensor Malfunction	□Open or short in vapor pressure sensor circuit □/apor pressure sensor □ECM	0	0
P0451 (DI–331)	Evaporative Emission Control System Pressure Sensor Range/Performance	Open or short in vapor pressure sensor circuit Vapor pressure sensor ECM	0	0
P0500 (DI–333)	Vehicle Speed Sensor Malfunction	 Open or short in speed sensor circuit Vehicle speed sensor Combination meter ECM 	0	0
P0505 (DI–336)	Idle Control System Malfunction	 AC valve is stuck or closed Open or short in IAC valve circuit Open or short in A/C signal circuit Air intake (hose loose) 	0	0

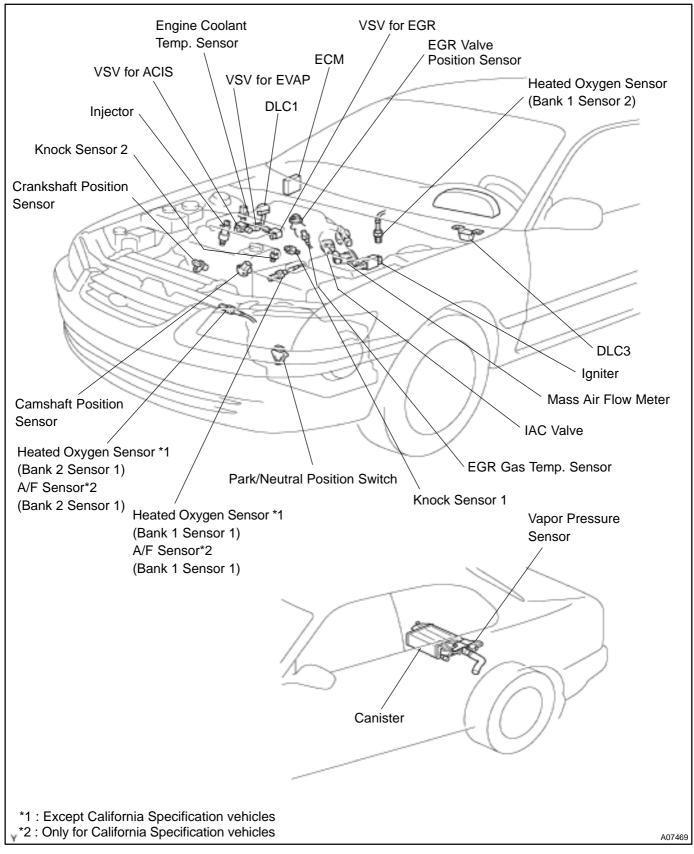
*: O ~~~MIL lights up

2. MANUFACTURER CONTROLLED

DTC No. (See Page)	Detection Item	Trouble Area	MIL*1	Memory
*2 P1130 (DI–340)	A/F Sensor Circuit Range/Performance Malfunction (Bank 1 Sensor 1)	□Open or short in A/F sensor circuit □A/F sensor (bank 1 sensor 2) □ECM	0	0
*2 P1133 (DI–345)	A/F Sensor Circuit Response Malfunction (Bank 1 Sensor 1)	□A/F sensor (bank 1 sensor 2)	0	0
*2 P1135 (DI–349)	A/F Sensor Heater Circuit Malfunction (Bank1 Sensor 1)	□Open or short in A/F sensor (bank 1 sensor 2) □A/F sensor (bank 1 sensor 2) heater □ECM	0	0
*2 P1150 (DI–340)	A/F Sensor Circuit Range/Performance Malfunction (Bank2 Sensor 1)	Same as DTC No. P1130	0	0
*2 P1153 (DI–345)	A/F Sensor Circuit Response Malfunction (Bank 2 Sensor 1)	Same as DTC No. P1133	0	0
*2 P1155 (DI–349)	A/F Sensor Heater Circuit Malfunction (Bank 2 Sensor 1)	Same as DTC No. P1135	0	0
P1300 (DI–351)	Igniter Circuit Malfunction	©pen or short in IGF or IGT circuit from igniter to ECM ☐gniter ☐ECM	0	0
P1335 (DI–357)	Crankshaft Position Sensor Circuit Malfunction (during engine running)	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Starter ECM 	_	0
P1410 (DI–358)	EGR Valve Position Sensor Circuit Malfunction	Open or short in EGR valve position sensor circuit EGR valve position sensor ECM	0	0
P1411 (DI–362)	EGR Valve Position Sensor Circuit Range/Performance Problem	EGR valve position sensor	0	0
P1520 (DI–363)	Stop Light Switch Signal Malfunction	Short in stop light switch signal circuit Stop light switch ECM	0	0
P1600 (DI–366)	ECM BATT Malfunction	□Open in back up power source circuit □ECM	0	0
P1780 (DI–368)	Park/Neutral Position Switch Malfunction	Short in park/neutral position switch circuit Park/neutral position switch ECM	0	0

*1: O ---- MIL lights up, - ---- MIL does not light up

*2: Only for California specification vehicles


DI-216

DIAGNOSTICS - ENGINE (1MZ-FE)

DTC No. (See Page)	Detection Item	Trouble Area	MIL*	Memory
B2795 (DI–928)	Unmatched key Code	□mmobiliser system	-	0
B2796 (DI–929)	No Communication in Immobiliser System	□mmobiliser system	-	0
B2797 (DI–932)	Communication Malfunction No.1	□mmobiliser system	-	0
B2798 (DI–935)	Communication Malfunction No.2	Immobiliser system	-	0

*:- ~---MIL does not light up

PARTS LOCATION

452

DI07C-06

DIAGNOSTICS - ENGINE (1MZ-FE)

TERMINALS OF ECM

ECM Terminals	C	F 40		E8	(E7)
(E11)		E10)	E9	EO	
212019181716151413	2 1 7 6 5 121110 142322 242322 242322	4 3 2 1 3121110 9 8 2120191817	6 5 4 3 2 1 121110 9 8 7 1716 151413	9 8 7 6 5 4 3 2 19181716151413121 282726252423 222	110 1514131211109 8
					A02508
Symbols (Terminals No.)	Wiring Color		Cor	ndition	STD Voltage (V)
BATT (E7 – 1) – E1 (E10 – 17)	$B – Y \leftrightarrow BR$	Always			9 ~ 14
+B (E7 – 16) – E1 (E10 – 17)	$R \leftrightarrow BR$	IG switch ON			9 ~ 14
VC (E10 – 2) – E2 (E10 – 18)	$Y \leftrightarrow BR$	IG switch ON			4.5 ~ 5.5
VTA1 (E10 – 23)	$L \leftrightarrow BR$	IG switch ON Throttle valve			0.3 ~ 1.0
– E2 (E10 – 18)		IG switch ON Throttle valve			3.2 ~ 4.9
VG (E10 – 10) – E2G (E10 – 19)	$P \leftrightarrow RB$	Idling , A/C sv	witch OFF		1.1 ~ 1.5
THA (E10 – 22) – E2 (E10 – 18)	$LY \leftrightarrow BR$	Idling, Intake	air temp. 20°C (68	3°F)	0.5 ~ 3.4
THW (E10 –14) – E2 (E10 – 18)	$G – B \leftrightarrow BR$	Idling, Engine	coolant temp. 80	°C (176°F)	0.2 ~ 1.0
STA (E7 – 7) – E1 (E10 – 17)	$GR \leftrightarrow BR$	Cranking			6.0 or more
#10 (E10 - 5)		IG switch ON			9 ~ 14
#10 (E10 – 5) - E01 (E11 – 21)		Idling			Pulse generation (See page DI–276)
#20 (E10 – 6)		IG switch ON			9 ~ 14
- E01 (E11 - 21)	$R \leftrightarrow BR$	Idling			Pulse generation (See page DI–276)
#30 (E11 – 1)		IG switch ON			9 ~ 14
- E01 (E11 – 21) – E01 (E11 – 21)	$Y \leftrightarrow BR$	Idling			Pulse generation (See page DI–276)
#40 (E11 2)		IG switch ON			9 ~ 14
#40 (E11 – 2) – E01 (E11 – 21)	$W \leftrightarrow BR$	Idling			Pulse generation (See page DI–276)
#FO /F14 - 2)		IG switch ON			9 ~ 14
#50 (E11 – 3) – E01 (E11 – 21)	$R-L \leftrightarrow BR$	Idling			Pulse generation (See page DI–276)
#CO (E44 A)		IG switch ON			9 ~ 14
#60 (E11 – 4) – E01 (E11 – 21)	$G \leftrightarrow BR$	Idling			Pulse generation (See page DI–276)
IGT1 (E11 – 11) – E1 (E10– 17)	$GR \leftrightarrow BR$	Idling			Pulse generation (See page DI-351)
IGT2 (E11 – 12) – E1 (E10 – 17)	$BR\text{-}Y\leftrightarrowBR$	Idling			Pulse generation (See page DI-351)
IGT3 (E11 – 13) – E1 (E10 – 17)	$LGB\leftrightarrowBR$	Idling			Pulse generation (See page DI-351)

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
	-	IG switch ON	4.5 ~ 5.5
IGF (E11 – 25) – E1 (E10 – 17)	$W–R \leftrightarrow BR$	Idling	Pulse generation (See page DI–351)
THG (E10 – 13) – E2 (E10 – 18)	$G – Y \leftrightarrow BR$	IG switch ON	4.5 ~ 5.5
G22+ (E11 – 10) – NE– (E10 – 24)	$B – W \leftrightarrow L$	Idling	Pulse generation (See page DI–287)
NE+ (E10 – 16) – NE– (E10 – 24)	$BR\leftrightarrow L$	Idling	Pulse generation (See page DI–287)
		Taillight switch ON	7.5 ~ 14
ELS (E7 – 19) – E1 (E10 – 17)	$G-O \leftrightarrow BR$	Taillight switch OFF	0 ~ 1.5
		Defogger switch ON	7.5 ~ 14
ELS2 (E7 – 18) – E1 (E10 – 17)	$B-Y \leftrightarrow BR$	Defogger switch OFF	0 ~ 1.5
EGR (E11 – 18) – E01 (E11 –21)	$Y – G \leftrightarrow BR$	IG switch ON	9 ~ 14
ACIS (E11 – 17) – E01 (E11 – 21)	$R\text{-}Y\leftrightarrowBR$	IG switch ON	9 ~ 14
		IG switch ON	9 ~ 14
FC (E7 – 3) – E01 (E11 – 21)	$G-R \leftrightarrow BR$	Idling	0 ~ 3.0
EVP1 (E10 – 7) – E01 (E11 – 21)	$LG \leftrightarrow BR$	IG switch ON	9~14
RSC (E11 – 15) – E01 (E11 – 21)	$Y – B \leftrightarrow BR$	IG switch ON Disconnect E11 of ECM connector	9~14
RSO (E11 – 16) – E01 (E11 – 21)	$R\text{-}W \leftrightarrow BR$	IG switch ON Disconnect E11 of ECM connector	9 ~ 14
*OXR1 (E10 – 11) – E1 (E10 – 17)	$W \leftrightarrow BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation (See page DI–305)
*OXL1 (E10 – 12) – E1 (E10 – 17)	$B \mathop{\leftrightarrow} BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation (See page DI–305)
OXS (E8 – 8) – E1 (E10 – 17)	$B \mathop{\leftrightarrow} BR$	Maintain engine speed at 2,500 rpm for 2 min. after warming up	Pulse generation (See page DI–305)
*HTL (E10-4) - E03 (E11 - 30)	$Y–R \leftrightarrow BR$	Idling IG switch ON	9 ~ 14 Below 3.0
*HTR (E10 – 3)		Idling	9~14
– E03 (E11 – 30)	$L – B \leftrightarrow BR$	IG switch ON	Below 3.0
		Idling	9~14
HTS (E8 – 9) – E03 (E11 –30)	$P – G \leftrightarrow BR$	IG switch ON	Below 3.0
KNKR (E11 – 27) – E1 (E10 – 17)	$W \mathop{\leftrightarrow} BR$	Idling	Pulse generation (See page DI–283)
KNKL (E11 – 28)– E1 (E10 – 17)	$W \mathop{\leftrightarrow} BR$	Idling	Pulse generation (See page DI–283)
NSW (E7 – 20)		IG switch ON Other shift position in "P" ,"N" position	9~14
– E1 (E10 – 17)	$BW\leftrightarrowBR$	IG switch ON Shift position in "P" ,"N" position	0 ~ 3.0
SPD (E8 – 22) – E1 (E10 – 17)	$V\!\!-\!\!W \leftrightarrow BR$	IG switch ON Rotate driving wheel slowly	Pulse generation

*: Only for except California specification vehicles

DIAGNOSTICS - ENGINE (1MZ-FE)

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
TC (E11 – 6) – E1 (E10 – 17)	$L\!\!-\!\!W \leftrightarrow BR$	IG switch ON	9 ~ 14
W (E7-6) - E01 (E11-21)	$G–R \leftrightarrow BR$	IG switch ON	Below 3.0
PS (E10 – 9) – E1 (E10 – 17)	$B\!\!-\!\!L \!\leftrightarrow \! BR$	IG switch ON	9 ~ 14
		A/C switch OFF	Below 2.0
ACT (E8 – 13) – E1 (E10 – 17)	$LG-B \leftrightarrow BR$	A/C switch ON at idling	9 ~ 14
		A/C switch ON at idling	Below 2.0
A/C (E8 – 25) – E1 (E10 – 17)	$B-Y \leftrightarrow BR$	A/C switch OFF	9 ~ 14
		Electric cooling fan is operating on high speed	9 ~ 14
CF (E11 – 29) – E1 (E10 – 17)	$G-W \leftrightarrow BR$	Electric cooling fan is operating on low speed or OFF	0 ~ 2
TACH (E8–27) – E1 (E10–17)	$B – O \leftrightarrow BR$	Idling	Pulse generation
TPC (E7 – 9) – E01 (E11 – 21)	$W\!\!-\!\!R \leftrightarrow \!BR$	IG switch ON Disconnect the vacuum hose from the vapor pressure sensor	9~14
		IG switch ON	3.0 ~ 3.6
PTNK (E7 – 17) – E1 (E10 – 17)	$L\text{-}R \leftrightarrow BR$	IG switch ON Apply vacuum 2.0 kPa (15 mmHg, 0.6 in.Hg)	1.3 ~ 2.1
SIL (E7 – 11) – E1 (E10 – 17)	$W \leftrightarrow BR$	During transmission	Pulse generation
		IG switch ON Brake pedal depressed	7.5 ~ 14
STP (E7 – 15) – E1 (E10 – 17)	$G-W \leftrightarrow BR$	IG switch ON Brake pedal released	Below 1.5
EGLS (E11 – 22)	$W\text{-}G\leftrightarrowBR$	IG switch ON Apply vacuum (0 kPa, 0 mmHg, 0 in.Hg) to EGR valve	0.4 ~ 1.6
– E1 (E10 – 17)		IG switch ON Apply vacuum (17.3 kPa, 130 mmHg, 5.12 in.Hg) to EGR valve	3.2 ~ 5.1
* ¹ AFR+ (E10 – 11 – E1 (E10 – 17)	$BR \leftrightarrow BR$	IG switch ON	3.3*
^{*1} AFR– (E10 – 20) – E1 (E10 – 17)	$BR\leftrightarrow BR$	IG switch ON	3.0*
^{*1} AFL+ (E10 – 12) – E1 (E10 – 17)	$BW \leftrightarrow BR$	IG switch ON	3.3*
^{*1} AFL- (E10 – 21) – E1 (E10 – 17)	$L \leftrightarrow BR$	IG switch ON	3.0*
^{*1} HAFR (E10 – 3)		IG switch ON	Below 3.0
– E04 (E10 – 1)	$B-R \leftrightarrow BR$	Idling (warm up the engine)	Pulse generation
* ¹ HAFL (E10 – 4)		IG switch ON	Below 3.0
– E05 (E10 – 8)	$B-W \leftrightarrow BR$	Idling (warm up the engine)	Pulse generation
KSW (E8 – 11) – E1 (E10 – 17)	$L-B \leftrightarrow BR$	At time of inserting the key	Below 1.5
10000 (LO - 11) - L1 (E10 - 17)		In condition without the key inserted	4~ 5
RXCK (E9 – 5) – E1 (E10 – 17)	$R-L \leftrightarrow BR$	At time of inserting the key	Pulse generation
CODE (E9-4) - E1 (E10-17)	$G\text{-}W\leftrightarrowBR$	At time of inserting the key	Pulse generation
IGSW (E7 – 2) – E1 (E10 – 17)	$B–R \leftrightarrow BR$	IG switch ON	9 ~ 14
TXCT (E9–10) – E1 (E10–17)	$LY \leftrightarrow BR$	At time of inserting the key	Pulse
IMLD (E9 – 16) – E1 (E10 – 17)	$R\text{-}Y \leftrightarrow BR$	In condition without the key inserted	Pulse
MREL (E7 – 8) – E1 (E10 – 17)	$B – R \leftrightarrow BR$	IG switch ON	9 ~ 14

*: The ECM terminal voltage is fixed regardless of the output voltage from the sensor. *1: Only for California specification vehicles

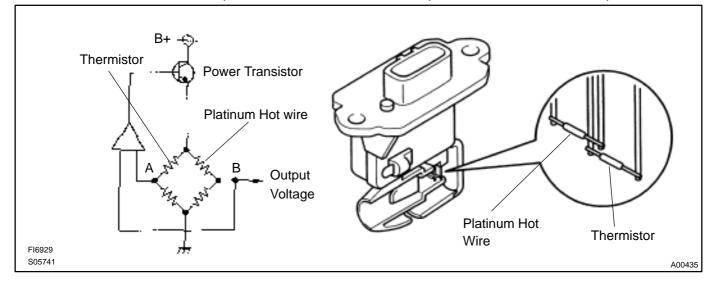
PROBLEM SYMPTOMS TABLE

	-	~~	
0107	E-	06	

DI-221

Symptom	Suspect Area	See page
Engine does not crank (Does not start)	 Starter Starter relay 	ST–18 ST–20
No initial combustion (Does not start)	 ECM power source circuit Fuel pump control circuit Engine control module (ECM) 	DI–369 DI–374 IN–31
No complete combustion (Does not start)	1. Fuel pump control circuit	DI-374
Engine cranks normally (Difficult to start)	 Starter signal circuit Fuel pump control circuit Compression 	DI-384 DI-374 EM-3
Cold engine (Difficult to start)	 Starter signal circuit Fuel pump control circuit 	DI-384 DI-374
Hot engine (Difficult to start)	 Starter signal circuit Fuel pump control circuit 	DI–384 DI–374
High engine idle speed (Poor idling)	 A/C signal circuit (Compressor Circuit) ECM power source circuit 	AC-88 DI-369
Low engine idle speed (Poor idling)	 A/C signal circuit (Compressor Circuit) Fuel pump control circuit 	AC-88 DI-374
Rough idling (Poor idling)	 Compression Fuel pump control circuit 	EM–3 DI–374
Hunting (Poor idling)	 ECM power source circuit Fuel pump control circuit 	DI-369 DI-374
Hesitation/Poor acceleration (Poor driveability)	 Fuel pump control circuit A/T faulty 	DI-374 DI-453
Surging (Poor driveability)	1. Fuel pump control circuit	DI-374
Soon after starting (Engine stall)	1. Fuel pump control circuit	DI-374
During A/C operation (Engine stall)	 A/C signal circuit (Compressor Circuit) Engine control module (ECM) 	AC-88 IN-31
Unable to refuel/Difficult to refuel	1. ORVR system	EC–6

CIRCUIT INSPECTION


DTC P0100 Mass Air Flow Circuit Malfu	unction
---------------------------------------	---------

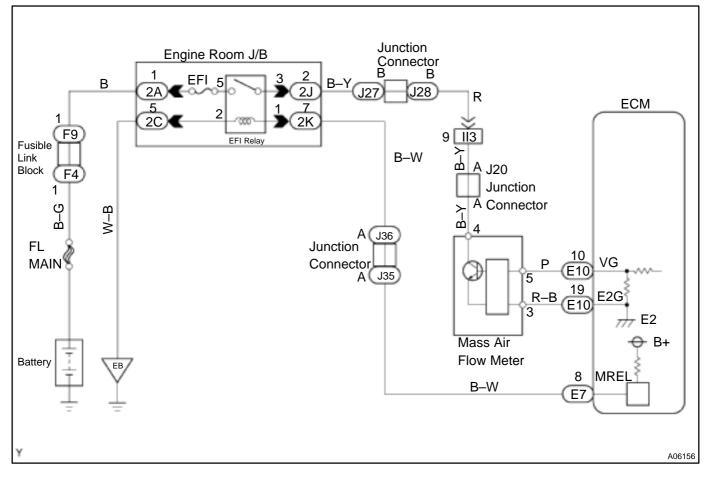
CIRCUIT DESCRIPTION

The mass air flow meter uses a platinum hot wire. The hot wire air flow meter consists of a platinum hot wire, thermistor and a control circuit installed in a plastic housing. The hot wire air flow meter works on the principle that the hot wire and thermistor located in the intake air bypass of the housing detect any changes in the intake air temperature.

The hot wire is maintained at the set temperature by controlling the current flow through the hot wire. This current flow is then measured as the output voltage of the mass air flow meter.

The circuit is constructed so that the platinum hot wire and thermistor provide a bridge circuit, with the power transistor controlled so that the potential of A and B remains equal to maintain the set temperature.

DTC No	. DTC Detecting Condition	Trouble Area
P0100	Open or short in mass air flow meter circuit with more than 3 sec. engine speed 4,000 rpm or less	 Open or short in mass air flow meter circuit Mass air flow meter ECM


If the ECM detects DTC 0100 it operates the fail–safe function, keeping the ignition timing and injection volume constant and making it possible to drive the vehicle. HINT:

After confirming DTC P0100, use the OBD II scan tool or TOYOTA hand-held tester to confirm the mass air flow ratio from "CURRENT DATA".

Mass Air Flow Value (gm/sec.)	Malfunction
0.0	 Mass air flow meter power source circuit open VG circuit open or short
271.0 or more	•E2G circuit open

DI07F-06

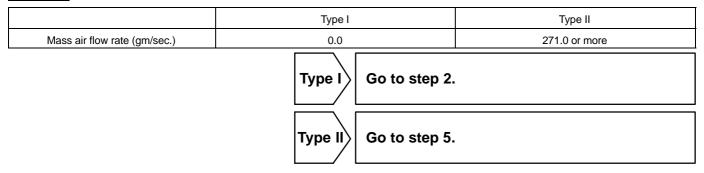
WIRING DIAGRAM

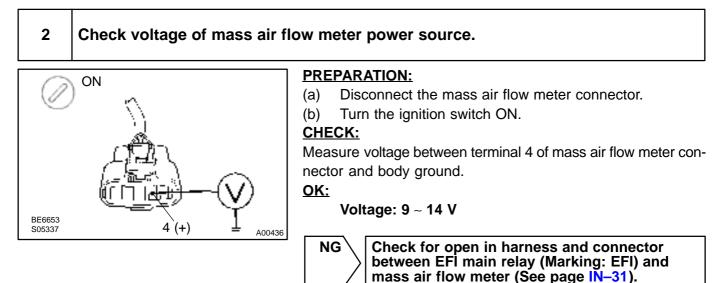
INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

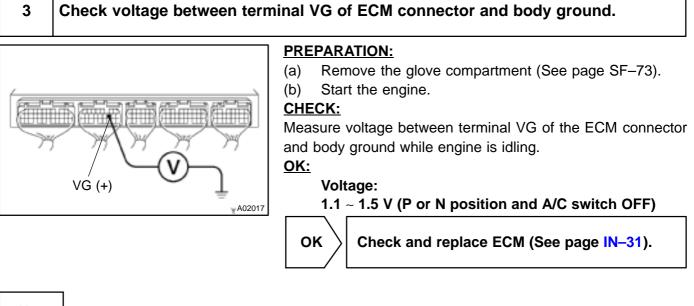
Connect OBD II scan tool or TOYOTA hand-held tester, and read value of mass
air flow rate.


PREPARATION:

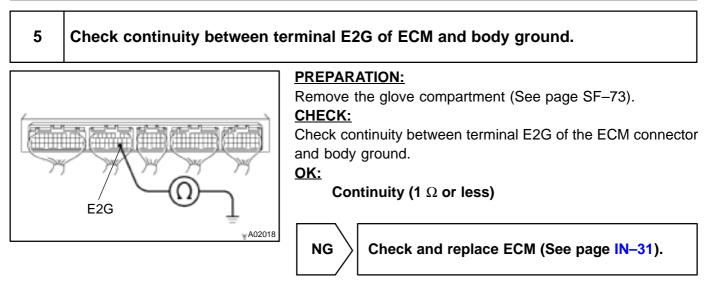

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.
- (c) Start the engine.

CHECK:

Read mass air flow rate on the OBD II scan tool or TOYOTA hand-held tester.


RESULT:

ΟΚ


3

NG

4	Check for open and short in harness and connector between mass air flow meter and ECM (See page $IN-31$).	
	NG	pair or replace harness or connector.
ОК	ĸ	
Repla	place mass air flow meter.	

DI-226

OK

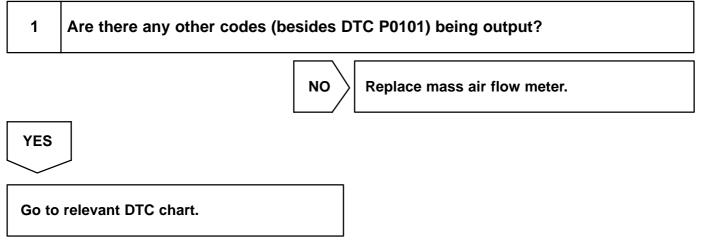
6	Check for open in harness and connector between mass air flow meter and ECM (See page IN-31).		
		NG Repair or replace harness or connector.	
ОК			
Repl	lace mass air flow meter.		

DI07G-06

CIRCUIT DESCRIPTION

Refer to DTC P0100 (Mass Air Flow Circuit Malfunction) on page DI-222.

DTC No.	DTC Detecting Condition	Trouble Area
P0101	Conditions (a), (b) and (c) continue 10 sec. or more with engine speed NE < 900: (2 trip detection logic) (a) Throttle valve fully closed (b) Mass air flow meter output > 2.2 V (c) THW $\geq 70^{\circ}\text{C}$	●Mass air flow meter
Ť	Conditions (a) and (b) continue 10 sec. or more with engine speed 1,500 rpm or more: (2 trip detection logic) (a) VTA \geq 0.63 V (b) Mass air flow meter output ~ 1.06 V	


WIRING DIAGRAM

Refer to DTC P0100 (Mass Air Flow Circuit Malfunction) on page DI-222.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

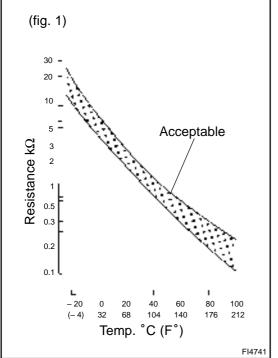
DI-228

DTC

P0110

CIRCUIT DESCRIPTION

The intake air temp. sensor is built into the air flow meter and senses the intake air temperature.


A thermistor built in the sensor changes the resistance value according to the intake air temperature.

The lower the intake air temperature, the greater the thermistor resistance value, and the higher the intake air temperature, the lower the thermistor resistance value (See Fig. 1).

The intake air temperature sensor is connected to the ECM. The 5 V power source voltage in the ECM is applied to the intake air temperature sensor from the terminal THA via resistor R.

That is, the resistor R and the intake air temperature sensor are connected in series. When the resistance value of the intake air temperature sensor changes in accordance with changes in the intake air temperature, the potential at terminal THA also changes. Based on this signal, the ECM increases the fuel injection volume to improve driveability during cold engine operation.

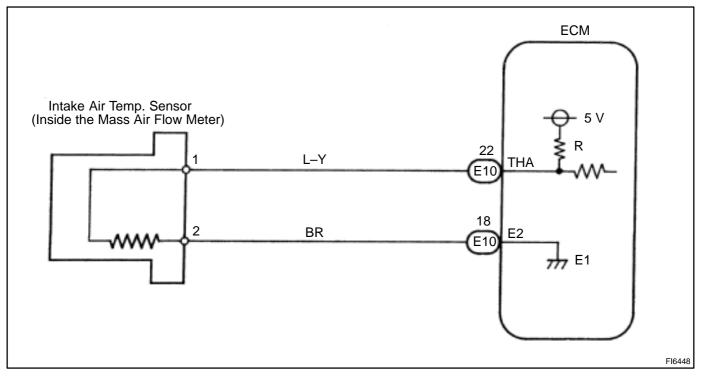
If the ECM detects the DTC P0110, it operates the fail–safe function in which the intake air temperature is assumed to be 20°C (68°F).

<Reference>

Intake air temp.	Resistance	Voltage
°C (°F)	(kΩ)	(V)
-20 (-4)	16.0	4.3
0 (32)	5.9	3.4
20 (68)	2.5	2.4
40 (104)	1.1	1.4
60 (140)	0.6	0.9
80 (176)	0.3	0.5
100 (212)	0.1	0.2
	Trankla Arr	

DTC No.	DTC Detecting Condition	Trouble Area
P0110	Open or short in intake air temp. sensor circuit	 Open or short in intake air temp. sensor circuit Intake air temp. sensor (built into mass air flow meter) ECM

HINT:


After confirming DTC P0110, use the OBD II scan tool or TOYOTA hand-held tester to confirm the intake air temp. from "CURRENT DATA".

Temp. Displayed	Malfunction
-40°C (-40°F)	Open circuit
140°C (284°F) or more	Short circuit

Date :

DI07H-07

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

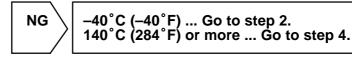
- If DTCs P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction), P0120 (Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction) and P1410 (EGR Valve Position Sensor Circuit Malfunction) are output simultaneously, E2 (Sensor Ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

Connect OBD II scan tool or TOYOTA hand-held tester, and read value of
intake air temp.

PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch

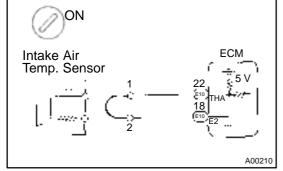
ON. CHECK:


Read temp. value on the OBD II scan tool or TOYOTA hand-held tester.

<u>OK:</u>

Same as actual intake air temp.

HINT:


- If there is open circuit, OBD II scan tool or TOYOTA hand-held tester indicates -40°C (-40°F).
- If there is short circuit, OBD II scan tool or TOYOTA hand-held tester indicates 140°C (284°F) or more.

ОК

Check for intermittent problems (See page DI–197).

2 Check for open in harness or ECM.

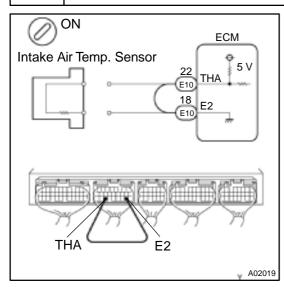
PREPARATION:

- (a) Disconnect the mass air flow meter connector.
- (b) Connect sensor wire harness terminals together.
- (c) Turn the ignition switch ON.

CHECK:

Read temp. value on the OBD II scan tool or TOYOTA hand-held tester.

<u> 0K:</u>


Temp. value: 140°C (284°F) or more

Confirm good connection at sensor. If OK, replace mass air flow meter.

NG

3 Check for open in harness or ECM.

PREPARATION:

- (a) Remove the glove compartment (See page SF-73).
- (b) Connect between terminals THA and E2 of ECM connector.

HINT:

Mass air flow meter connector is disconnected. Before checking, do a visual and contact pressure check for the ECM connector (See page IN-31).

CHECK:

Read temp. value on the OBD II scan tool or TOYOTA hand-held tester.

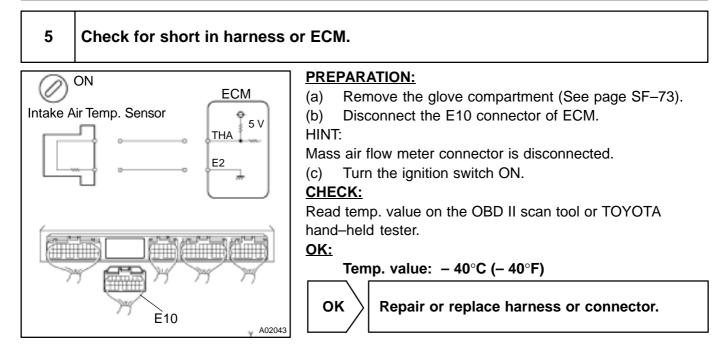
<u>OK:</u>

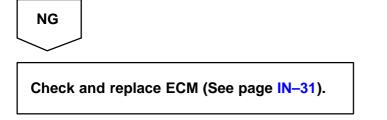
Temp. value: 140°C (284°F) or more

ок \

Open in harness between terminal E2 or THA, repair or replace harness.

NG


Confirm good connection at ECM. If OK, check and replace ECM.


4 Check for short in harness and ECM. **PREPARATION:** ON Ô (a) Disconnect the mass air flow meter connector. (b) Turn the ignition switch ON. ECM Intake Air CHECK: Temp. Sensor 5 V Read temp. value on the OBD II scan tool or TOYOTA • > hand-held tester. OK: Temp. value: -40°C (-40°F) A00212

2 οκ

Replace mass air flow meter.

NG

Engine Coolant Temp. Circuit Malfunction

DI07I-06

CIRCUIT DESCRIPTION

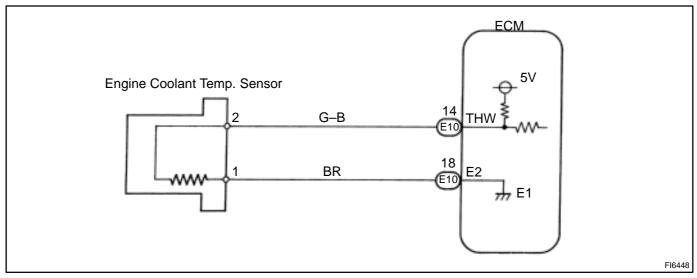
P0115

DTC

A thermistor built into the engine coolant temp. sensor changes the resistance value according to the engine coolant temp.

The structure of the sensor and connection to the ECM is the same as in the intake air temp. circuit malfunction shown on page DI–228.

If the ECM detects the DTC P0115, it operates fail–safe function in which the engine coolant temperature is assumed to be 80°C (176°F).


DTC No.	Detection Item	Trouble Area
P0115		 Open or short in engine coolant temp. sensor circuit Engine coolant temp. sensor ECM

HINT:

After confirming DTC P0115, use the OBD II scan tool or TOYOTA hand-held tester to confirm the engine coolant temp. from CURRENT DATA.

Temperature Displayed	Malfunction
-40°C (-40°F)	Open circuit
140°C (284°F) or more	Short circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTCs P0110 (Intake Air Temp. Circuit Malfunction), P0115 (Engine Coolant Temp. Circuit Malfunction), P0120 (Throttle/Pedal/Position Sensor/Switch "A" Circuit Malfunction) and P1410 (EGR Valve Position Sensor Circuit Malfunction) are output simultaneously, E2 (Sensor Ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

Connect OBD II scan tool or TOYOTA hand-held tester, and read value of engine
coolant temperature.

PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.

CHECK:

Read temperature value on the OBD II scan tool or TOYOTA hand-held tester.

<u> 0K:</u>

Same as actual engine coolant temperature.

HINT:

• If there is open circuit, OBD II scan tool or TOYOTA hand-held tester indicates -40°C (-40°F).

NG

• If there is open circuit, OBD II scan tool or TOYOTA hand-held tester indicates 140 °C (284 °F) or more.

Check for intermittent problems (See page DI–197).

2 Check for open in harness or ECM. ON PREPARATION: Engine Coolant Temp. Sensor ECM Image: Coolant Temp. Sensor ECM Image: Coolant Temp. Sensor Image: Coolant Temp. Sensor

CHECK:

Read temp. value on the OBD II scan tool or TOYOTA hand-held tester.

-40°C (-40°F) ... Go to step 2.

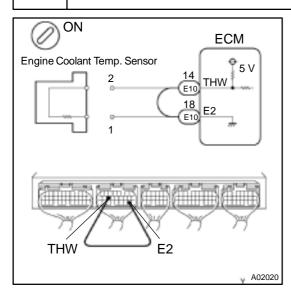
140°C (284°F) or more ... Go to step 4.

<u>OK:</u>

5 V

A00214

Temperature value: 140°C (284°F) or more


Confirm good connection at sensor.

If OK, replace engine coolant temp. sensor.

ок∖

NG

Check for open in harness or ECM.

PREPARATION:

- (a) Remove the glove compartment (See page SF–73).
- (b) Connect between terminals THW and E2 of the ECM connector.

HINT:

Engine coolant temp. sensor connector is disconnected. Before checking, do a visual and contact pressure check for the ECM connector (See page IN-31).

(c) Turn the ignition switch ON.

CHECK:

Read temperature. value on the OBD II scan tool or TOYOTA hand-held tester.

<u> 0K:</u>

Temperature value: 140°C (284°F) or more

Open in harness between terminal E2 or THW, repair or replace harness.

NG

3

Confirm good connection at ECM. If OK, check and replace ECM.

4 Check for short in harness and ECM. **PREPARATION:** ON Ì Disconnect the engine coolant temp. sensor connector. (a) (b) Turn the ignition switch ON. ECM **Engine Coolant** Temp. Sensor CHECK: Read temperature value on the OBD II scan tool or TOYOTA hand-held tester. OK: Temperature value: -40°C (-40°F) A00216

οκ

Replace engine coolant temp. sensor.

NG

5 Check for short in harness or ECM. **PREPARATION:** ON Ì ECM Remove the glove compartment (See page SF-73). (a) Engine Coolant Temp. Sensor Disconnect the E10 connector of the ECM. (b) ÷ 5 V HINT: THW Engine coolant temp. sensor connector is disconnected. E2 Turn the ignition switch ON. (c) CHECK: Read temperature value on the OBD II scan tool or TOYOTA hand-held tester. <u>OK:</u> Temperature value: -40°C (-40°F) ΟΚ Repair or replace harness or connector.

NG

Check and replace ECM (See page IN-31).

E10

A02043

DTC P0116 Engine Coolant Temp. Circuit Range/ Performance Problem

CIRCUIT DESCRIPTION

Refer to DTC P0115 (Engine Coolant Temp. Circuit Malfunction) on page DI-233.

DTC No.	DTC Detecting Condition	Trouble Area
engine, engine c less (2 trip detection I If THW ~ -7°C after starting eng engine coolant te (2 trip detection I P0116 If THW ~ 10°C engine coolant te (2 trip detection I When THW ~ 3 (140°F), THA ~ engine , conditio (a) Vehicle spee (b) When startin	(2 trip detection logic) If THW ~ −7°C (19.4°F) and ② 10°C (50°F), 5 min. or more after starting engine, engine coolant temp. sensor value is 20°C (68°F) or less	
	(2 trip detection logic) If THW $\sim 10^{\circ}$ C (50 $^{\circ}$ F), 2 min. or more after starting engine, engine coolant temp. sensor value is 30 $^{\circ}$ C (86 $^{\circ}$ F) (2 trip detection logic)	Engine coolant temp. sensorCooling system
	 When THW ~ 35°C (95°F) or more and less than 60°C (140°F), THA ~ - 6.7°C (19.9°F) or more, when starting engine , condition (a) and (b) continues: (a) Vehicle speed is changing (Not stable) (b) When starting engine, THW< 3°C (37.4°F) (2 trip detection logic) 	

INSPECTION PROCEDURE

HINT:

- If DTCs P0115 (Engine Coolant Temp. Circuit Malfunction) and P0116 (Engine Coolant Temp. Circuit Range/Performance) are output simultaneously, engine coolant temp. sensor circuit may be open. Perform troubleshooting of DTC P0115 first.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

1

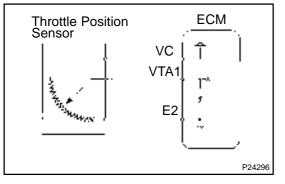
Are there any other codes (besides DTC P0116) being output?

Go to relevant DTC chart.

NO

DI-238

2	Check thermostat (See page CO–9).	
	NG Replace thermostat.	
ОК		
Repla	ice engine coolant temp. sensor.	


DI07K-06

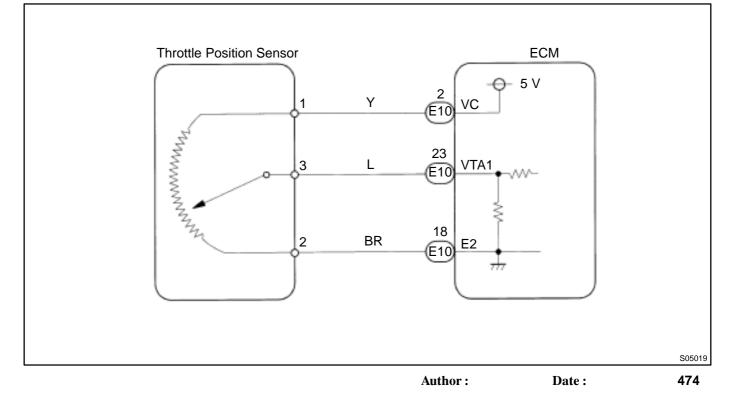
DTC

P0120

Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction

CIRCUIT DESCRIPTION

The throttle position sensor is mounted in the throttle body and detects the throttle valve opening angle. When the throttle valve is fully closed, a voltage of approximately 0.7 V is applied to terminal VTA of the ECM. The voltage applied to the terminals VTA of the ECM increases in proportion to the opening angle of the throttle valve and becomes approximately $2.7 \sim 5.2$ V when the throttle valve is fully opened. the ECM judges the vehicle driving conditions from these signals input from terminals VTA and uses them as one of the conditions for deciding the air–fuel ratio correction, power increase correction and fuel–cut control etc.


DTC No.	DTC Detecting Condition	Trouble Area
	Condition (a) or (b) continues:	 Open or short in throttle position sensor circuit
P0120	(a) VTA 🗵 0.1 V	Throttle position sensor
	(b) VTA 🛛 4.9 V	•ECM

HINT:

After confirming DTC P0120, use the OBD II scan tool or TOYOTA hand-held tester to confirm the throttle valve opening percentage and closed throttle position switch condition.

Throttle valve opening position expressed as percentage		Trouble Area
Throttle valve fully closed	Throttle valve fully open	
0 %	0 %	VC line open VTA line open or short
Approx. 100 %	Approx. 100 %	E2 line open

WIRING DIAGRAM



INSPECTION PROCEDURE

HINT:

- If DTCs P0110(Intake Air temp. Circuit Malfunction), P0115(Engine Coolant Temp. Circuit Malfunction), P0120(Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction) and P1410 are output simultaneously, E2 (Sensor Ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Connect OBD II scan tool or TOYOTA hand-held tester, and read throttle valve opening percentage.

PREPARATION:

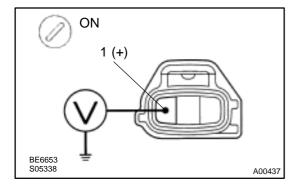
- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.

CHECK:

Read the throttle valve opening percentage.

<u>OK:</u>

Throttle valve	Throttle valve opening position expressed as percentage
Fully open	Approx. 75 %
Fully closed	Approx. 10 %
	-



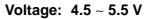
NG

DI-241

2

Check voltage between terminal 1 of wire harness side connector and body ground.

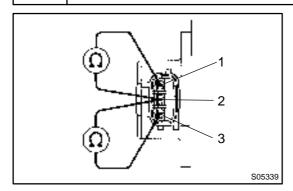
PREPARATION:


(a) Disconnect the throttle position sensor connector.

(b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminal 1 of wire harness side connector and body ground.


<u>OK:</u>

NG Go to step 5.

ОК

3 Check throttle position sensor.

PREPARATION:

Disconnect the throttle position sensor connector.

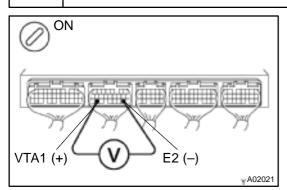
CHECK:

Measure voltage between terminals 1, 3 and 2 of throttle position sensor.

<u>OK:</u>

Terminals	Throttle valve	Resistance
1 ~ 2	_	2.5 ~ 5.9 kΩ
3 ~ 2	Fully closed	$0.2 \sim 6.3 \text{ k}\Omega$
3 ~ 2	Fully open	2.0 ~ 10.2 kΩ

NG


Replace throttle position sensor.

οκ

4

OK

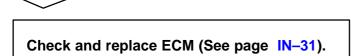
Check voltage between terminals VTA1 and E2 of ECM.

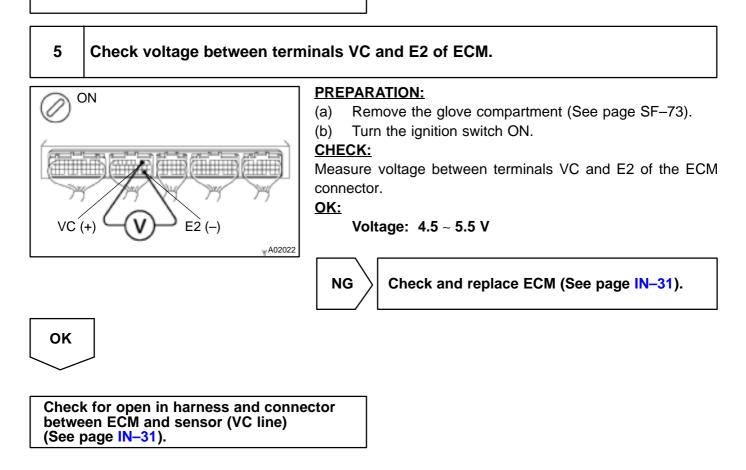
PREPARATION:

(a) Remove the glove compartment (See page SF-73).

(b) Turn the ignition switch ON.

CHECK:


Measure voltage between terminals VTA1 and E2 of the ECM connector.


<u>OK:</u>

Throttle valve	Voltage
Fully closed	0.3 ~ 1.0 V
Fully open	2.7 ~ 5.2 V

Check for open and short in harness and connector between ECM and throttle position sensor (VTA line) (See page IN-31).

477

DI07L-06

DTC P0121 Throttle/Pedal Position Sensor/Switch "A" Circuit Range/Performance Problem

CIRCUIT DESCRIPTION

Refer to DTC P0120 (Throttle/Pedal Position Sensor/Switch "A" Circuit Malfunction) on page DI-239.

DTC No.	DTC Detecting Condition	Trouble Area
P0121	After vehicle speed has been exceeded 30 km/h (19 mph) even once, output value of throttle position sensor is out of applicable range while vehicle speed between 30 km/h (19 mph) and 0 km/h (0 mph) (2 trip detection logic)	 Throttle position sensor

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0121) being output?	
---	--

YES

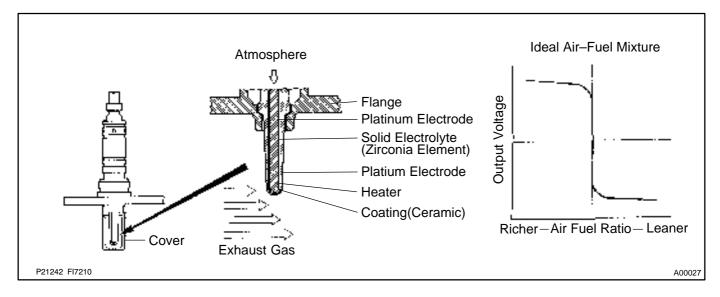
Go to relevant DTC chart.

NO

Replace throttle position sensor.

DTC	Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)

CIRCUIT DESCRIPTION


To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three–way catalytic converter is used, but for the most efficient use of the three–way catalytic converter, the air–fuel ratio must be precisely controlled so that it is always close to the stoichiometric air–fuel ratio.

The oxygen sensor has the characteristic whereby its output voltage changes suddenly in the vicinity of the stoichiometric air-fuel ratio. This characteristic is used to detect the oxygen concentration in the exhaust gas and provide feedback to the computer for control of the air-fuel ratio.

When the air-fuel ratio becomes LEAN, the oxygen concentration in the exhaust increases and the oxygen sensor informs the ECM of the LEAN condition (small electromotive force: < 0.45 V).

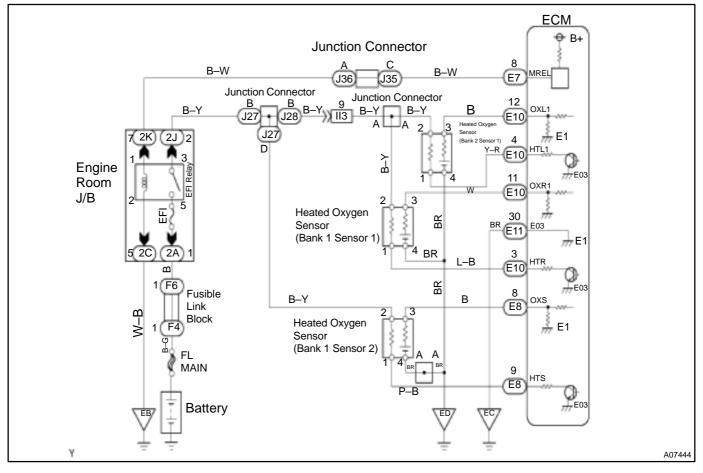
When the air-fuel ratio is RICHER than the stoichiometric air-fuel ratio the oxygen concentration in the exhaust gas is reduced and the oxygen sensor informs the ECM of the RICH condition (large electromotive force: > 0.45 V). The ECM judges by the electromotive force from the oxygen sensor whether the air-fuel ratio is RICH or LEAN and controls the injection time accordingly. However, if malfunction of the oxygen sensor causes output of abnormal electromotive force, the ECM is unable to perform accurate air-fuel ratio control.

The heated oxygen sensors include a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temperature of the exhaust gas is low) current flows to the heater to heat the sensor for accurate oxygen concentration detection.

DTC No.	DTC Detecting Condition	Trouble Area
P0125	After engine is warmed up, heated oxygen sensor (bank 1, 2 sensor 1) output does not indicate RICH (> 0.45 V) even once when conditions (a), (b), (c) and (d) continue for at least 2 min.: (a) Engine speed: 1,500 rpm or more (b) Vehicle speed: 40 ~ SPD and 100 km/h (25 ~ SPD and 62 mph) (c) Throttle valve does not fully closed (d) 140 sec. or more after starting engine	 Fuel system Injector Ignition system Gas leakage on exhaust system Open or short in heated oxygen sensors (bank 1, 2 sensor 1) circuit Heated oxygen sensors (bank 1, 2 sensor 1) ECM

DI07M-08

479


DI-245

HINT:

After confirming DTC P0125, use the OBD II scan tool or TOYOTA hand-held tester to confirm voltage output of the heated oxygen sensors (bank 1, 2 sensor 1) from CURRENT DATA.

If voltage output of the heated oxygen sensors (bank 1, 2 sensor 1) is less than 0.1 V, heated oxygen sensors (bank 1, 2 sensor 1) circuit may be open or short.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If the vehicle run out fuel, the air-fuel ratio is LEAN and DTC P0125 will be recorded. The MIL then comes on.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0125) being output ? YES Go to relevant DTC chart. NO 2 2 Connect OBD II scan tool or TOYOTA hand-held tester, and read value for voltage output of heated oxygen sensors (bank 1, 2 sensor 1). PREPARATION: (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (b) Warm up the engine to normal operating temp.(above 75°C (169°F)). CHECK: Read voltage output of the heated oxygen sensors (bank 1, 2 sensor 1) when engine is suddenly raced. INT: Perform quick racing to 4,000 rpm 3 times using accelerator pedal. OK OK OK I Check for open and short in harness and connector between ECM and heated oxygen sensors (bank 1, 2 sensor 1) (See page IN-31). ING Repair or replace harness or connector.		
NO 2 Connect OBD II scan tool or TOYOTA hand-held tester, and read value for voltage output of heated oxygen sensors (bank 1, 2 sensor 1). PREPARATION: (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (b) Warm up the engine to normal operating temp.(above 75°C (169°F)). CHECK: Read voltage output of the heated oxygen sensors (bank 1,2 sensor 1) when engine is suddenly raced. ININT: Perform quick racing to 4,000 rpm 3 times using accelerator pedal. OK Heated oxygen sensors (bank 1, 2 sensor 1) output a RICH signal (0.45 V or more) at least once. OK Go to step 10. NG 3 Check for open and short in harness and connector between ECM and heated oxygen sensors (bank 1, 2 sensor 1) (See page IN-31). NG Repair or replace harness or connector.	1	Are there any other codes (besides DTC P0125) being output ?
2 Connect OBD II scan tool or TOYOTA hand-held tester, and read value for voltage output of heated oxygen sensors (bank 1, 2 sensor 1). PREPARATION: (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (b) Warm up the engine to normal operating temp.(above 75°C (169°F)). CHECK: Read voltage output of the heated oxygen sensors (bank 1, 2 sensor 1) when engine is suddenly raced. HINT: Perform quick racing to 4,000 rpm 3 times using accelerator pedal. OK: Heated oxygen sensors (bank 1, 2 sensor 1) output a RICH signal (0.45 V or more) at least once. OK Go to step 10. NG 3 Check for open and short in harness and connector between ECM and heated oxygen sensors (bank 1, 2 sensor 1) (See page IN-31). NG Repair or replace harness or connector.		YES Go to relevant DTC chart.
voltage output of heated oxygen sensors (bank 1, 2 sensor 1). PREPARATION: (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (b) Warm up the engine to normal operating temp.(above 75°C (169°F)). CHECK: Read voltage output of the heated oxygen sensors (bank 1,2 sensor 1) when engine is suddenly raced. HINT: Perform quick racing to 4,000 rpm 3 times using accelerator pedal. OK: Heated oxygen sensors (bank 1, 2 sensor 1) output a RICH signal (0.45 V or more) at least once. OK Go to step 10. NG 3 Check for open and short in harness and connector between ECM and heated oxygen sensors (bank 1, 2 sensor 1) (See page IN-31). NG Repair or replace harness or connector.	NO	
 (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (b) Warm up the engine to normal operating temp.(above 75°C (169°F)). CHECK: Read voltage output of the heated oxygen sensors (bank 1,2 sensor 1) when engine is suddenly raced. HINT: Perform quick racing to 4,000 rpm 3 times using accelerator pedal. OK: Heated oxygen sensors (bank 1, 2 sensor 1) output a RICH signal (0.45 V or more) at least once. OK Go to step 10. NG 3 Check for open and short in harness and connector between ECM and heated oxygen sensors (bank 1, 2 sensor 1) (See page IN-31). NG Repair or replace harness or connector. 	2	
oxygen sensors (bank 1, 2 sensor 1) (See page IN–31). NG Repair or replace harness or connector.	(b) Wa CHECK Read vo HINT: Perform OK: He (0.	arm up the engine to normal operating temp.(above 75°C (169°F)). i bitage output of the heated oxygen sensors (bank 1,2 sensor 1) when engine is suddenly raced. quick racing to 4,000 rpm 3 times using accelerator pedal. eated oxygen sensors (bank 1, 2 sensor 1) output a RICH signal 45 V or more) at least once.
	3	Check for open and short in harness and connector between ECM and heated oxygen sensors (bank 1, 2 sensor 1) (See page IN–31).
	ок	NG Repair or replace harness or connector.

4	Check whether misfire is occurred or not by monitoring DTC and data list.
	NG Perform troubleshooting for misfire (See page DI–351).
ОК	
5	Check air induction system (See page SF–1).
	NG Repair or replace.
ОК	
6	Check EGR system (See page EC–11).
	NG Replace EGR system.
ОК	
7	Check fuel pressure (See page SF–6).
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).
ОК	
8	Check injector injection (See page SF–25)
	NG Replace injector.

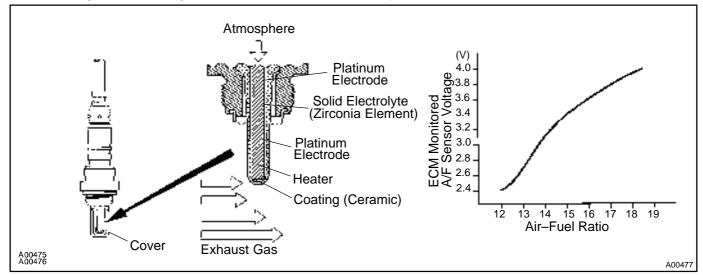
ΟΚ

482

٦

DTC	Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)

CIRCUIT DESCRIPTION

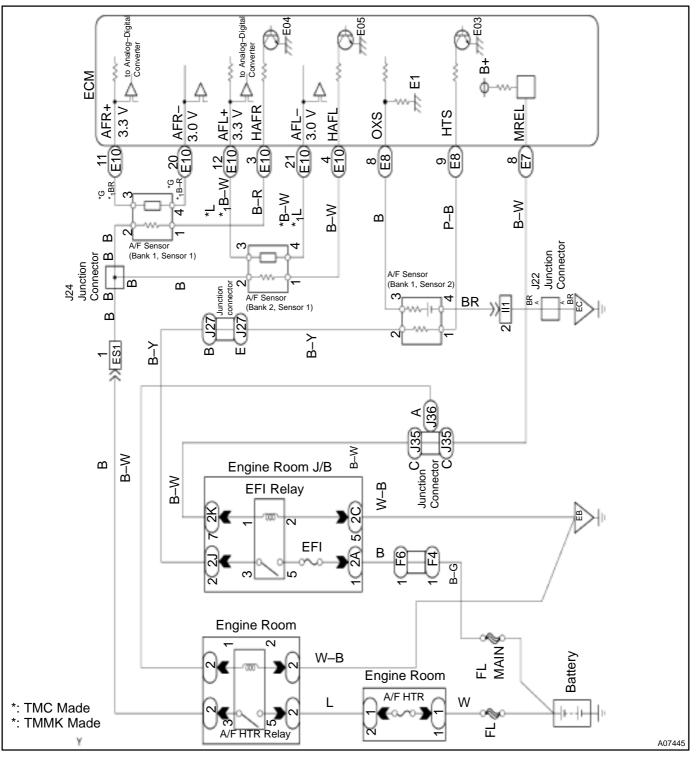

To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three–way catalytic converter is used, but for the most efficient use of the three–way catalytic converter, the air–fuel ratio must be precisely controlled so that it is always close to the stoichiometric air–fuel ratio.

The A/F sensor has the characteristic that provides output voltage* approximately proportional to the existing air–fuel ratio. The A/F sensor output voltage* is used to provide feedback for the ECM to control the air–fuel ratio.

By the A/F sensor output, the ECM can determine the deviation amount from the stoichiometric air–fuel ratio and control the proper injection time immediately. If the A/F sensor is malfunctioning, ECM is unable to perform accurate air–fuel ratio control.

The A/F sensor is equipped with a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temp. of the exhaust gas is low), current flows to the heater to heat the sensor for accurate oxygen concentration detection.

*: The voltage value changes at the inside of the ECM only.


DTC No.	DTC Detecting Condition	Trouble Area
P0125	 After engine is warmed up, A/F sensor output* does not change when conditions (a), (b) and (c) continue for at least 1.5 min. *: Output value changes at inside of ECM only. (a) Engine speed: 1,500 rpm or more (b) Vehicle speed: 40 ~ 100 km/h (25 ~ 62 mph) (c) Throttle valve does not fully closed (d) After starting engine ~ 140 sec 	 Fuel system Injector Ignition system Gas leakage on exhaust system Open or short in A/F sensor circuit (bank 1, 2 sensor 1) A/F sensors (bank 1, 2 sensor 1) ECM

DI07M-09

HINT:

- After confirming DTC P0125, use the OBD II scan tool or TOYOTA hand-held tester to confirm voltage output of heated oxygen sensors (bank 1, 2 sensor 1) from CURRENT DATA.
- The ECM controls the voltage of AFR >, AFL >, AFR ≥ and AFL ≥ terminals of ECM to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held tester.
- OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the TOYOTA hand-held tester.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P0125) being output ?	
	YES Go to relevant DTC chart.

2	Connect the OBD II scan tool or TOYOTA hand-held tester, and read value for
	voltage output of A/F sensors (bank 1, 2 sensor 1).

PREPARATION:

- Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (a)
- Warm up the A/F sensors (bank 1, 2 sensor 1) with the engine at 2,500 rpm for approx. 90 sec. (b)

CHECK:

Read voltage value of A/F sensors (bank 1, 2 sensor 1) on the screen of OBD II scan tool or TOYOTA handheld tester, when you perform all the following conditions.

HINT:

The voltage of AFR>,AFL> terminal of ECM is 3.3 fixed and the AFR \geq ,AFL \geq terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AFR >, AFL >/ $AFR \ge AFL \ge$) of ECM.

OK:

Condition	A/F Sensor Voltage value
Engine idling	
Engine idling	 Not remains at 3.3. V (*0.660 V) Not remains at 3.8 V (*0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or move, and operate throttle valve open and close	•Not remains at 2.8 V (*0.56 V) or less *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensors (bank 1, 2 sensor 1) is . below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of A/F sensors (bank 1, 2 sensor 1) is above 3.8 V (* 0.76 V), it is normal.
- If output voltage of A/F sensors (bank 1, 2 sensor 1) remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F sensors (bank 1, 2 sensor 1) circuit may be open.
- If output voltage of A/F sensor remains at 3.8 V (*0.76 V) or more, or 2.8 V (*0.56 V) or less even after performing all the above conditions, A/F sensors (bank 1, 2 sensor 1) circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).

NG

Check for open and short in harness and connector between ECM and A/F 3 sensors (bank1, 2 sensor1) (See page IN-31).

Repair or replace harness or connector.

OK

Г

Т

4	Check resistance of A/F sensor heaters (bank1, 2 sensor1) (See page SF–68).
	NG Replace A/F sensor.
ОК	
5	Check air induction system (See page SF–1).
	NG Repair or replace.
ОК	
6	Check EGR system (See page EC–11).
	NG Replace EGR system.
ОК	
7	Check fuel pressure (See page SF–21).
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).
ОК	
8	Check injector injection (See page SF–25).
	NG Replace injector.
ОК	

٦

488

DI-254

9	Check gas leakage on exhaust system.
	NG Repair or replace
ОК	
Repla	ce A/F sensors (bank1, 2 sensor1).
10	Perform confirmation driving pattern (See page DI–340).
Go	
11	Is there DTC P0125 being output again ?
	YES Check and replace ECM (See page IN-31).
NO	
12	Did vehicle runs out of fuel in the past ?
	NO Check for intermittent problems (See page DI–197).
YES	
DTC F	P0125 is caused by running out of fuel.

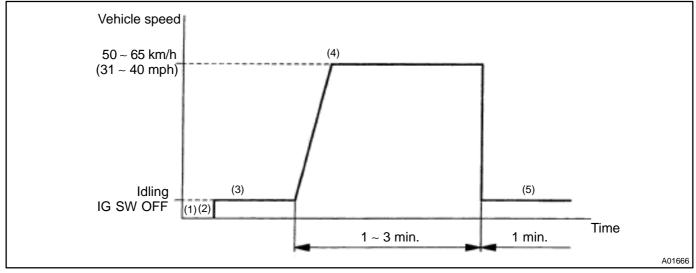
DTC		Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 1) (Except California Spec.)
-----	--	---

DTC		Heated Oxygen Sensor Circuit Malfunction (Bank 2 Sensor 1) (Except California Spec.)
-----	--	---

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control) on page DI-244.

DTC No.	DTC Detecting Condition	Trouble Area
P0130 P0150	Voltage output of heated oxygen sensor remains at 0.4 V or more, or 0.55 V or less, during idling after engine is warmed up (2 trip detection logic)	Heated oxygen sensorFuel trim malfunction

HINT:


Bank 1 refers to the bank that includes cylinder No.1. Bank 2 refers to the bank that does not include cylinder No.1. Sensor 1 refers to the sensor closer to the engine body.

The heated oxygen sensor's output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control) on page DI-244.

CONFIRMATION DRIVING PATTERN

(1) Connect the TOYOTA hand-held tester to the DLC3.

(2) Switch the TOYOTA hand-held tester from normal mode to check mode (See page DI-197).

(3) Start the engine and warm it up with all accessory switches OFF.

(4) Drive the vehicle at 50 ~ 65 km/h (31 ~ 40 mph) for 1 ~ 3 min. to warm up the heated oxygen sensor.

(5) Let the engine idle for 1 min.

(6) Perform steps (3) to (5) three times.

Date :

490

DI07N-07

HINT:

If a malfunction exists, the MIL will light up during step (6).

NOTICE:

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a TOYOTA hand-held tester, turn the ignition switch OFF after performing steps (3) to (6), then perform steps (3) to (6) again.

INSPECTION PROCEDURE

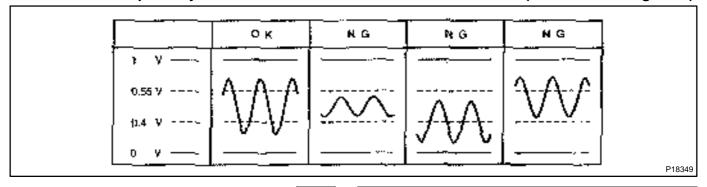
HINT:

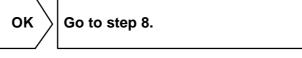
Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

YES \rangle Go to relevant DTC chart.

NO

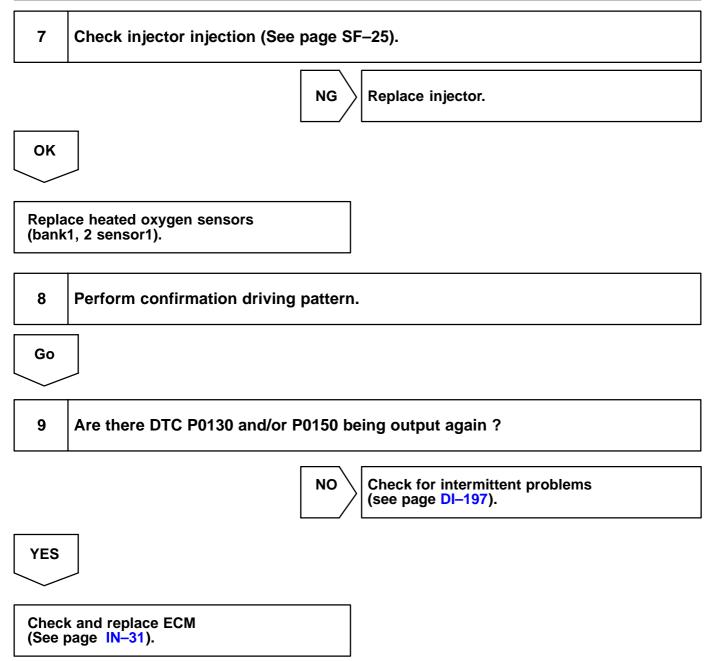
Check the output voltage of heated oxygen sensors (bank1, 2 sensor1) during idling.


PREPARATION:


Warm up the heated oxygen sensors (bank1, 2 sensor1) with the engine at 2,500 rpm for approx. 90 sec. **CHECK:**

Use the OBD II scan tool or TOYOTA hand-held tester to read the output voltage of the heated oxygen sensors (bank1, 2 sensor1) during idling.

<u> 0K:</u>


Heated oxygen sensors (bank1, 2 sensor1) output voltage: Alternates repeatedly between less than 0.4 V and more than 0.55 V (See the following table).

NG

3	Check for open and short in harness and connector between ECM and heated oxygen sensors (bank1, 2 sensor1) (See page IN–31).
	NG Repair or replace harness or connector.
ОК	
4	Check air induction system (See page SF–1).
	NG Repair or replace.
ОК	
5	Check EGR system (See page EC–11).
	NG Replace EGR system.
ОК	
6	Check fuel pressure (See page SF–6).
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).
ОК	

DTC	P0133	Heated Oxygen Sensor Circuit Slow Response (Bank 1 Sensor 1) (Ex. CA Spec.)
-----	-------	--

DTC	P0153	Heated Oxygen Sensor Circuit Slow Response (Bank 2 Sensor 1) (Ex. CA Spec.)
-----	-------	--

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control) on page DI-244.

DTC No.	DTC Detecting Condition	Trouble Area
P0133 P0153	Response time for heated oxygen sensor's voltage output to change from rich to lean, or from lean to rich, is 1 sec. or more during idling after engine is warmed up (2 trip detection logic)	Heated oxygen sensorFuel trim malfunction

HINT:

Bank 1 refers to the bank that includes cylinder No.1. Bank 2 refers to the bank that does not include cylinder No.1. Sensor 1 refers to the sensor closer to the engine body.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

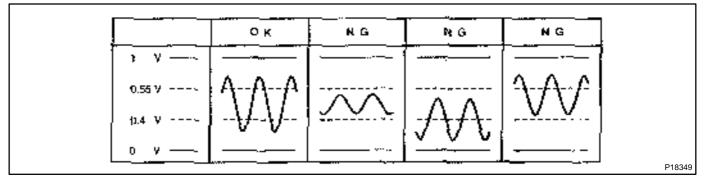
	1	Are there any other codes (besides DTC P0133, P0153) being output ?
1	•	

 \rangle Go to relevant DTC chart.

NO

DI4DQ-01

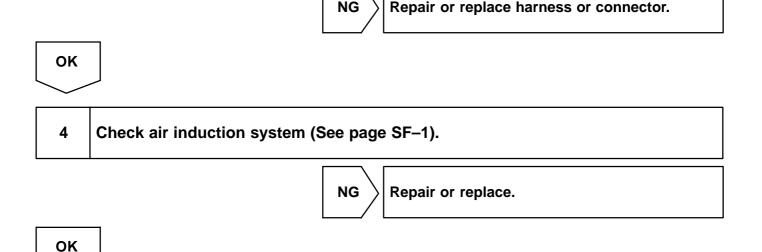
2 Check the output voltage of heated oxygen sensors (bank1, 2 sensor1) during idling.


PREPARATION:

Warm up the heated oxygen sensors (bank1, 2 sensor1) with the engine at 2,500 rpm for approx. 90 sec. **CHECK:**

Use the OBD II scan tool or TOYOTA hand-held tester to read the output voltage of the heated oxygen sensors (bank1, 2 sensor1) during idling.

<u>OK:</u>


Heated oxygen sensors (bank1, 2 sensor1) output voltage: Alternates repeatedly between less than 0.4 V and more than 0.55 V (See the following table).

NG

3 Check for open and short in harness and connector between ECM and heated oxygen sensors (bank1, 2 sensor1) (See page IN-31).

5	Check EGR system (See page EC-11).
	NG Replace EGR system.
ОК	
6	Check fuel pressure (See page SF–1).
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).
ОК	
7	Check injector injection (See page SF-25).
	NG Replace injector.
ОК	
Repla (bank	ce heated oxygen sensors 1, 2 sensor1).
8	Perform confirmation driving pattern (See page DI-255).
Go	

9 Are there DTC P0133 and/or P0153 being output again ?

YES

Check and Replace ECM (See page IN-31).

DI-2	63

DI07P-06

	DTC		Heated Oxygen Sensor Heater Circuit Mal- function (Bank 1 Sensor 1) (EX. CA Spec.)
--	-----	--	---

DTC	P0141	Heated Oxygen Sensor Heater Circuit Mal- function (Bank 1 Sensor 2)
-----	-------	--

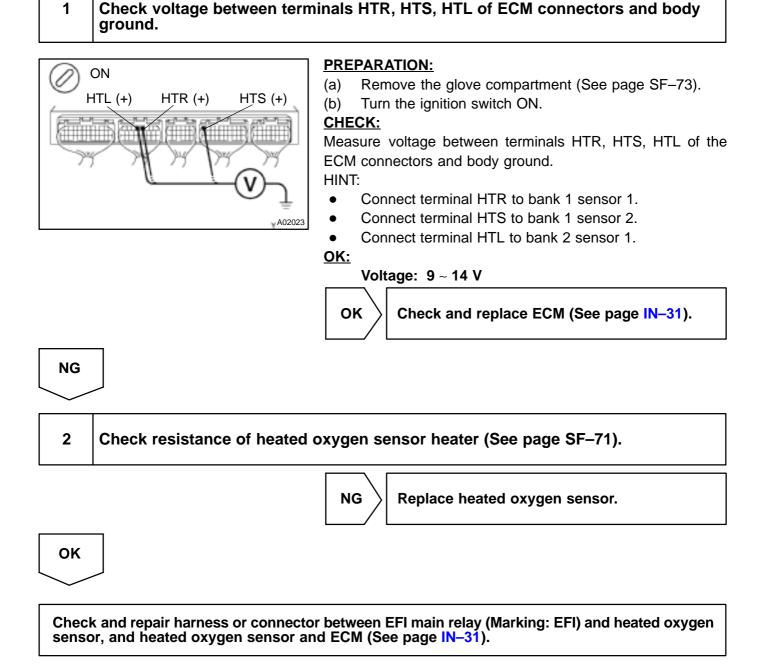
DTC	Heated Oxygen Sensor Heater Circuit Mal- function (Bank 2 Sensor 1) (EX. CA Spec.)

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI-244.

DTC No.	DTC Detecting Condition	Trouble Area
P0135 P0141 P0155	When heater operates, heater current exceeds 2.35 A (2 trip detection logic) Heater current of 0.2 A or less when heater operates	 Open or short in heater circuit of heated oxygen sensor Heated oxygen sensor heater ECM
F0155	(2 trip detection logic)	-LCM

HINT:

- Bank 1 refers to the bank that includes cylinder No.1.
- Bank 2 refers to the bank that does not include cylinder No.1.
- Sensor 1 refers to the sensor closer to the engine body.
- Sensor 2 refers to the sensor farther away from the engine body.


WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Except California Spec.)) on page DI-244.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DI07Q-06

DTC P0136 Heated Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)

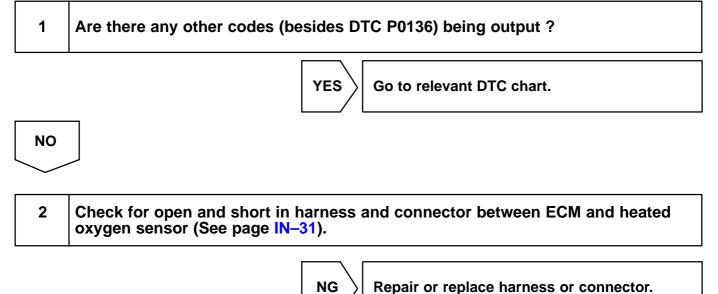
CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control) on page DI-244.

DTC No.	DTC Detecting Condition	Trouble Area
P0136	Voltage output of heated oxygen sensor (bank 1 sensor 2) remains at 0.4 V or more or 0.6 ^{*1} 0.5 ^{*2} V or less when vehicle is driven at 50 km/h (31 mph) or more after engine is warmed up * ¹ : for California Spec. * ² : except California Spec. (2 trip detection logic)	 Heated oxygen sensor

HINT:

Bank 1 refers to the bank that includes cylinder No.1. Sensor 2 refers to the sensor farther away from the engine body.


WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control) on page DI-244.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air fuel ratio lean or rich, etc. at the time of the malfunction.

ΟΚ

3 Check output voltage of heated oxygen sensor (bank 1 sensor 2).

PREPARATION:

(a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

(b) Warm up the engine to normal operating temp.

CHECK:

Read voltage output of heated oxygen sensor (bank 1 sensor 2) when engine suddenly raced. HINT:

Perform quick racing to 4,000 rpm 3 min. using accelerator pedal.

<u>OK:</u>

Heated oxygen sensor output voltage: Alternates from 0.4 V or less to 0.6*1/0.5*2 V or more.

*1: for California Spec.

*2: except California Spec.

Check that each connector is properly connected.

Replace heated oxygen sensor (bank 1 sensor 2).

DTC	P0171	System too Lean (Fuel Trim) (Only for California Spec.)	
DTC	P0172	System too Rich (Fuel Trim) (Only for California Spec.)	
		(Only for California Spec.)	

Fuel trim refers to the feedback compensation value compared against the basic injection time. Fuel trim includes short-term fuel trim and long-term fuel trim.

Short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at its ideal theoretical value.

The signal from the A/F sensor is approximately proportional to the existing air–fuel ratio, and ECM comparing it with the ideal theoretical value, the ECM reduces fuel volume immediately if the air–fuel ratio is rich and increases fuel volume if it is lean.

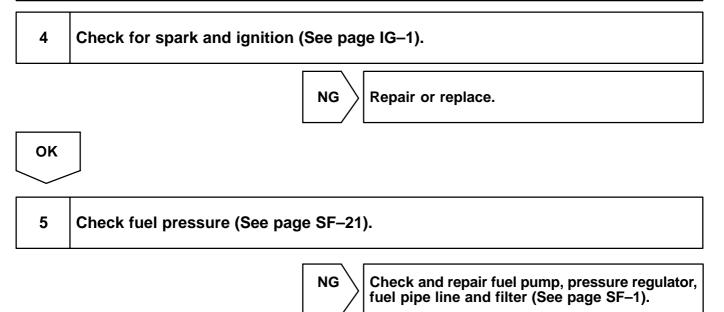
Long-term fuel trim compensates the deviation from the central value of the short-term fuel trim stored up by each engine tolerance, and the deviation from the central value due to the passage of time and changes of using environment.

If both the short-term fuel trim and long-term fuel trim exceed a certain value, it is detected as a malfunction and the MIL lights up.

DTC No.	DTC Detecting Condition	Trouble Area
P0171	When air fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Gas leakage on exhaust system Air intake (hose loose) Fuel line pressure Injector blockage Mass air flow meter Engine coolant temp. sensor A/F sensors (bank 1, 2 sensor 1)
P0172	When air fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Gas leakage on exhaust system Fuel line pressure Injector leak, blockage Mass air flow meter Engine coolant temp. sensor A/F sensors (bank 1, 2 sensor 1)

DI07R-05

502


HINT:

- When the DTC P0171 is recorded, the actual air-fuel ratio is on the lean side. When DTC P0172 is recorded, the actual air-fuel ratio is on the rich side.
- If the vehicle runs out of fuel, the air-fuel ratio is lean and DTC P0171 is recorded. The MIL then comes on.
- If the total of the short–term fuel trim value and long–term fuel trim value is within ± 35 % (80°C (176°F) or more), the system is functioning normally.
- The A/F sensors (bank 1, 2 sensor 1) output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.
- The ECM controls the voltage of AFR~, AFL~, AFR> and AFL> terminals of ECM to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held tester.
- OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensors (bank 1, 2 sensor 1) output voltage which is displayed on the TOYOTA hand-held tester.

INSPECTION PROCEDURE

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1	Check air induction system (See page SF–1).
	NG Repair or replace.
ОК	
2	Check injector injection (See page SF-25).
	NG Replace injector.
ОК	
3	Check mass air flow meter and engine coolant temp. sensor (See pages SF–35 and SF–63).
	NG Repair or replace.
ОК	

ОК	
6	Check gas leakage on exhaust system.
	NG Repair or replace.
ок	

Author :

7 Check the output voltage A/F sensors (bank1, 2 sensor1).

PREPARATION:

(a) Connect the OBDII scan tool or TOYOTA hand-held tester to the DLC3.

(b) Warm up the A/F sensors (bank1, 2 sensor1) with the engine at 2,500 rpm for approx. 90 sec.

CHECK:

Read voltage value of A/F sensors (bank1, 2 sensor1) on the screen of OBDII scan tool or TOYOTA handheld tester when you perform all the following conditions.

HINT:

The voltage of AFR \sim , AFL \sim terminal of ECM is 3.3 fixed AFR >, AFL > terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensors (bank1, 2 sensor1) output voltage at the terminals (AFR \sim , AFL \sim / AFR >, AFL >) of ECM.

<u> 0K:</u>

Condition	A/F Sensor Voltage value
Engine idling	
Engine racing	 Not remains at 3.30 V (*0.660 V) Not remains at 3.8 V (*0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25mph) or more, and operate throttle valve open and close	 Not remains at 2.8 V (0.70 V) of more Not remains at 2.8 V (*0.56 V) or less *: When you use the OBDII scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is below 2.8 V (*0.56 V), it is normal.
- During fuel cut, there is case that the output voltage of A/F sensors (bank1, 2 sensor1) is above 3.8 V (*0.76 V), it is normal.
- If output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.30 V (*0.660 V) even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be open.
- If output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.8 V (*0.76 V) or more, or 2.8 V (*0.56 V) or less even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be short.
- *: When you use the OBDII scan tool (excluding TOYOTA hand-held tester).

	NG	
-		

8	Check for open and short in harness and connector between ECM and A/F sensors (bank1, 2 sensor1) (See page IN–31).
	NG Repair or replace harness or connector.
ОК	
Repla	ce A/F sensors (bank1, 2 sensor1).
9	perform confirmation driving pattern (See page DI–340).
Go	
10	Is there DTC P0171 or P0172 being output again ?
	YES Check and replace ECM (See page IN–31).
NO	
11	Did vehicle runs out of fuel in the past ?
	NO Check for intermittent problems (See page DI–197).
YES	
DTC I	P0171 or P0172 is caused by running out of fuel.

DI-271

Date :

 DTC
 P0171
 System too Lean (Fuel Trim) (Except California Spec.)

 DTC
 P0172
 System too Rich (Fuel Trim) (Except California Spec.)

CIRCUIT DESCRIPTION

Fuel trim refers to the feedback compensation value compared against the basic injection time. Fuel trim includes short-term fuel trim and long-term fuel trim.

Short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at its ideal theoretical value. The signal from the heated oxygen sensor indicates whether the air-fuel ratio is RICH or LEAN compared to the ideal theoretical value, triggering a reduction in fuel volume if the air-fuel ratio is rich, and an increase in fuel volume if it is lean.

Long-term fuel trim is overall fuel compensation carried out long-term to compensate for continual deviation of the short-term fuel trim from the central value due to individual engine differences, wear over time and changes in the usage environment.

If both the short-term fuel trim and long-term fuel trim are LEAN or RICH beyond a certain value, it is detected as a malfunction and the MIL lights up.

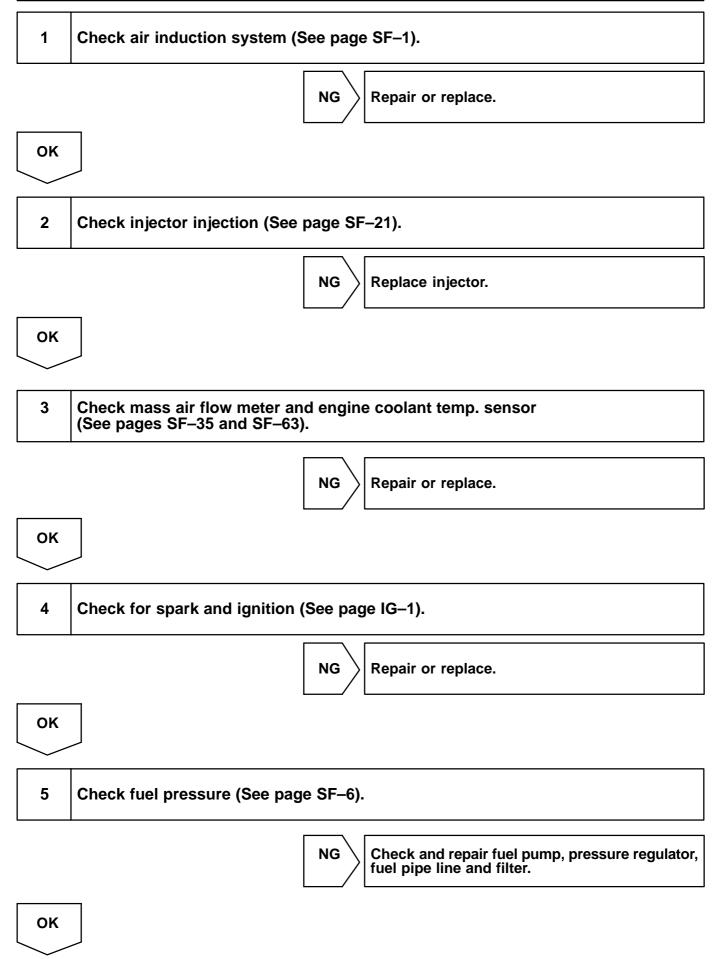
DTC No.	DTC Detecting Condition	Trouble Area
P0171	When air fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Air intake (hose loose) Fuel line pressure Injector blockage Heated oxygen sensors (bank 1, 2 sensor 1) malfunction Mass air flow meter Engine coolant temp. sensor Gas leakage on exhaust system
P0172	When air fuel ratio feedback is stable after engine warming up, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Fuel line pressure Injector leak, blockage Heated oxygen sensors (bank 1, 2 sensor 1) malfunction Mass air flow meter Engine coolant temp. sensor Gas leakage on exhaust system

HINT:

- When DTC P0171 is recorded, the actual air-fuel ratio is on the LEAN side. When DTC P0172 is recorded, the actual air-fuel ratio is on the RICH side.
- If the vehicle runs out of fuel, the air-fuel ratio is LEAN and DTC P0171 is recorded. The MIL then comes on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within ± 35 % (80°C (176°F) or more), the system is functioning normally.

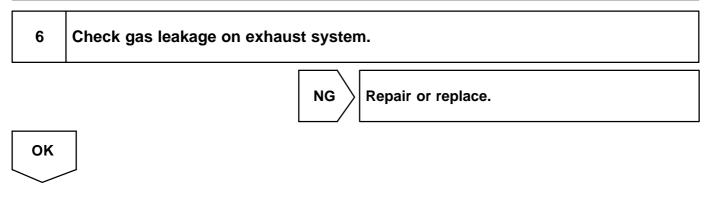
INSPECTION PROCEDURE

HINT:


Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Author :

Date :


507

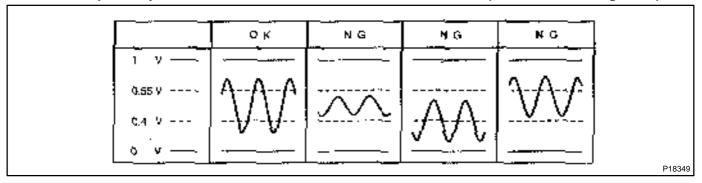
DI4DR-01

Date :

Author :

	Check the output voltage of heated oxygen sensors (bank1, 2 sensor1) during
	idling.

PREPARATION:


Warm up the heated oxygen sensors (bank1, 2 sensor1) the engine at 2,500 rpm for approx. 90 sec. CHECK:

Use the OBDII scan tool or TOYOTA hand-held tester to read the output voltage of the heated oxygen sensors (bank1, 2 sensor1) during idling.

<u>OK:</u>

Heated oxygen sensors (bank1, 2 sensor1) output voltage:

Alternates repeatedly between less than 0.4 V and more than 0.55 V (See the Following table).

NG

8 Check for open and short in harness and connector between ECM and heated oxygen sensors (bank1, 2 sensor1) (See page SF-71). NG Repair or replace harness or connector. OK Replace heated oxygen sensors (bank1, 2 sensor1). 9 Perform confirmation driving pattern (See page DI-255). Go Is there DTC P0171 or P0172 being output again ? 10 YES Check and replace ECM. NO 11 Did vehicle runs out of fuel in the past ? NO Check for intermittent problems. YES DTC P0171 or P0172 is caused by running out of fuel.

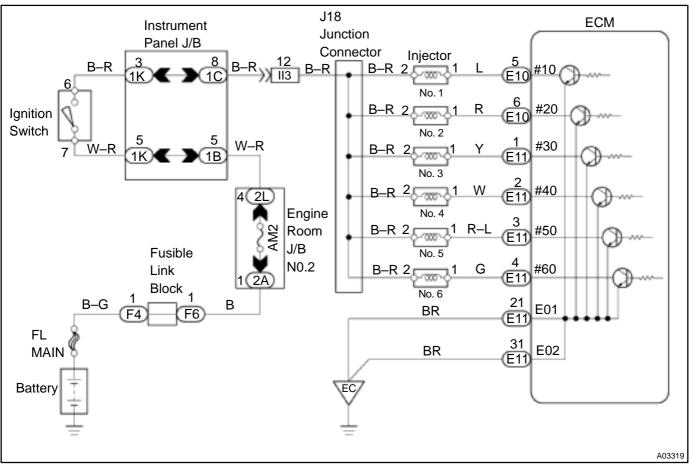
510

	DI07S-07
P0300	Random/Multiple Cylinder Misfire Detected
P0301	Cylinder 1 Misfire Detected
P0302	Cylinder 2 Misfire Detected
P0303	Cylinder 3 Misfire Detected
P0304	Cylinder 4 Misfire Detected
P0305	Cylinder 5 Misfire Detected
	P0301 P0302 P0303 P0304

DTC	P0306	Cylinder 6 Misfire Detected
-----	-------	-----------------------------

Misfire: The ECM uses the crankshaft position sensor and camshaft position sensor to monitor changes in the crankshaft rotation for each cylinder.

The ECM counts the number of times the engine speed change rate indicates that misfire has occurred. When the misfire rate equals or exceeds the count indicating that the engine condition has deteriorated, the MIL lights up.


If the misfire rate is high enough and the driving conditions will cause catalyst overheating, the MIL blinks when misfiring occurs.

DTC No.	DTC Detecting Condition	Trouble Area
P0300	Misfiring of random cylinders is detected during any particular 200 or 1,000 revolutions	Ignition systemInjectorFuel line pressure
P0301 P0302 P0303	For any particular 200 revolutions for engine, misfiring is de- tected which can cause catalyst overheating (This causes MIL to blink)	 EGR Compression pressure Valve clearance not to specification Valve timing Mass air flow meter
P0304 P0305 P0306	For any particular 1,000 revolutions of engine, misfiring is de- tected which causes a deterioration in emission (2 trip detection logic)	 •Mass air now meter •Engine coolant temp. sensor •Open or short in engine wire •Connector connection •ECM

HINT:

When the 2 or more codes for a misfiring cylinder are recorded repeatedly but no Random Misfire code is recorded, it indicates that the misfires were detected and recorded at different times.

WIRING DIAGRAM

CONFIRMATION DRIVING PATTERN

- (1) Connect the TOYOTA hand-held tester or OBD II scan tool.
- (2) Record DTC and the freeze frame data.
- (3) Use the TOYOTA hand-held tester to set to Check Mode. (See page DI-197)
- (4) Drive the vehicle several times with the engine speed, load and its surrounding range shown with ENGINE SPD, CALC LOAD in the freeze frame data or MISFIRE RPM, MISFIRE LOAD in the data list. If you have no TOYOTA hand-held tester, turn the ignition switch OFF after the symptom is simulated the first time. Then repeat the simulation process again.

HINT:

In order to memorize DTC of misfire, it is necessary to drive around MISFIRE RPM, MISFIRE LOAD in the data list for the following period of time.

Engine Speed	Time
Idling	3 minutes 30 seconds or more
1000 rpm	3 minutes or more
2000 rpm	1 minute 30 seconds or more
3000 rpm	1 minute or more

- (5) Check whether there is misfire or not by monitoring DTC and the freeze frame data. After that, record them.
- (6) Turn ignition switch OFF and wait at least 5 seconds.

INSPECTION PROCEDURE

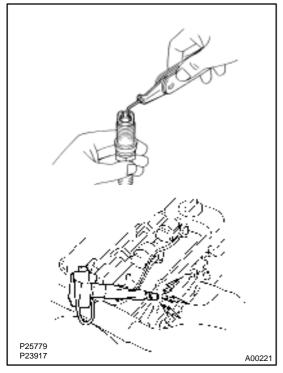
HINT:

- If is the case that DTC besides misfire is memorized simultaneously, first perform the troubleshooting for them.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame data records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the vehicle is brought to the workshop and the misfire is not occurred, misfire can be confirmed by reproducing the condition or freeze frame data. Also, after finishing the repair, confirm that there is no misfire. (See the confirmation driving pattern)
- When either of SHORT FT #1, LONG FT #1, SHORT FT #2 or LONG FT #2 in the freeze frame data is besides the range of ±20%, there is a possibility that the air-fuel ratio is inclining either to "rich" (-20% or less) or "lean" (+20% or more).
- When COOLANT TEMP in the freeze frame data is less than 80°C (176°F), there is a possibility or misfire only during warming up.
- In the case that misfire cannot be reproduced, the reason may be because of the driving with lack or fuel, the use of improper fuel, a stain of ignition plug, and etc.

Check wire harness, connector and vacuum hose in engine room.

CHECK:

1


- (a) Check the connection conditions of wire harness and connector.
- (b) Check the disconnection, piping and break of vacuum hose.

Repair or replace, then confirm that there is no misfire (See the confirmation driving pattern).

OK

2

PREPARATION:

- (a) Remove the ignition coil (See page IG-7).
- (b) Remove the spark plug.

CHECK:

Check spark plug and spark of misfiring cylinder.

- (a) Check spark plug type.
- (b) Check for carbon deposits on electrode.
- (c) Check electrode gap.
- <u>OK:</u>

(a) Twin ground electrodes type. Recommended spark plug:

ND PK20TR11

NGK BKR6EKPB-11

- (b) No large carbon deposit present.
 - Not wet with gasoline or oil.
- (c) Electrode gap:
- Standerd: 1.0 1.1 mm (0.03937 0.043 in.).
- Maximum: 1.3 mm (0.051 in.).

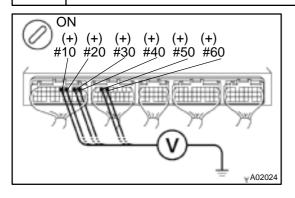
PREPARATION:

- (a) Install the spark plug to the ignition coil, and connect the ignition coil the connector.
- (b) Disconnect injector connector.
- (c) Hold the end about 12.5 mm (0.5 in.) from the ground. **CHECK:**

Check if spark occurs while engine is being cranked. **NOTICE:**

To prevent excess fuel being injected from the injectors during this test, don't crank the engine for more than $5 \sim 10$ sec. at a time.

<u>OK:</u>


Spark jumps across electrode gap.

NG

Replace or check ignition system (See page IG–1).

3

Check voltage of ECM terminal for injector of failed cylinder.

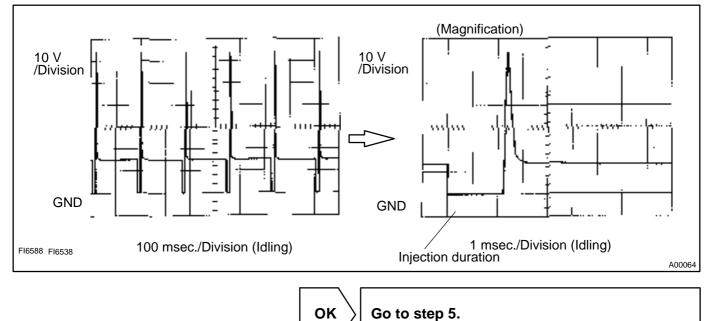
PREPARATION:

(a) Remove the glove compartment (See page SF-73).

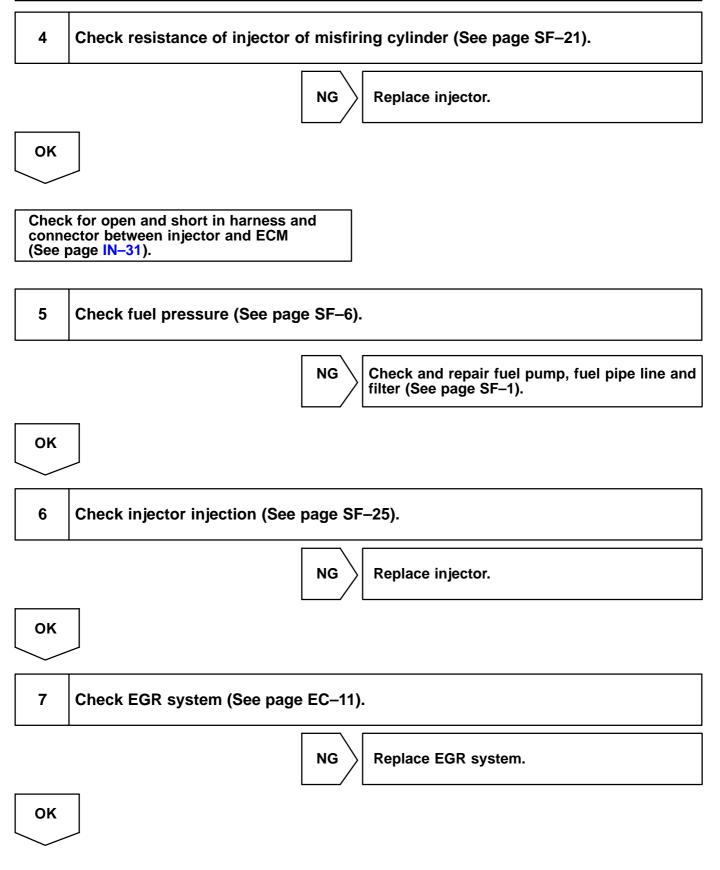
(b) Turn the ignition switch ON.

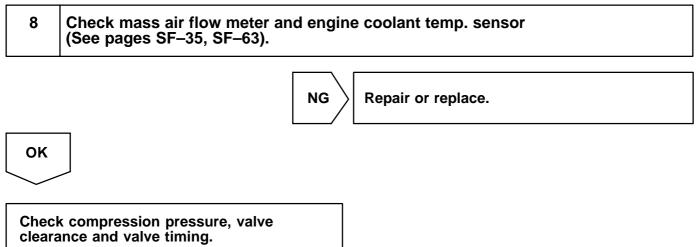
CHECK:

Measure voltage between applicable terminal of the ECM connector and body ground.


<u>OK:</u>

Voltage: 9 ~ 14 V


Reference INSPECTION USING OSCILLOSCOPE INJECTOR SIGNAL WAVEFORM

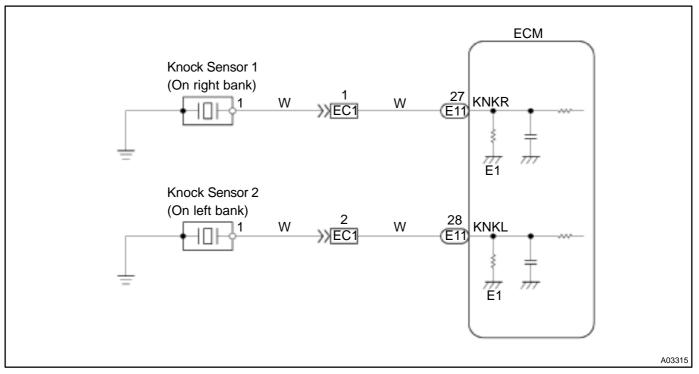

With the engine idling, measure between terminals $\#10 \sim \#60$ and E01 of ECM. HINT:

The correct waveform is as shown.

NG

DTC P03	Knock Sensor 1 Circuit Malfunction	
---------	------------------------------------	--

DTC P0330 Knock Sensor 2 Circuit Malfunction


CIRCUIT DESCRIPTION

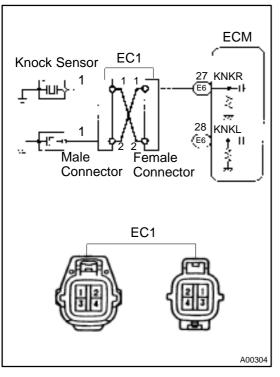
Knock sensors are fitted one to the right bank and left bank of the cylinder block to detect engine knocking. This sensor contains a piezoelectric element which generates a voltage when it becomes deformed, which occurs when the cylinder block vibrates due to knocking. If engine knocking occurs, ignition timing is retarded to suppress it.

DTC No.	DTC Detecting Condition	Trouble Area
P0325	No knock sensor 1 signal to ECM with engine speed between 2,000 rpm and 5,600 rpm.	Open or short in knock sensor 1 circuitKnock sensor 1 (looseness)ECM
P0330	No knock sensor 2 signal to ECM with engine speed between 2,000 rpm and 5,600 rpm.	Open or short in knock sensor 2 circuitKnock sensor 2 (looseness)ECM

If the ECM detects the above diagnosis conditions, it operates the fail–safe function in which the corrective retard angle value is set to the maximum value.

WIRING DIAGRAM

DI-283


DI07T-06

INSPECTION PROCEDURE

HINT:

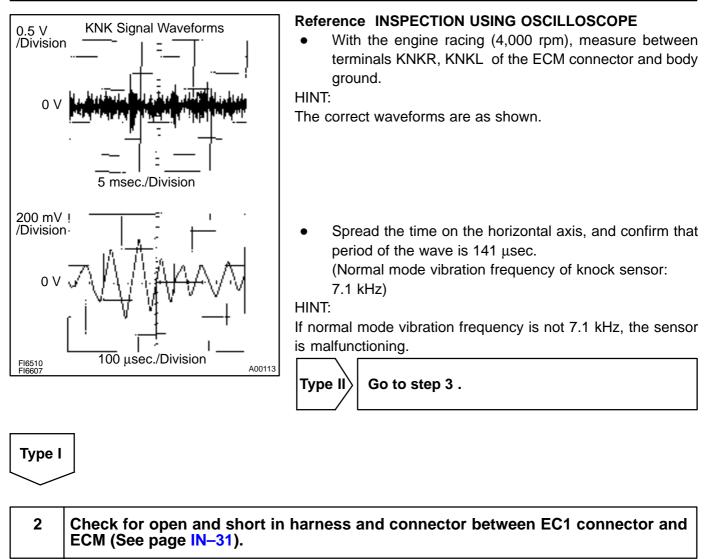
- DTC P0325 is for the right bank knock sensor circuit. DTC P0330 is for the left bank knock sensor circuit.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

1 Connect OBD II scan tool or TOYOTA hand-held tester, and check knock sensor circuit.

PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Disconnect the wire to wire connector EC1.
- (c) Connect the terminals of the disconnected EC1 male connector and EC1 female as follows.

Male connector \leftrightarrow Female connector
Terminal 1 \leftrightarrow Terminal 2
Terminal 2 \leftrightarrow Terminal 1


- (d) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.
- (e) After the engine is warmed up, perform quick racing to 4,000 rpm three times.

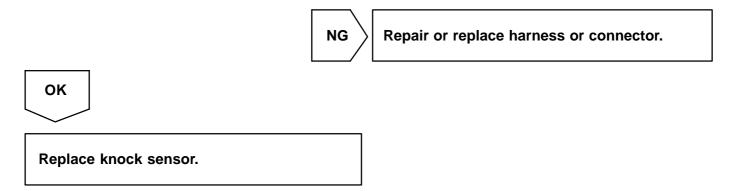
CHECK:

Check the DTC.

RESULT:

Туре І	DTC same as when vehicle brought in. P0325 \rightarrow P0325 or P0330 \rightarrow P0330
Туре II	DTC different to when vehicle brought in. P0325 \rightarrow P0330 or P0330 \rightarrow P0325

Repair or replace harness or connector.

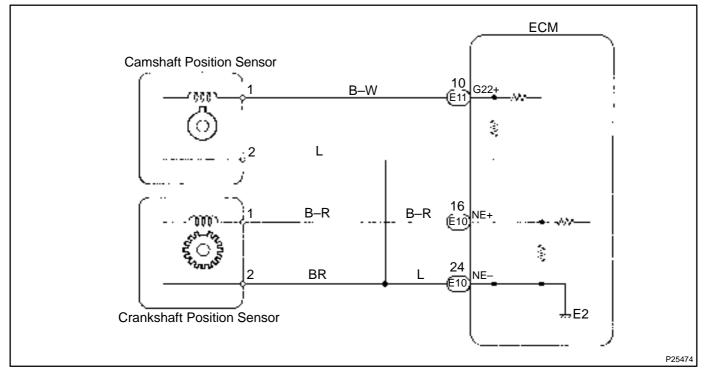

ΟΚ

Check and replace ECM (See page IN-31).

3	Check for open and short in harness and connector between EC1 connector and knock sensor (See page IN–31). \fbox
---	--

HINT:

- If DTC P0325 has changed to P0330, check the knock sensor circuit on the right bank side.
- If DTC P0330 has changed to P0325, check the knock sensor circuit on the left bank side.

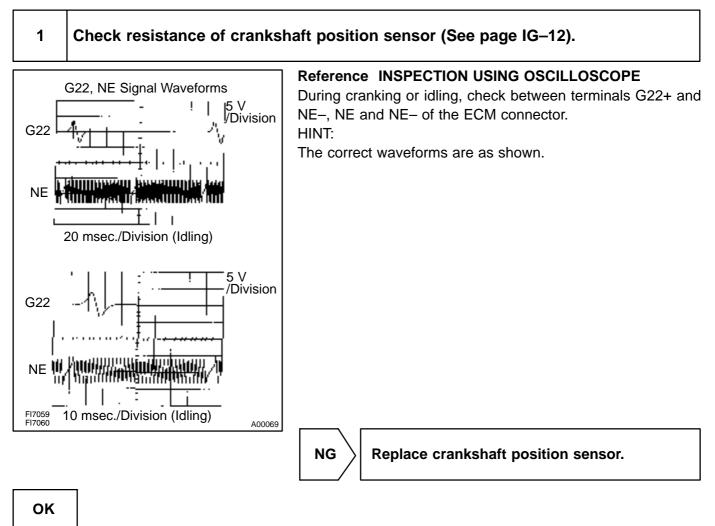

DTC	P0335	Crankshaft Position Sensor "A" Circuit Malfunction
-----	-------	--

Crankshaft position sensor (NE signal) consists of a signal plate and pickup coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals for every engine revolution. The ECM detects the standard crankshaft angle based on the G22 signals, and the actual crankshaft angle and the engine speed by the NE signals.

DTC No.	DTC Detecting Condition	Trouble Area	
	No crankshaft position sensor signal to ECM during cranking (2 trip detection logic)	 Open or short in crankshaft position sensor circuit Crankshaft position sensor 	
P0335	No crankshaft position sensor signal to ECM with engine speed 600 rpm or more (2 trip detection logic)	●Starter ●ECM	

WIRING DIAGRAM


INSPECTION PROCEDURE

HINT:

- Perform troubleshooting of DTC P0335 first. If no trouble is found, troubleshoot the following mechanical systems.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. because freeze frame
 records the engine conditions when the malfunction is detected, when troubleshooting it is useful for
 determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel
 ratio lean or rich, etc. at the time of the malfunction.

DI-287

Date :

	Check for open and short in harness and connector between ECM and
	crankshaft position sensor (See page IN-31).

NG Repair or replace harness or connector.

OK

3	Inspect sensor installation and teeth of crankshaft timing pulley.
	NG Tighten the sensor. Replace crankshaft timing pulley.

ОК

Check and replace ECM (See page IN-31).

DTC	P0340	Camshaft Position Sensor Circuit Malfunction
-----	-------	---

Camshaft position sensor (G22 signal) consist of a signal plate and pickup coil.

The G22 signal plate has one tooth, on its outer circumference and is mounted on the left bank camshafts. When the camshafts rotate, the protrusion on the signal plate and the air gap on the pickup coil change, causing fluctuations in the magnetic field and generating an electromotive force in the pickup coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals for every engine revolution. The ECM detects the standard crankshaft angle based on the G22 signal and the actual crankshaft angle and the engine speed by the NE signals.

DTC No.	DTC Detecting Condition	Trouble Area
	No camshaft position sensor signal to ECM during cranking (2 trip detection logic)	 Open or short in camshaft position sensor circuit Camshaft position sensor
	No camshaft position sensor signal to ECM with engine speed 600 rpm or more	●Starter ●ECM

WIRING DIAGRAM

Refer to DTC P0335 (Crankshaft Position Sensor "A" Circuit Malfunction) on page DI-287 .

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Reference INSPECTION USING OSCILLOSCOPE

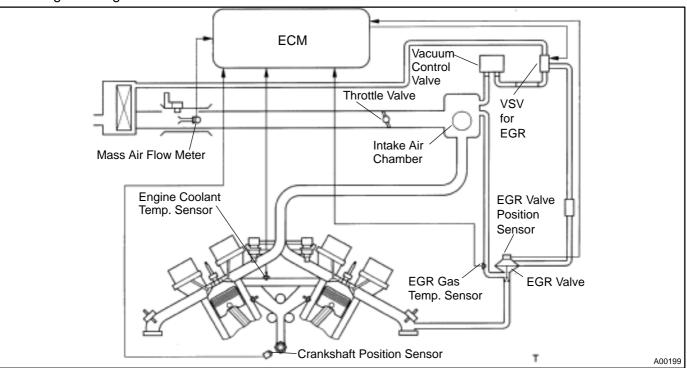
Refer to DTC P0335 on page DI-287.

Replace camshaft position sensor.

OK

DI07V-06

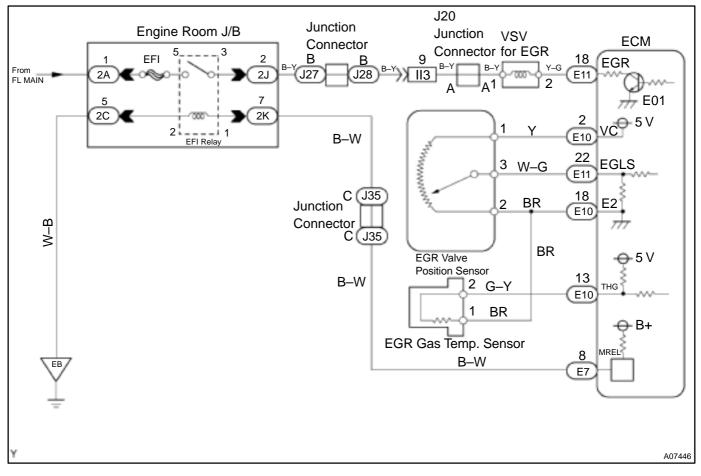
2	Check for open and short in harness and connector between ECM and camshaft position sensor (See page IN-31).		
	NG Repair or replace harness or connector.		
ОК			
3	Inspect sensor installation and tooth of left bank camshaft timing pulley.		
	NG Tighten the sensor. Replace left bank camshaft timing pulley.		
ОК			
Chec	k and replace ECM (See page IN–31).		

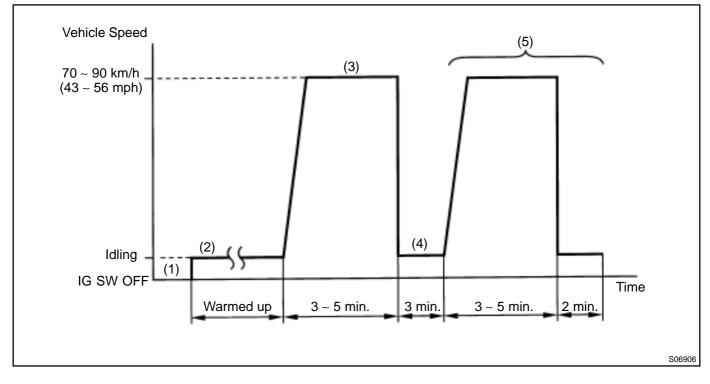

DTC		Exhaust Gas Recirculation Flow Insufficient Detected (Ex CA Spec.)
-----	--	---

The EGR system recirculates exhaust gas, which is controlled to the proper quantity to suit the driving conditions, into the intake air mixture to slow down combustion, reduce the combustion temperature and reduce NOx emissions.

The lift amount of EGR valve is controlled by the vacuum which is regulated by the Duty–VSV operated by the ECM. The lift amount of EGR valve is detected by the EGR valve position sensor which is mounted on the EGR valve and it provides feedback to the ECM to control the lift amount of EGR valve in response to engine operating conditions.

Under the following conditions, EGR is cut to maintain driveability.


- Before the engine is warmed up
- During deceleration (throttle valve closed)
- Light engine load (amount of intake air very small)
- Engine speed over 4,000 rpm
- Engine idling


DTC No.	DTC Detecting Condition	Trouble Area
P0401	After engine is warmed up and run at 80 km/h (50 mph) for 3 to 5 min. EGR gas temperature sensor valve does not exceed 35°C (95°F) above ambient air temperature (2 trip detection logic)	 EGR valve (stuck closed) Open or short in EGR gas temp. sensor circuit EGR gas temp. sensor Open in VSV circuit for EGR VSV for EGR Vacuum control valve Vacuum hose disconnected or blocked ECM

DI4DS-01

WIRING DIAGRAM

SYSTEM CHECK DRIVING PATTERN

Date :

Author :

(1) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.

- (2) Start and warm up the engine with all accessories switched OFF.
- (3) Run the vehicle at 70 \sim 90 km/h (43 \sim 56 mph) for 3 min. or more.
- (4) Idle the engine for about 2 min.
- (5) Do steps (3) and (4) again.
- (6) Stop at safe place and turn the ignition switch OFF.
- (7) Do step (2) to (5) again.

(8) Check the READINESS TESTS mode on the OBD II scan tool or TOYOTA hand-held tester.

If COMPL is displayed and the MIL does not light up, the system is normal.

If INCMPL is displayed and the MIL does not light up, run the vehicle steps (2) to (6) from some times and check it.

HINT:

INCMPL is displayed when either condition (a) or (b) exists.

- (a) The system check is incomplete.
- (b) There is a malfunction in the system.
 If there is a malfunction in the system, the MIL light up after step (7) above is done.
 (2trip detection logic)

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

TOYOTA hand-held tester

1 Connect TOYOTA hand-held tester, and read value of EGR gas temperature.

PREPARATION:

- (a) Connect the TOYOTA hand-held tester to the DLC3.
- (b) Warm up the engine.

CHECK:

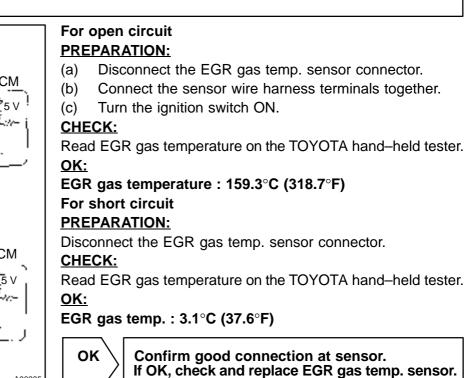
Read EGR gas temperature on TOYOTA hand-held tester during idling.

<u> 0K:</u>

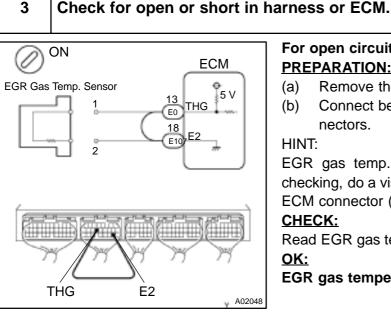
EGR gas temperature : 5°C (41°F) ~ 150°C (302°F) (Not immediately after driving) HINT:

If there is an open circuit, TOYOTA hand-held tester indicates 3.1°C (37.6°F).

If there is an short circuit, TOYOTA hand-held tester indicates 159.3°C (318.7°F).


NG

Date :

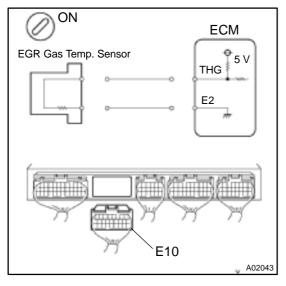


Check for open or short in harness or ECM.

NG

For open circuit **PREPARATION:**

- Remove the glove compartment (See page SF-73). (a)
- Connect between terminals THG and E2 of the ECM con-(b) nectors.


HINT:

EGR gas temp. sensor connector is disconnected. Before checking, do a visual check and contact pressure check for the ECM connector (See page IN-31).

CHECK:

Read EGR gas temperature on the TOYOTA hand-held tester. OK:

EGR gas temperature : 159.3°C (318.7°F)

For short circuit **PREPARATION:**

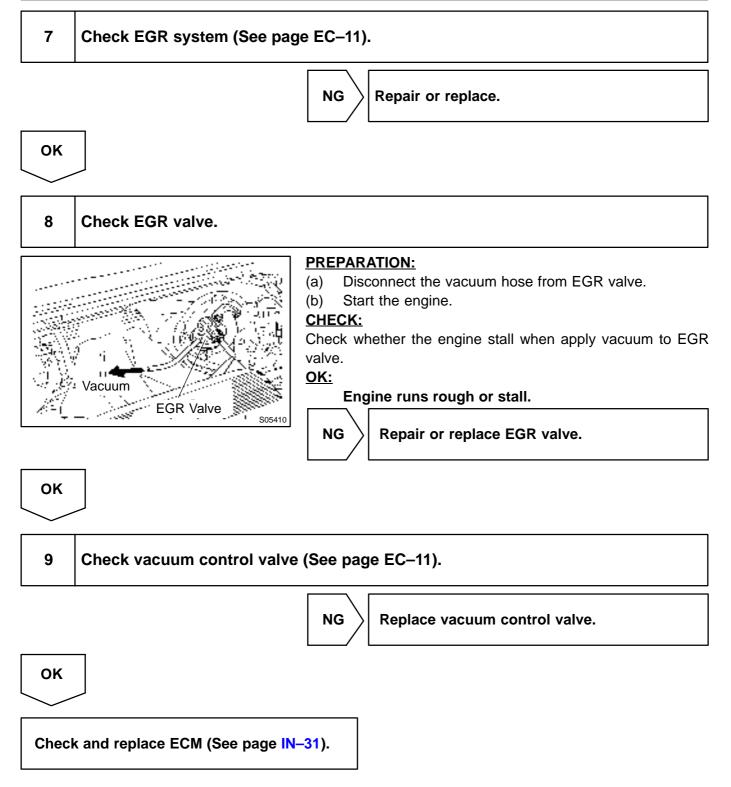
- (a) Remove the glove compartment (See page SF-73).
- Disconnect the E10 connector of ECM. (b)

CHECK:

Read EGR gas temperature on the TOYOTA hand-held tester. OK:

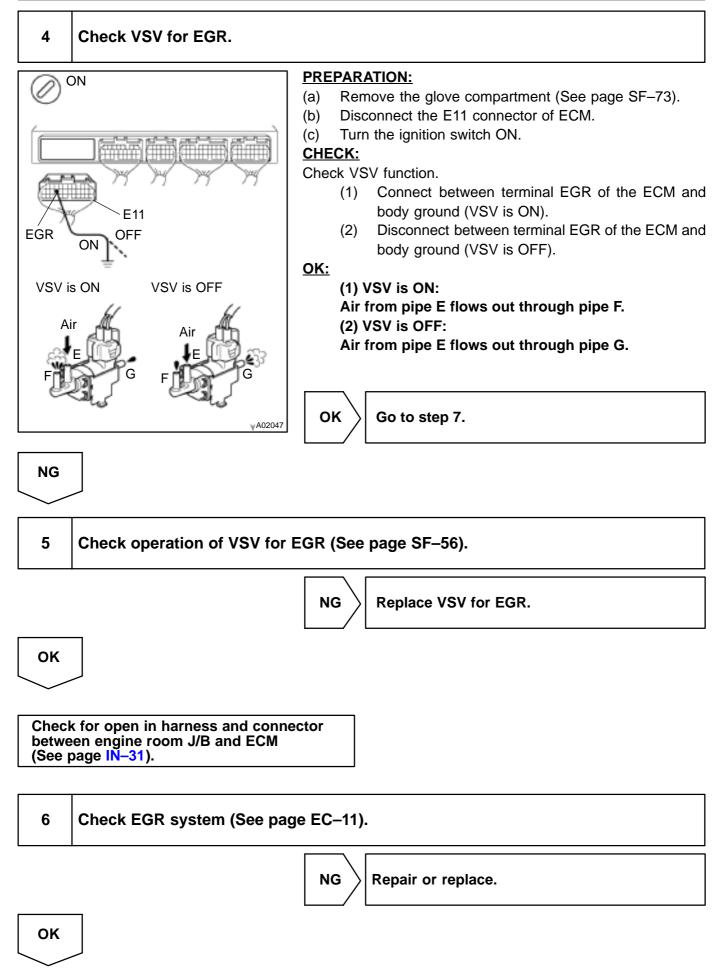
EGR gas temperature: 3.1°C (37.6°F)

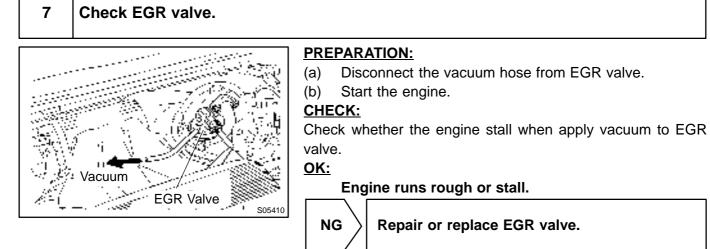
ΟΚ


Repair or replace harness.

NG

Confirm connection at ECM. If OK, check and replace ECM.


532


OBDII scan tool (excluding TOYOTA hand-held tester)

1 Check resistance of EGR gas temp. sensor. **PREPARATION:** EGR Gas Temp. Sensor Disconnect the EGR gas temp. sensor connector. Connector **CHECK:** Measure resistance between terminals of the EGR gas temp. sensor connector. OK: **Resistance:** 2.5 k Ω ~ 600 k Ω (Not immediately after driving) HINT: P23871 If there is open circuit, ohmmeter indicates 720 k Ω or more. If there is short circuit, ohmmeter indicates 200 Ω or less. NG Replace EGR gas temp. sensor. OK 2 Check for open and short in harness and connector between EGR gas temp. sensor and ECM (See page IN-31). NG Repair or replace harness or connector. OK 3 Check connection and blockage of vacuum hose (See page EC-2). NG Repair or replace vacuum hose. OK

534

535

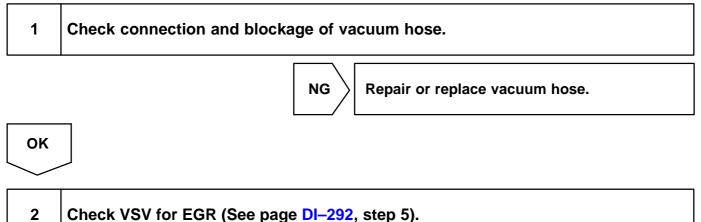
OK

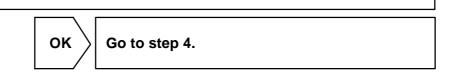
8	Check vacuum control valve (See page EC–11).		
	NG Replace vacuum control valve.		
ОК			
Chec	k and replace ECM (See page IN–31).		

DTC	P0402	Exhaust Gas Recirculation Flow Excessive Detected (Ex CA Spec.)
-----	-------	--

Refer to DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) on page DI-292.

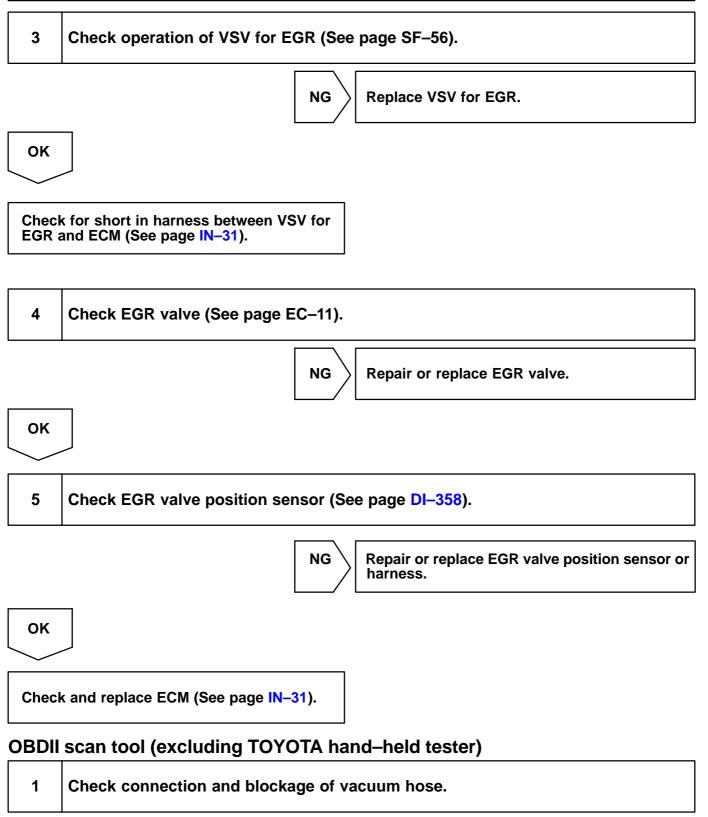
DTC No.	DTC Detecting Condition	Trouble Area
P0402	When EGR cut–off, lift amount of EGR valve is 2.6 mm (0.1 in.) or more (2 trip detection logic)	 EGR valve stuck open VSV for EGR open malfunction Short in VSV circuit for EGR Open or short in EGR valve position sensor circuit EGR valve position sensor ECM


See DTC P0401 (Exhaust Gas Recirculation Flow Insufficient Detected) on See page DI–292 for SYS-TEM CHECK DRIVING PATTERN and WIRING DIAGRAM.


INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.


TOYOTA hand-held tester

NG

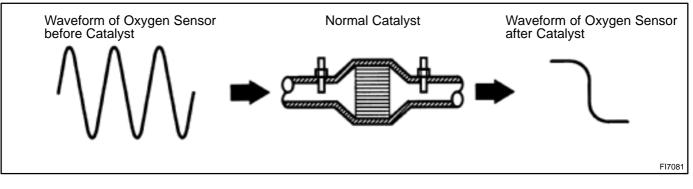
DI07X-06

Repair or replace vacuum hose.

OK

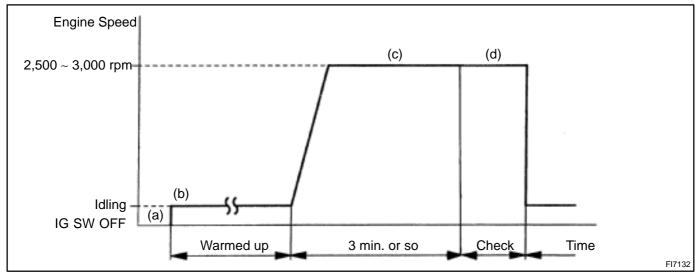
DI-304

2	Check VSV for EGR (See page DI–292, step 5).		
	OK Go to step 4.		
NG			
3	Check operation of VSV for EGR (See page SF–56).		
	NG Replace VSV for EGR.		
ОК			
	k for short in harness between VSV for and ECM (See page IN−31).		
4	Check EGR valve (See page EC–11).		
	NG Repair or replace EGR valve.		
ОК			
5	Check EGR valve position sensor (See page DI-358).		
	NG Repair or replace EGR valve position sensor or harness.		
ОК			
Checl	k and replace ECM (See page IN–31).		


DTC		Catalyst System Efficiency Below Threshold (Except California Spec.)
-----	--	---

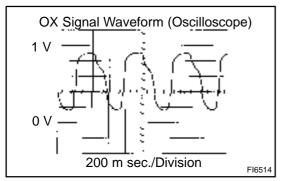
The ECM compares the waveform of the oxygen sensor located before the catalyst with the waveform of the oxygen sensor located after the catalyst to determine whether or not catalyst performance has deteriorated.

Air-fuel ratio feedback compensation keeps the waveform of the oxygen sensor before the catalyst repeatedly changing back and forth from rich to lean.


If the catalyst is functioning normally, the waveform of the oxygen sensor after the catalyst switches back and forth between rich and lean much more slowly than the waveform of the oxygen sensor before the catalyst.

But when both waveforms change at a similar rate, it indicates that catalyst performance has deteriorated.

DTC No.	DTC Detecting Condition	Trouble Area
P0420	After engine and catalyst are warmed up, and while vehicle is driven within set vehicle and engine speed range, waveforms of heated oxygen sensors (bank 1 sensor 1, 2) have the same amplitude (2 trip detection logic)	 Three–way catalytic converter Open or short in heated oxygen sensor circuit Heated oxygen sensor

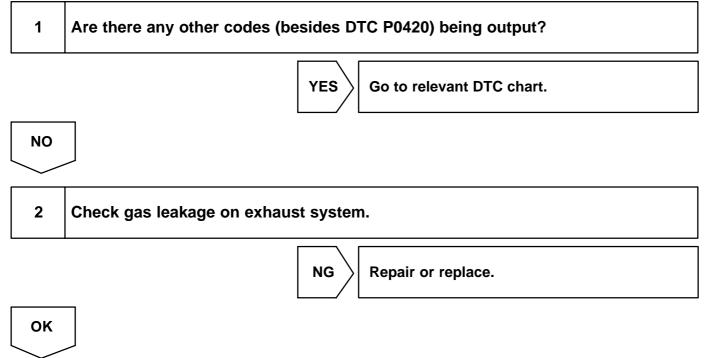

CONFIRMATION ENGINE RACING PATTERN

DI07Y-06

DI-306

- (a) Connect the TOYOTA hand-held tester to the DLC3, or connect the probe of the oscilloscope between terminals OXR1, OXL1, OXS and E1 of the ECM connector.
- (b) Start engine and warm it up with all accessories switched OFF until water temp. is stable.
- (c) Race the engine at $2,500 \sim 3,000$ rpm for about 3 min.
- (d) After confirming that the waveform of the heated oxygen sensor, bank 1, 2 sensor 1 (OXR1, OXL1), oscillate around 0.5 V during feedback to the ECM, check the waveform of the heated oxygen sensor, bank 1 sensor 2 (OXS).

HINT:


If there is a malfunction in the system, the waveform of the heated oxygen sensor, bank 1 sensor 2 (OXS), is almost the same as that of the heated oxygen sensor, bank 1, 2 sensor 1 (OXR1, OXL1), on the left.

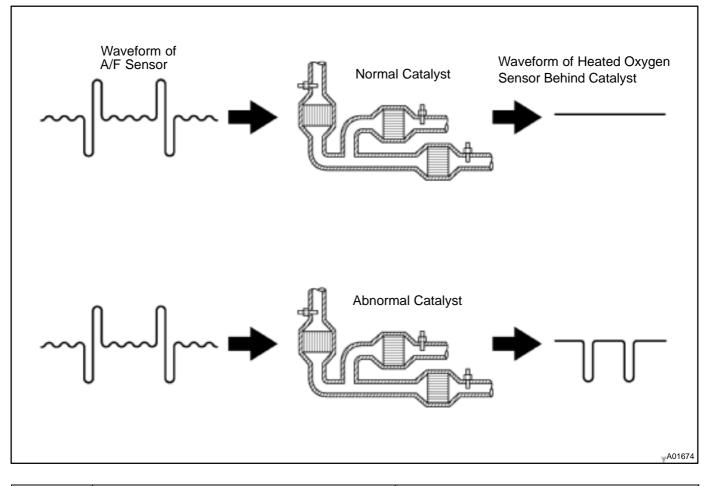
There are some cases where, even though a malfunction exists, the MIL may either light up or not light up.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held theater or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

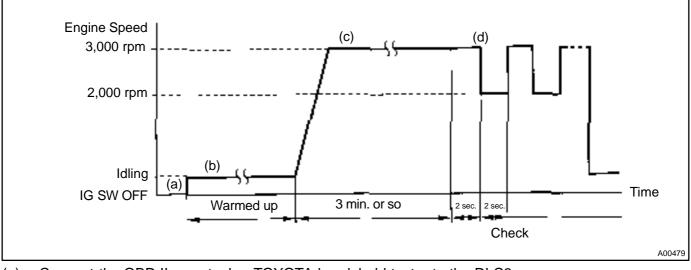
Date :


3	Check heated oxygen sensor (bank 1, sensor 1) (See page DI-255).
	NG Repair or replace.
ОК	
4	Check heated oxygen sensors (bank 1, 2 sensor 2) (See page DI-265).
	NG Repair or replace.
ОК	
Repla	ace three-way catalytic converter.

DTC		Catalyst System Efficiency Below Threshold (Only for California Spec.)
-----	--	---

The ECM observes the waveform of the heated oxygen sensor located behind the catalyst to determine whether the catalyst is performance has deteriorated.

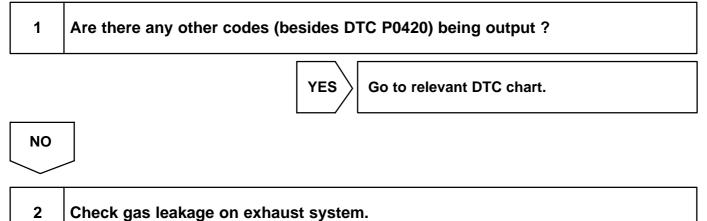
If the catalyst is functioning normally, the waveform of the heated oxygen sensor located behind the catalyst switches back and forth between rich and lean much more slowly.

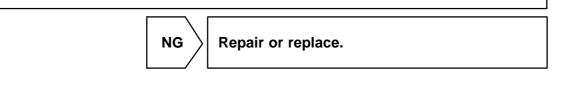

When the waveform of the heated oxygen sensor located behind the catalyst alternates flatteringly between rich and lean, it indicates that catalyst performance has deteriorated.

DTC No.	DTC Detecting Condition	Trouble Area
P0420	After engine and catalyst are warmed up, and while vehicle is driven within set vehicle and engine speed range, waveform of heated oxygen sensor (bank 1 sensor 2) alternates flatteringly between rich and lean (2 trip detection logic)	 Three-way catalytic converter Open or short in heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Open or short in A/F sensors (bank 1, 2 sensor 1) circuit A/F sensors (bank 1, 2 sensor 1)

DI1K4-03

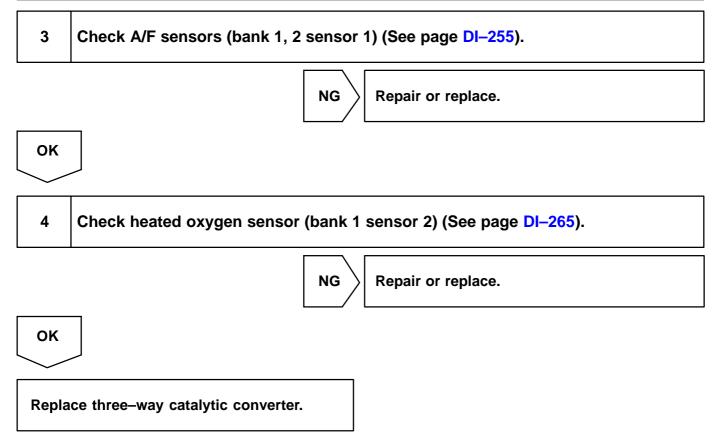
CONFIRMATION ENGINE RACING PATTERN




- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Start engine and warm it up with all accessories switched OFF until water temp. is stable.
- (c) Race the engine at $2,500 \sim 3,000$ rpm for about 3 min.
- (d) When racing the engine at 3,000 rpm for 2 sec. and 2,000 rpm for 2 sec. alternately, check the waveform of the heated oxygen sensor (bank 1 sensor 2).

INSPECTION PROCEDURE

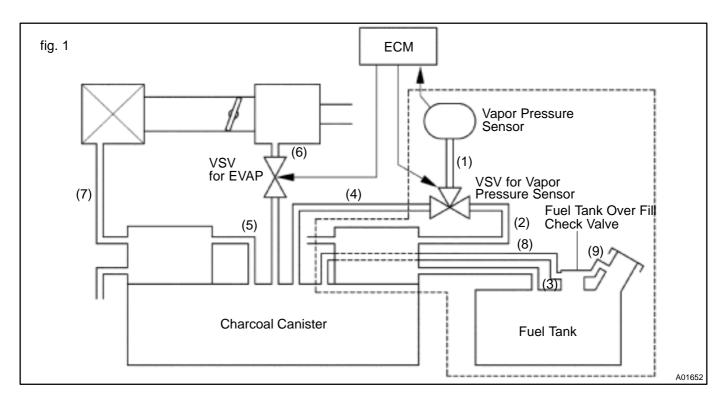
HINT:


Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

OK

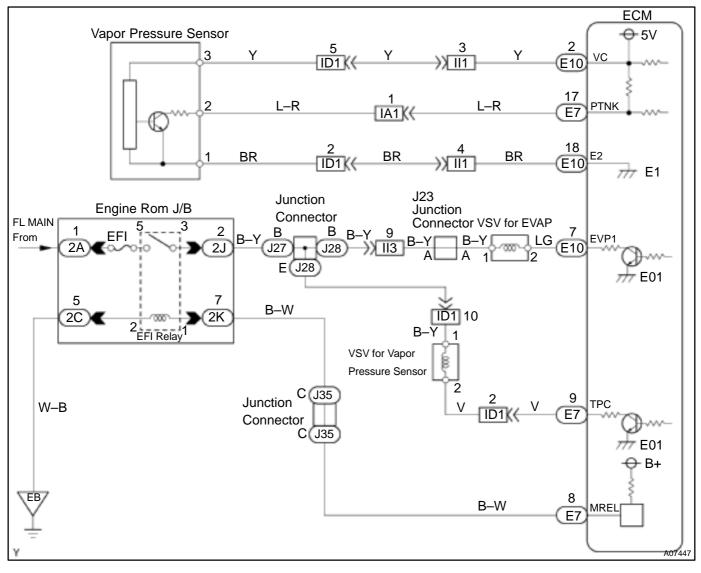
DI-310

DI4DT-01


DTC P0440 Evaporative Emission Control System Malfunction

CIRCUIT DESCRIPTION

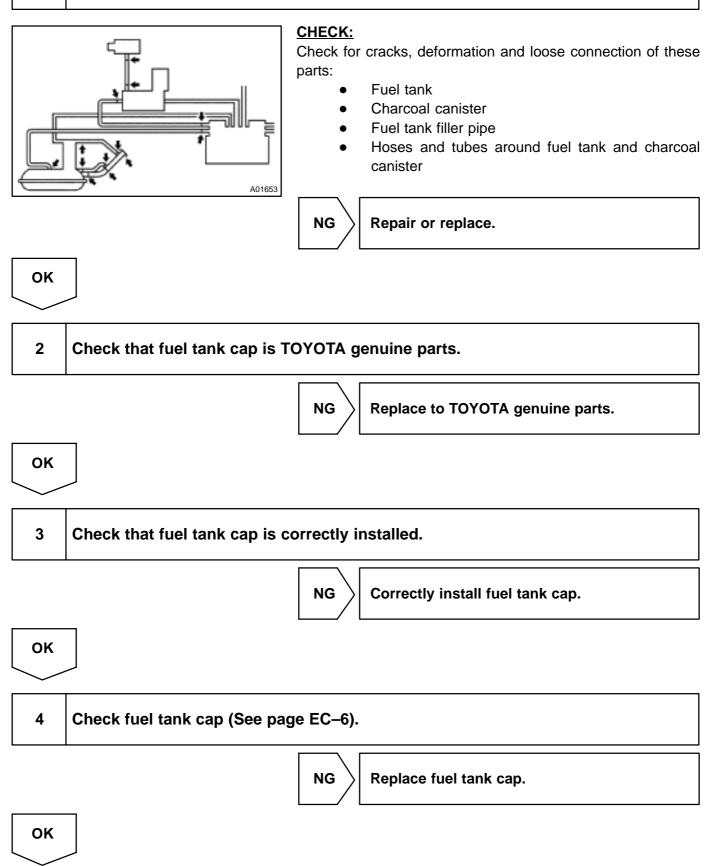
The vapor pressure sensor and VSV for vapor pressure sensor are used to detect abnormalities in the evaporative emission control system.

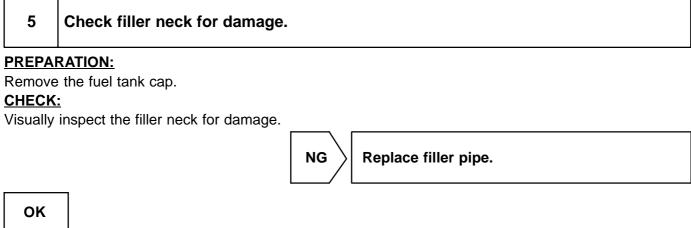

The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTC P0440 is recorded by the ECM when evaporative emissions leak from the components within the dotted line in fig. 1 below, or when the vapor pressure sensor malfunctions.

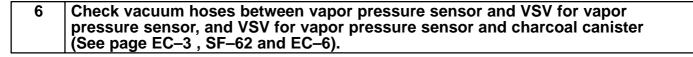
DTC No.	DTC Detecting Condition	Trouble Area
P0440	Fuel tank pressure is atmospheric pressure after vehicle is driven for 20 min. (2 trip detection logic)	 Vapor pressure sensor Fuel tank cap incorrectly installed Fuel tank cap cracked or damaged Vacuum hose cracked, holed, blocked, damaged or disconnected ((1) or (2) in fig. 1) Hose or tube cracked, holed, damaged or loose seal ((3) in fig. 1) Fuel tank cracked, holed or damaged Charcoal canister cracked, holed or damaged Fuel tank over fill check valve cracked or damaged

WIRING DIAGRAM

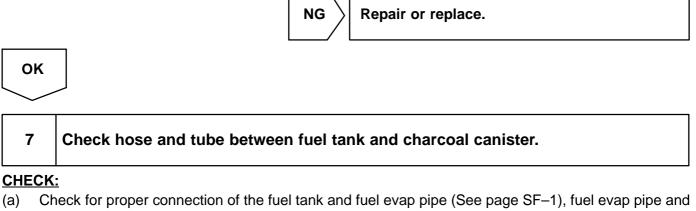


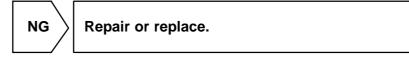

INSPECTION PROCEDURE

- If DTCs P0441, P0446, P0450 or P0451 is output after DTC P0440, first troubleshoot DTCs P0441, P0446, P0450 or P0451. If no malfunction is detected, troubleshoot DTC P0440 next.
- Ask the customer whether, after the MIL came on, the customer found the fuel tank cap loose and tightened it. Also ask the customer whether the fuel tank cap was loose when refuelling. If the fuel tank cap was not loose, it was the cause of the DTC. If the fuel tank cap was not loose or if the customer was not sure if it was loose, troubleshoot according to the following procedure.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the VSV for EVAP, charcoal canister and vapor pressure sensor.

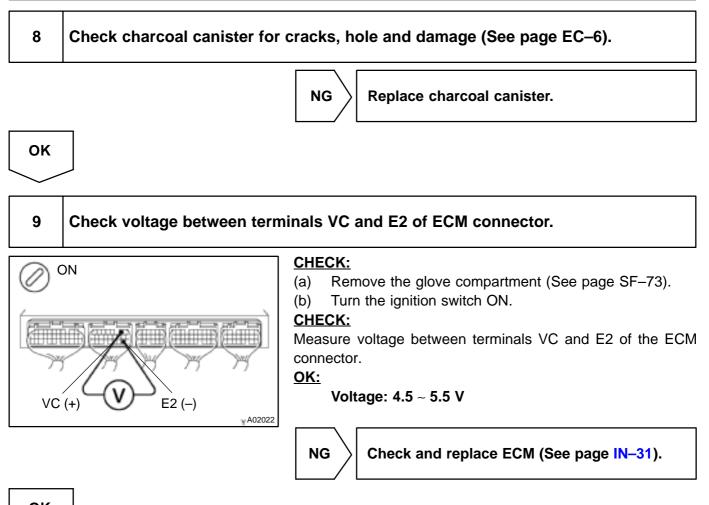

1

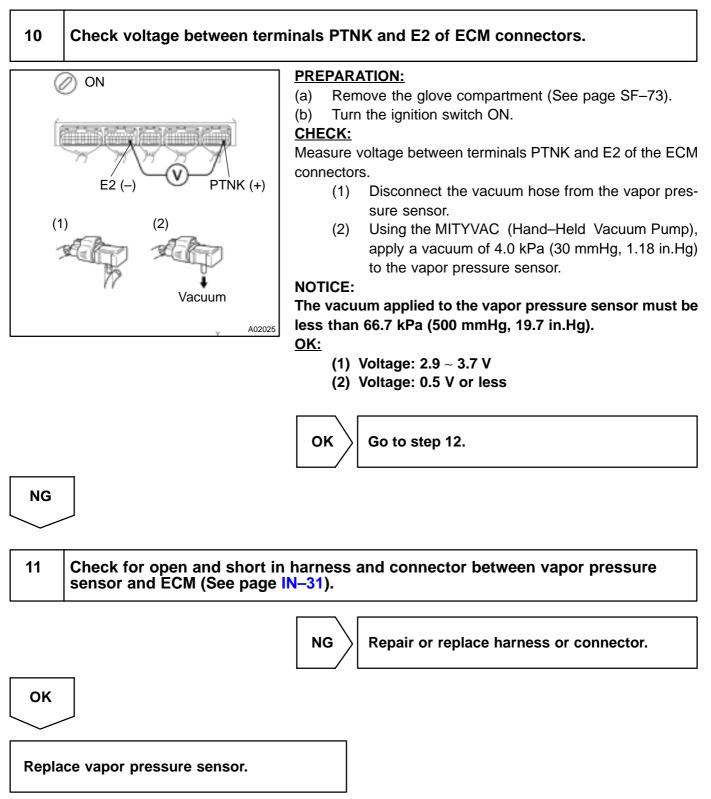
Check whether hose close to fuel tank have been modified, and check whether there are signs of any accident near fuel tank or charcoal canister.

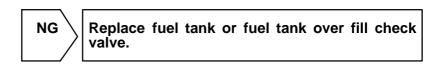




CHECK:


- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- Check the vacuum hose for cracks, hole and damage. (c)


- fuel tube under the floor, fuel tube under the floor and charcoal canister.
- (b) Check the hose and tube for cracks, hole and damage.

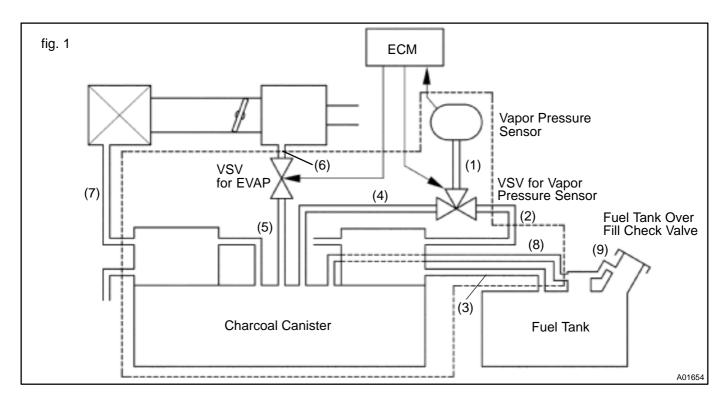

	OK	
\leq		/

Date :

12 Check fuell tank and fuel tank over fill check valve for cracks and damage. (See page EC–2)

OK

It is likely that vehicle user did not properly close fuel tank cap. Please explain to customer how to properly install fuel tank cap.


DTC	P0441	Evaporative Emission Control System Incorrect Purge Flow

DTC	Evaporative Emission Control System Vent Control Malfunction

The vapor pressure sensor and VSV for vapor pressure sensor are used to detect abnormalities in the evaporative emission control system.

The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTCs P0441 and P0446 are recorded by the ECM when evaporative emissions leak from the components within the dotted line in fig. 1 below, or when there is a malfunction in either the VSV for EVAP, the VSV for vapor pressure sensor, or in the vapor pressure sensor itself.

DTC No.	DTC Detecting Condition	Trouble Area	
	Pressure in charcoal canister does not drop during purge con- trol (2 trip detection logic)		
P0441	During purge cut–off, pressure in charcoal canister is very low compared with atmospheric pressure (2 trip detection logic)	 Open or short in VSV circuit for EVAP Open or short in VSV circuit for vapor pressure sensor Open or short in vapor pressure sensor circuit VSV for EVAP VSV for vapor pressure sensor Vapor pressure sensor Vacuum hose cracks, holed blocked, damaged or disconnected ((1), (4), (5),(6) and (7) in fig. 1) Charcoal canister cracks, holed or damaged Fuel tank over fill check valve cracked or damaged 	
	When VSV for vapor pressure sensor is OFF, ECM judges that there is no continuity between vapor pressure sensor and charcoal canister (2 trip detection logic)		
P0446	When VSV for vapor pressure sensor is ON, ECM judges that there is no continuity between vapor pressure sensor and fuel tank (2 trip detection logic)		
	After purge cut off operates, pressure in charcoal canister is maintained at atmospheric pressure (2 trip detection logic)		

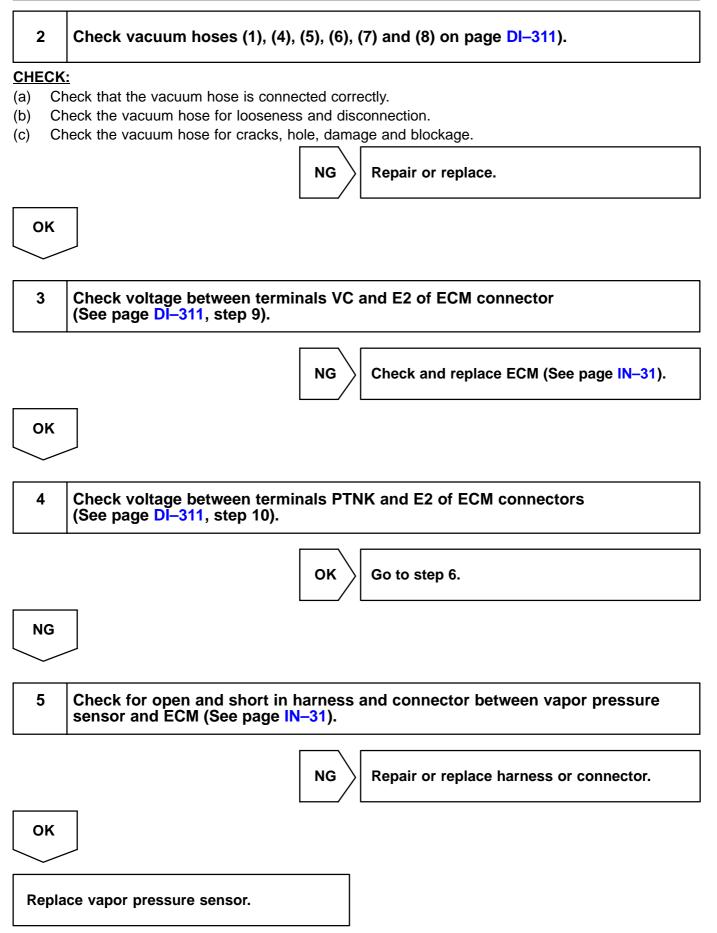
WIRING DIAGRAM

Refer to DTC P0440 (Evaporative Emission Control System Malfunction) on page DI–311 for the WIRING DIAGRAM.

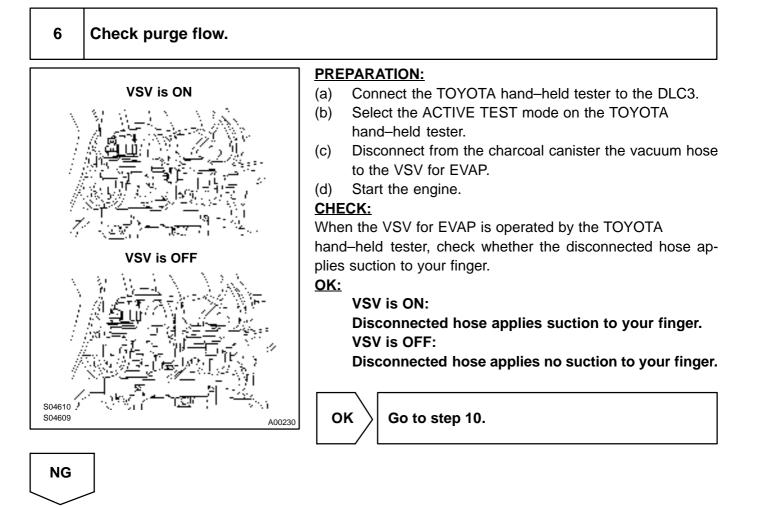
INSPECTION PROCEDURE

HINT:

- If DTCs P0441, P0446, P0450 or P0451 is output after DTC P0440, first troubleshoot DTCs P0441, P0446, P0450 or P0451. If no malfunction is detected, troubleshoot DTC P0440 next.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the VSV for EVAP, charcoal canister and vapor pressure sensor.


TOYOTA hand-held tester

1	Check VSV connector for EVAP, VSV connector for vapor pressure sensor and
	vapor pressure sensor connector for looseness and disconnection.


NG

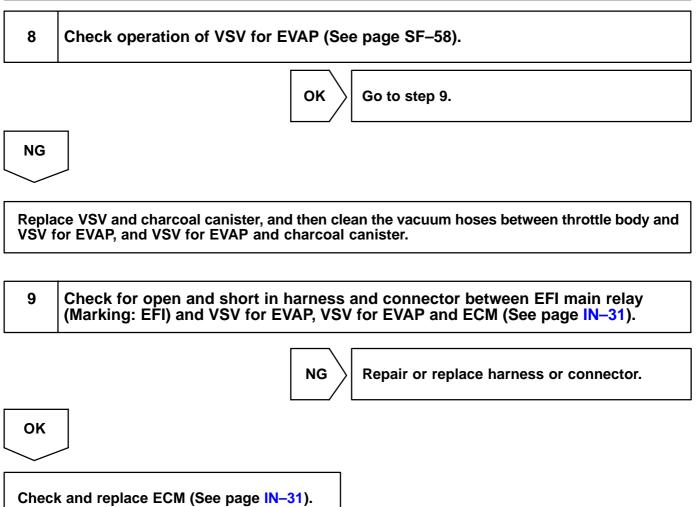
Repair or connect VSV or sensor connector.

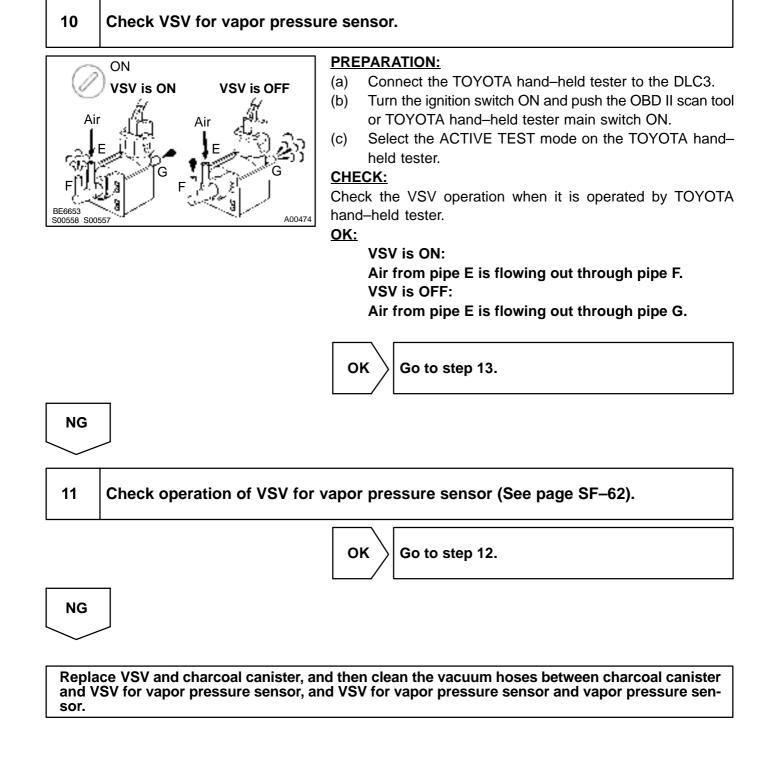
οк

DIAGNOSTICS - ENGINE (1MZ-FE)

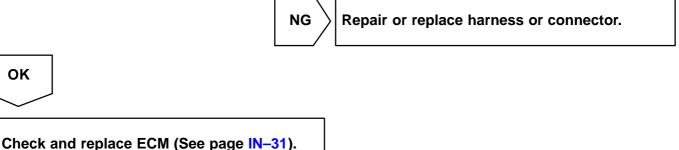
7 Check vacuum hoses between intake manifold and VSV for EVAP, and VSV for EVAP and charcoal canister.

CHECK:

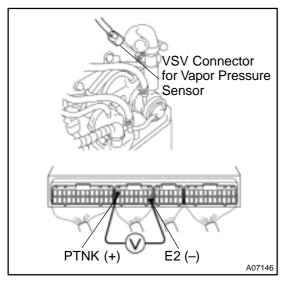

- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole, damage and blockage.



Repair or replace.


ΟΚ

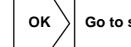
DI-322



12 Check for open and short in harness and connector between EFI main relay (Marking: EFI) and VSV for vapor pressure sensor, and VSV for vapor pressure sensor and ECM (See page IN–31).

13 When VSV connector for vapor pressure sensor is disconnected and VSV for EVAP is ON, measure voltage between terminals PTNK and E2 of ECM connectors.

PREPARATION:


- (a) Connect the TOYOTA hand-held tester to the DLC3.
- (b) Disconnect the VSV connector for vapor pressure sensor.
- (c) Select the ACTIVE TEST mode on the TOYOTA hand-held tester.
- (d) Start the engine.

CHECK:

Measure voltage between terminals PTNK and E2 of ECM connectors. Using the TOYOTA hand-held tester when VSV for EVAP is ON, .

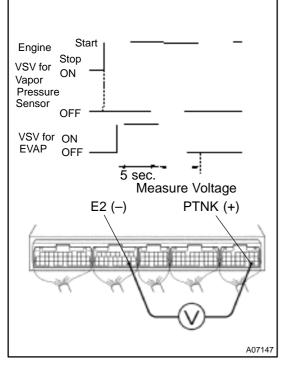
<u> 0K:</u>

Voltage: 2.0 V or less


Go to step 15.

NG

14 Check vacuum hoses between charcoal canister and VSV for vapor pressure sensor, and vapor pressure sensor and VSV for vapor pressure sensor.

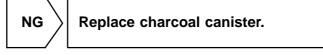

CHECK:

- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole, damage and blockage.

OK

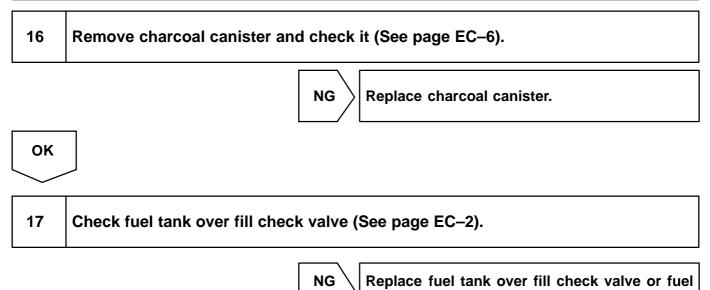
15 Check charcoal canister.

PREPARATION:


- (a) Connect the TOYOTA hand-held tester to the DLC3.
- (b) Remove the fuel tank cap.
- (c) Disconnect the VSV connector for vapor pressure sensor.
- (d) Select the ACTIVE TEST mode on the TOYOTA hand-held tester.
- (e) Start the engine.
- (f) VSV for EVAP is ON by the TOYOTA hand-held tester and remains on for 5 sec.

CHECK:

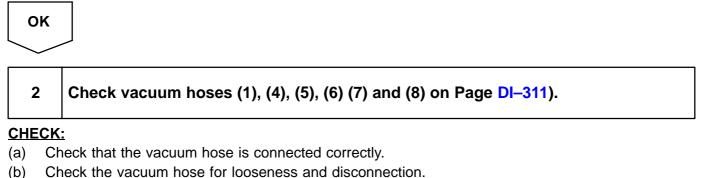
Measure voltage between terminals PTNK and E2 of ECM connectors 5 sec. after switching VSV for EVAP from ON to OFF.


<u>OK:</u>

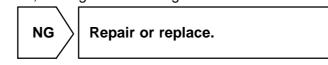
Voltage: 2.5 V or less

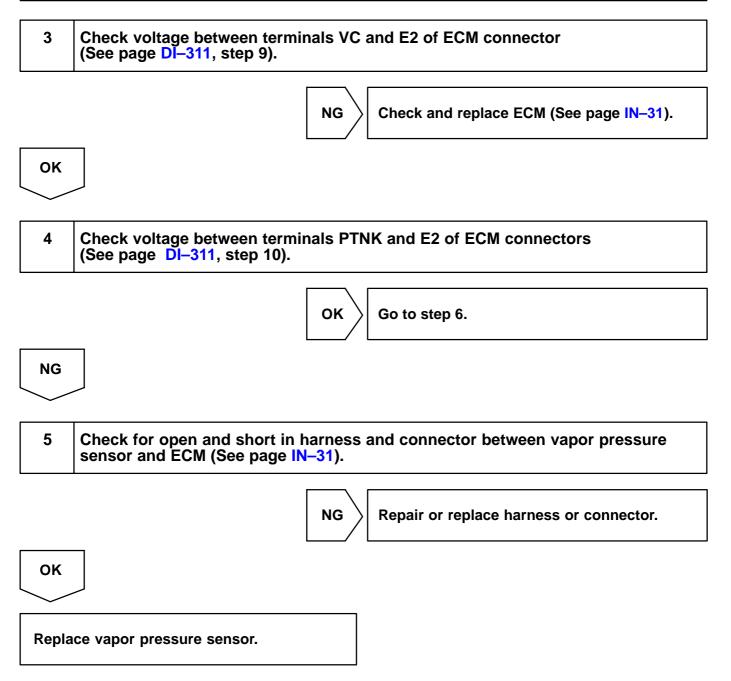
ΟΚ

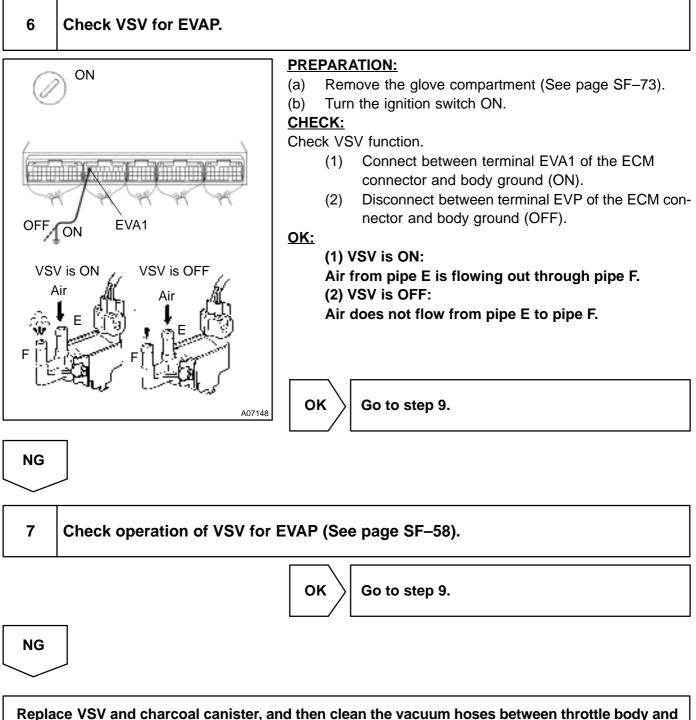
DI-326


tank.

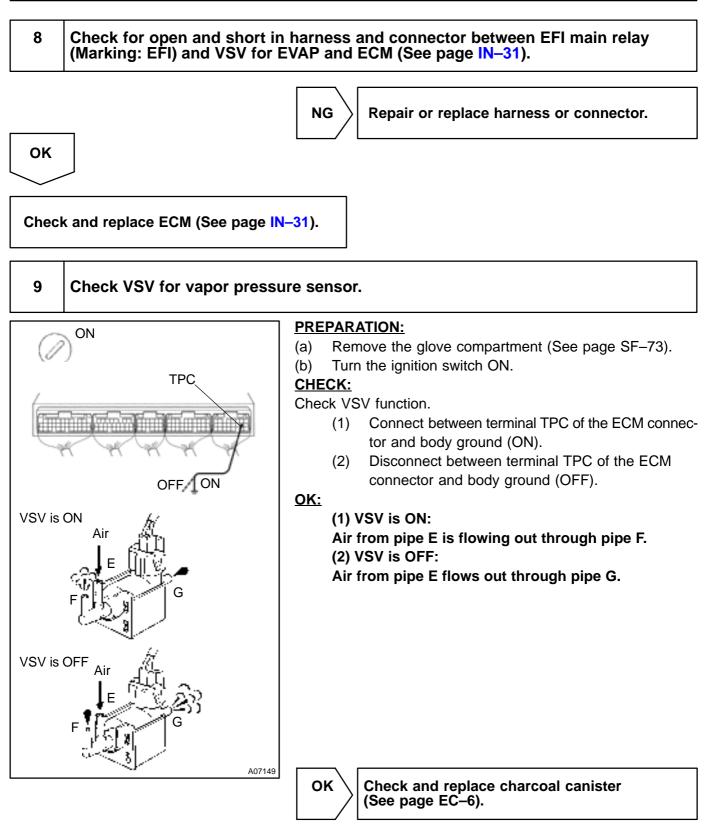
ОК		
Check	and replace ECM (See page IN–31).	


OBD II scan tool (excluding TOYOTA hand-held tester)



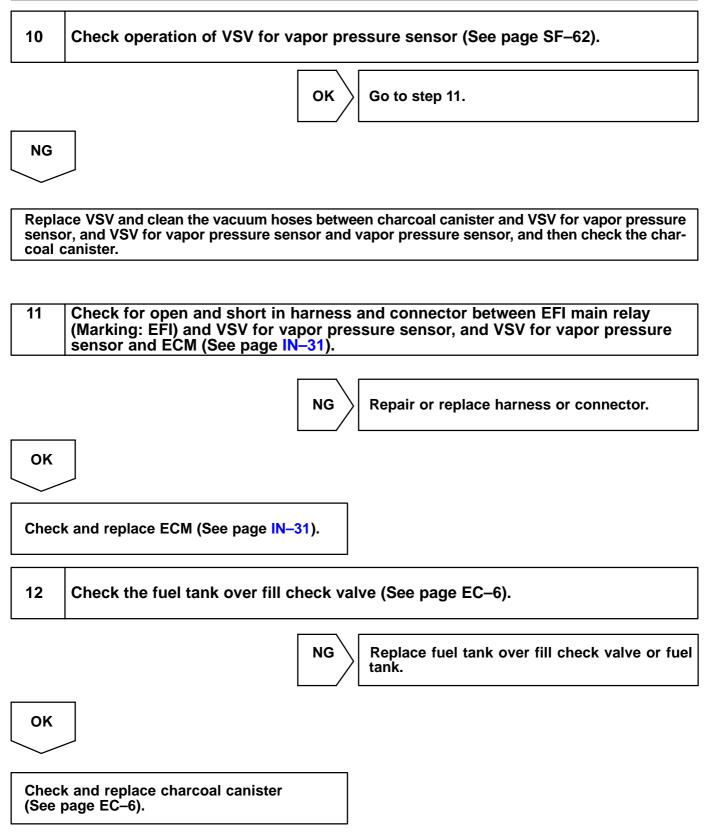


(c) Check the vacuum hose for cracks, hole, damage and blockage.


OK

VSV for EVAP, and VSV for EVAP and charcoal canister.

563



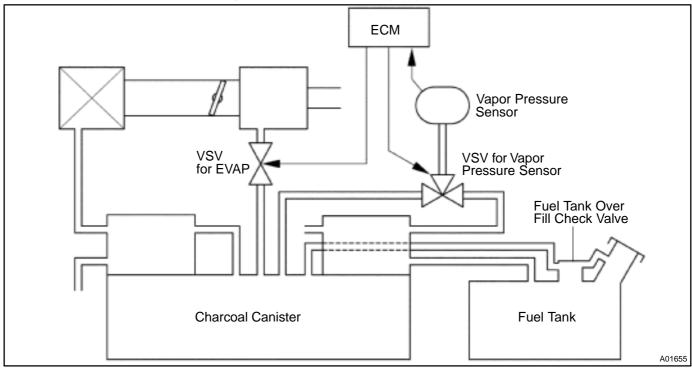
NG

564

DI-329

DI-330

DTC		Evaporative Emission Control System Pressure Sensor Malfunction
-----	--	--


DTC	Evaporative Emission Control System Pressure Sensor Range/Performance

CIRCUIT DESCRIPTION

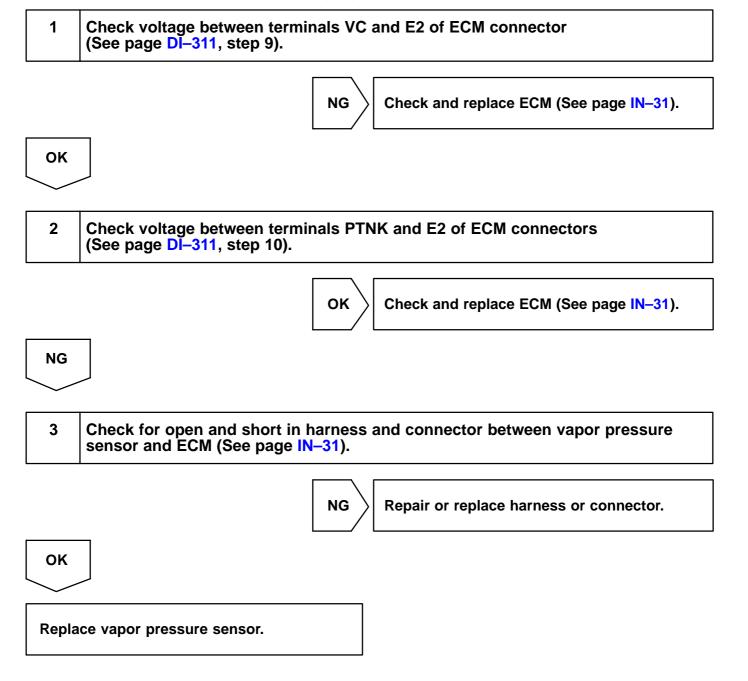
The vapor pressure sensor and VSV for vapor pressure sensor are used to detect abnormalities in the evaporative emission control system.

The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTC P0450 or p0451 is recorded by the ECM when the vapor pressure sensor malfunction.

DTC No.	DTC Detecting Condition	Trouble Area	
P0450	10 seconds or more after engine starting condition (a) or (b) continues for 7 seconds or more: (2 trip detection logic) (a) Vapor Pressure Sensor Value < -3.5 kPa (-26 mmHg, -1.0 in.Hg) (b) Vapor Pressure Sensor Value ~ 1.5 kPa (15 mmHg, 0.4 in.Hg)	 Open or short in vapor pressure sensor circuit 	
P451	Vapor pressure sensor output extremely changes under conditions of (a), (b) and (c): (2 trip detection logic) (a) Vehicle speed: 0 km/h (0 mph) (b) Engine speed: Idling (c) VSV for vapor pressure sensor is ON.	 Vapor pressure sensor ECM 	

DI1K5-03


WIRING DIAGRAM

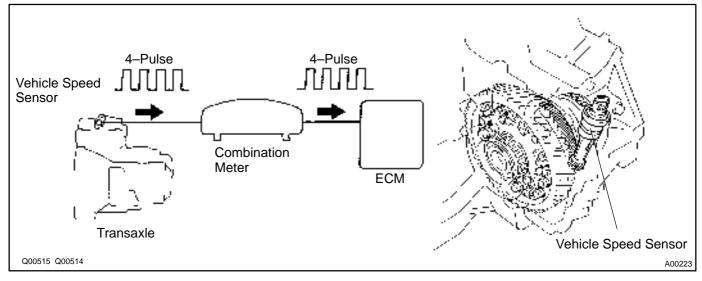
Refer to DTC P0440 (Evaporative Emission Control Malfunction) on page DI-311.

INSPECTION PROCEDURE

HINT:

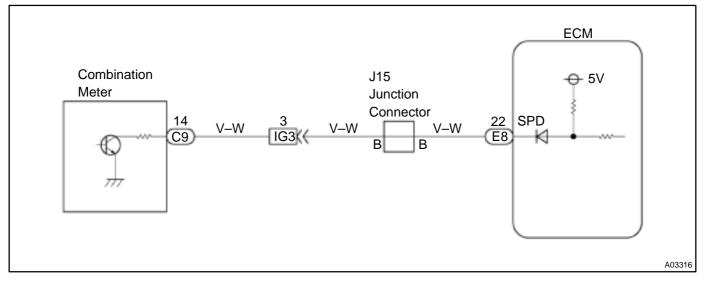
- If DTCs P0441, P0446, P0450 or P0451 is output after DTC P0440, first troubleshoot DTCs P0441, P0446 ,P0450 or P0451. If no malfunction is detected, troubleshoot DTC P0440 next.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the VSV for EVAP, charcoal canister and vapor pressure sensor.

DI082-06


DTC

P0500

Vehicle Speed Sensor Malfunction


CIRCUIT DESCRIPTION

The vehicle speed sensor outputs a 4–pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. After this signal is converted into a more precise rectangular waveform by the waveform shaping circuit inside the combination meter, it is then transmitted to the ECM. The ECM determines the vehicle speed based on the frequency of these pulse signals.

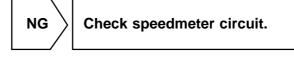
DTC No.	DTC Detecting Condition	Trouble Area
	No vehicle speed sensor signal to ECM under conditions (a) and (b): (2 trip detection logic) (a) Park/neutral position switch is OFF (b) Vehicle is being driven	 Open or short in vehicle speed sensor circuit Vehicle speed sensor Combination meter ECM

WIRING DIAGRAM

INSPECTION PROCEDURE

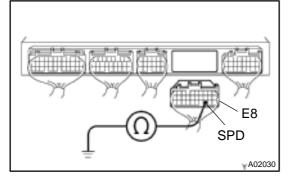
HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.


1

Check operation of speedometer.

CHECK:


Drive the vehicle and check if the operation of the speedometer in the combination meter is normal. HINT:

The vehicle speed sensor is operating normally if the speedmeter display is normal.

OK

2 Check for short in harness and connector between terminal SPD of ECM and body ground (See page IN–31).

PREPARATION:

- (a) Remove the glove compartment (See page SF-73).
- (b) Disconnect the E8 connector of ECM.

CHECK:

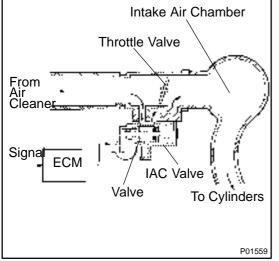
Check continuity between terminal SPD of ECM and body ground.

<u>OK:</u>

No continuity (1 M Ω or higher)

Repair or replace harness or connector.

OK

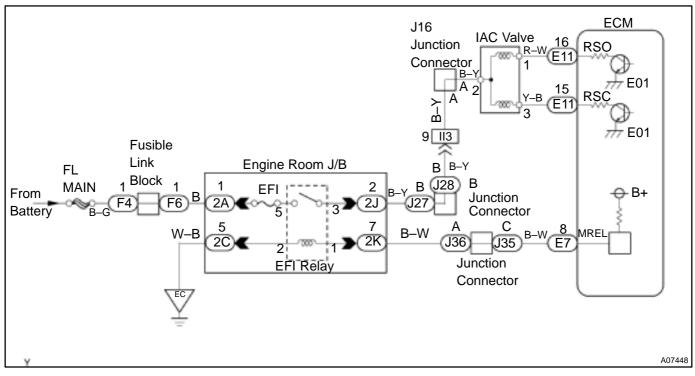

3 Check voltage between terminal SPD of ECM connector and body ground. **PREPARATION:** ON Turn the ignition switch ON. (a) Disconnect the E8 connector of ECM. (b) CHECK: ĬΠ Measure voltage between terminal SPD of the ECM connector and body ground. E8 OK: Voltage: 9 ~ 14 V SPD (+) A02029 NG Check for open in harness and connector between junction connector (J15) and ECM (See page IN-31). ΟΚ 4 Check for open in harness and connector between junction connector (J14) and combination meter (See page IN-31). NG Repair or replace harness or connector. OK Check and replace ECM (See page IN-31).

DTC

P0505

Idle Control System Malfunction

CIRCUIT DESCRIPTION


The rotary solenoid type IAC valve is located in front of the intake air chamber and intake air bypassing the throttle valve is directed to the IAC valve through a passage.

In this way the intake air volume bypassing the throttle valve is regulated, controlling the engine speed.

The ECM operates only the IAC valve to perform idle–up and provide feedback for the target idling speed.

DTC No.	DTC Detecting Condition	Trouble Area
P0505	Idle speed continues to vary greatly from target speed (2 trip detection logic)	 IAC valve is stuck or closed Open or short in IAC valve circuit Open or short in A/C signal circuit
		•Air intake (hose loose)
		•ECM

WIRING DIAGRAM

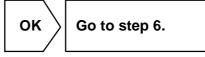
INSPECTION PROCEDURE

HINT:

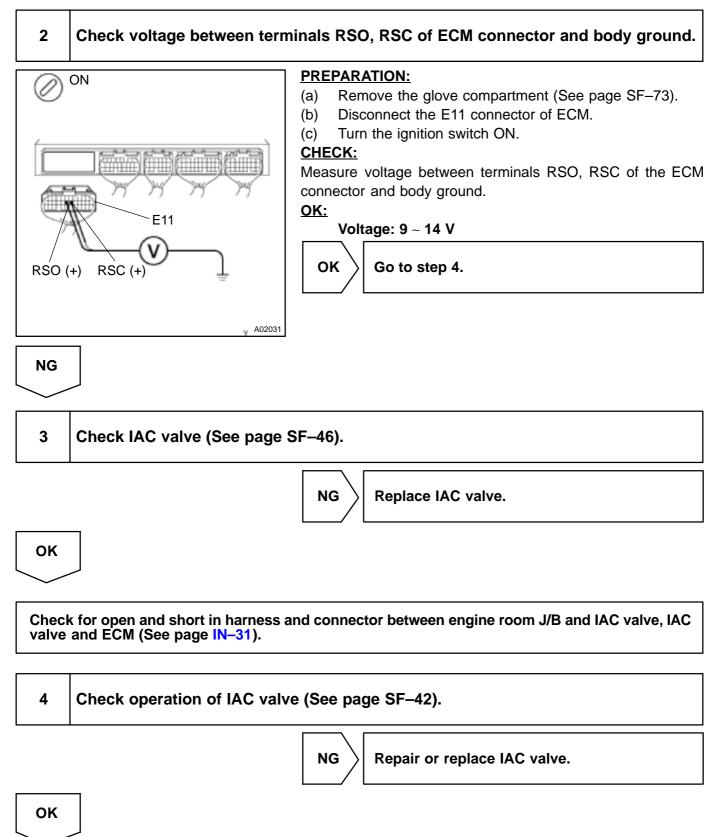
Read freeze frame data using TOYOTA hand held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air–fuel ratio lean or rich, etc. at the time of the malfunction.

Check engine idle speed.

PREPARATION:


- (a) Warm up engine to normal operating temperature.
- (b) Switch off all accessories.
- (c) Switch off air conditioning.
- (d) Shift transmission into "N" or neutral position.
- (e) Connect the OBD II scan tool or TOYOTA hand-held tester to DLC3 on the vehicle.
- (f) Using SST, connect terminals TE1 and E1 of the DLC3.

CHECK:


Check the difference of engine speed between the ones less than 5 sec. and more than 5 sec. after connecting terminals TE1 and E1 of the DLC1.

<u> 0K:</u>

Difference of engine speed: More than 100 rpm

	NG	
-		

5	Check the blockage of IAC valve and the passage to bypass the throttle valve.
	NG Repair or replace IAC valve.
ОК	
Chec	k and replace ECM (See page IN–31).
6	Check for A/C signal circuit (See page AC-88).
	NG Repair or replace.
ОК	
Chec (See	k air induction system page SF–1).

DTC	P1130	A/F Sensor Circuit Range/Performance Mal- function (Only for California Spec.)
-----	-------	---

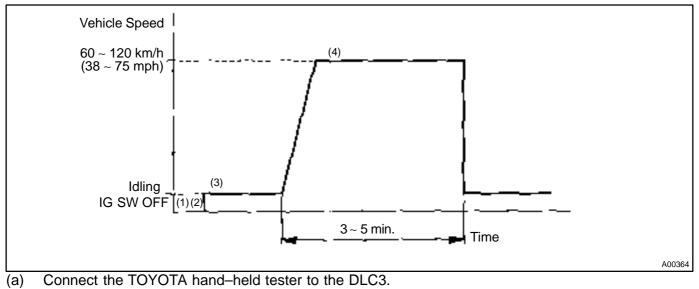
DTC		A/F Sensor Circuit Range/Performance Mal- function (Only for California Spec.)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Temp. for Closed Loop Fuel Control (Only for California Spec.)) on Page DI-249.

DTC No.	DTC Detecting Condition	Trouble Area	
	Voltage output* of A/F sensor remains at 3.8 V or more, or 2.8 V or less, during engine running after engine is warmed up (2 trip detection logic) *: Output value changes at inside of ECM only.		
P1130 P1150	Voltage output* of A/F sensor does not change from 3.30 V, during engine running after engine is warmed up (2 trip detection logic) *: Output value changes at inside of ECM only.	 Open or short in A/F sensor (bank 1, 2 sensor 1) circuit A/F sensor (bank 1, 2 sensor 1) ECM 	
	Open or short in A/F sensor circuit (2 trip detection logic)		

HINT:


- After confirming DTC P1130 or P01150, use the OBD II scan tool or TOYOTA hand-held tester to confirm voltage output of A/F sensor (AFS B1 S1/O2S B1 S1) from "CURRENT DATA".
- The A/F sensor's output voltage and the short-term fuel value can be read using the OBD II scan tool or TOYOTA hand-held tester.
- The ECM controls the voltage of AFR/AFL~ and AFR/AFL> terminals of ECM to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held tester.
- OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the TOYOTA hand-held tester.

WIRING DIAGRAM

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI–249.

DI1K6-03

CONFIRMATION DRIVING PATTERN

(b) Switch the TOYOTA hand-held tester from normal mode to check mode (See page DI-197).

(c) Start the engine and warm it up with all accessory switches OFF.

(d) Drive the vehicle at 60 \sim 120 km/h (38 \sim 75 mph) and engine speed at 1,600 \sim 3,200 rpm for 3 \sim 5 min. HINT:

If a malfunction exists, the MIL will light up during step (4).

NOTICE:

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a TOYOTA hand-held tester, turn the ignition switch OFF after performing steps (3) and (4), then perform steps (3) and (4) again.

INSPECTION PROCEDURE

HINT:

- If DTC P1130 is displayed, check Bank 1 Sensor 1 circuit.
- If DTC P1150 is displayed, check Bank 2 Sensor 1 circuit.
- Read frame freeze data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

1 Are there any other codes (besides DTC P1130, P1150) being output?

Go to relevant DTC chart.

NO

Connect the OBDII scan tool or TOYOTA hand-held tester and read value for
voltage output of A/F sensors (bank1, 2 sensor1).

PREPARATION:

Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (a)

Warm up the A/F sensors (bank1, 2 sensor1) with the engine at 2,500 rpm for approx. 90 sec. (b)

CHECK:

Read voltage of A/F sensors (bank 1, 2 sensor 1) on the screen of OBD II scan tool or TOYOTA hand-held tester when you perform all the following conditions.

HINT:

The voltage of AFR~ and AFL~ terminals of ECM is fixed at 3.3 V and the voltage of AFR> and AFL> terminals is fixed at 3.0 V. Therefore, it is impossible to check the A/F sensors (bank1, 2 sensor1) output voltage at the terminals (AFR \sim , AFL \sim /AFR >, AFL >) of ECM.

OK:

Condition	A/F Sensor Voltage value
Engine idling	
Engine racing	•Not remains at 3.30 V (*0.660 V) •Not remains at 3.8 V (*0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close.	 Not remains at 2.8 V (*0.56 V) or less *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is • below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is above 3.8 V (* 0.76 V), it is normal.
- If output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be open.
- If output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.8 V (* 0.76V) or more, or 2.8 V (*0.56 V) or less even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).

NG

3	Check for open and short in harness and connector between ECM and A/F sensors (bank 1, 2 sensor 1) (See page IN–31).	
	NG Repair or replace harness or connector.	
ОК		
4	Check resistance of A/F sensor heater (See page SF–68).	
	NG Replace A/F sensor.	
ОК		
5	Check air induction system (See page SF–1).	
	NG Repair or replace.	
ОК		
6	Check EGR system (See page EC–11).	
	NG Replace EGR system.	
ОК		
7	Check fuel pressure (See page SF–21).	
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).	
ОК		

578

DI-344

8	Check injector injection (See page SF-25).
	NG Replace injector.
ОК	
Repla	ce A/F sensors (bank1, 2 sensor1).
9	Perform confirmation driving pattern.
Go	
10	Are there DTC P1130 and/or P1150 being output again ?
	YES Check and replace ECM (See page IN-31.).
NO	
11	Did vehicle runs out of fuel in the past ?
	NO Check for intermittent problems (See page DI–197).
YES	
DTC F	P1130 and /or P1150 is caused by running out of fuel.

579

DTC		A/F Sensor Circuit Response Malfunction (Bank 1 Sensor 1) (Only for California Spec.)
-----	--	--

DTC	A/F Sensor Circuit Response Malfunction (Bank 2 Sensor 1) (Only for California Spec.)
	(Dank 2 Sensor T) (Only for California Spec.)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI-249.

DTC No.	DTC Detecting Condition	Trouble Area
P1133 P1155	After engine is warmed up and during vehicle driving at engine speed 1,400 rpm or more and vehicle speed 60 km/h (38 mph) or more, if response characteristic of A/F sensor becomes deteriorated (2 trip detection logic)	 A/F sensors (bank 1, 2 sensor 1)

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction. Г

1 Are there any other codes (besides DTC P1133, P1153) being	output?
--	---------

Go to relevant DTC chart.

NO

Т

DI1K7-03

Connect the OBDII scan tool or TOYOTA hand-held tester and read value for
voltage output of A/F sensors (bank1, 2 sensor1).

PREPARATION:

Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3. (a)

Warm up the A/F sensors (bank1, 2 sensor1) with the engine at 2,500 rpm for approx. 90 sec. (b)

CHECK:

Read voltage of A/F sensors (bank 1, 2 sensor 1) on the screen of OBD II scan tool or TOYOTA hand-held tester when you perform all the following conditions.

HINT:

The voltage of AFR~ and AFL~ terminals of ECM is fixed at 3.3 V and the voltage of AFR> and AFL> terminals is fixed at 3.0 V. Therefore, it is impossible to check the A/F sensors (bank1, 2 sensor1) output voltage at the terminals (AFR \sim , AFL \sim /AFR >, AFL >) of ECM.

OK:

Condition	A/F Sensor Voltage value
Engine idling	
Engine racing	•Not remains at 3.30 V (*0.660 V) •Not remains at 3.8 V (*0.76 V) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close.	 Not remains at 2.8 V (*0.56 V) or less *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is • below 2.8 V (* 0.56 V), it is normal.
- During fuel cut, there is a case that the output voltage of A/F sensors (bank1, 2 sensor1) is above 3.8 V (* 0.76 V), it is normal.
- If output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.30 V (* 0.660 V) even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be open.
- If output voltage of A/F sensors (bank1, 2 sensor1) remains at 3.8 V (* 0.76V) or more, or 2.8 V (*0.56 V) or less even after performing all the above conditions, A/F sensors (bank1, 2 sensor1) circuit may be short.
- *: When you use the OBD II scan tool (excluding TOYOTA hand-held tester).

NG	

3	Check for open and short in harness and connector between ECM and A/F sensors (bank 1, 2 sensor 1) (See page $IN-31$).	
	NG Repair or replace harness or connector.	
ОК		
4	Check resistance of A/F sensor heater (See page SF–68).	
	NG Replace A/F sensor.	
ОК		
5	Check air induction system (See page SF–1).	
	NG Repair or replace.	
ОК		
6	Check EGR system (See page EC–11).	
	NG Replace EGR system.	
ОК		
7	Check fuel pressure (See page SF–21).	
	NG Check and repair fuel pump, fuel pipe line and filter (See page SF–1).	
ОК		

582

8	Check injector injection (See page SF–25).			
	NG Replace injector.			
ОК				
Repla	ce A/F sensors (bank1, 2 sensor1).			
9	Perform confirmation driving pattern (See page DI–197).			
Go				
10	10 Are there DTC P1133 and/or P1153 being output again ?			
	YES Check and replace ECM (See page IN-31).			
NO				
11	Did vehicle runs out of fuel in the past ?			
	NO Check for intermittent problems (See page DI–197).			
YES				
DTC	DTC P1133 and /or P1153 is caused by running out of fuel.			

DTC	P1135	A/F Sensor Heater Circuit Malfunction (Bank 1 Sensor 1) (Only for California Spec.)
-----	-------	--

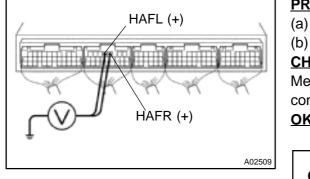
DTC	P1155	A/F Sensor Heater Circuit Malfunction (Bank 2 Sensor 1) (Only for California Spec.)

CIRCUIT DESCRIPTION

Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI-249.

DTC No.	DTC Detecting Condition	Trouble Area	
P1135	When heater operates, heater current exceeds 8 A (2 trip detection logic)	 Open or in heater circuit of A/F sensors (bank 1, 2 sensor 1) 	
P1155	Heater current of 0.25 A or less when heater operates (2 trip detection logic)	•A/F sensors (bank 1, 2 sensor 1) heater •ECM	

WIRING DIAGRAM


Refer to DTC P0125 (Insufficient Coolant Temp. for Closed Loop Fuel Control (Only for California Spec.)) on page DI-249.

INSPECTION PROCEDURE

HINT

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

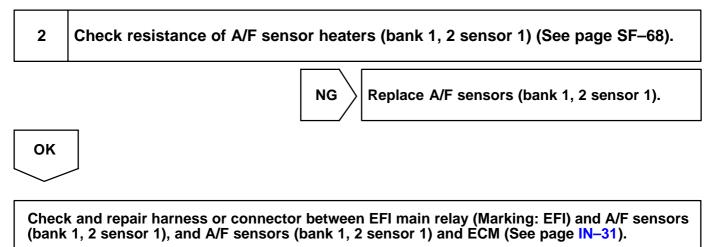
PREPARATION:

- Remove glove compartment (See page SF-73).
- (b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminals HAFR, HAFL of the ECM connector and body ground.

<u>OK:</u>

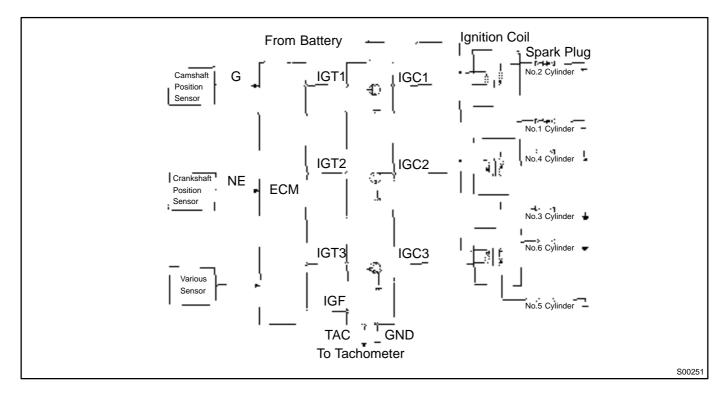

Voltage: 9 ~ 14 V

Check and replace ECM (See page IN-31).

NG

DI1K8-04

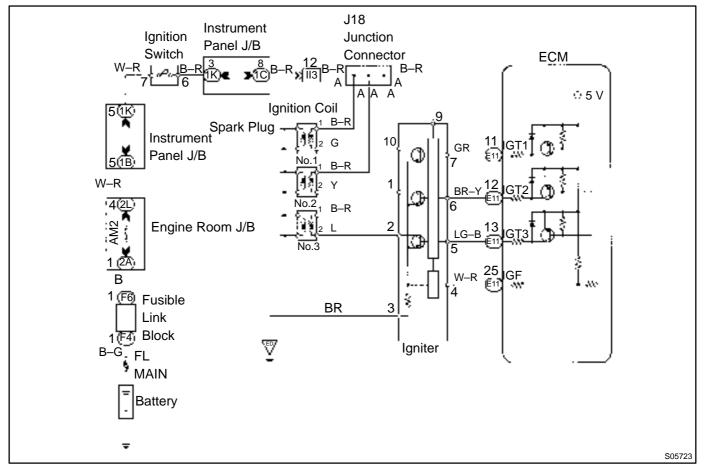
P1300


Igniter Circuit Malfunction

CIRCUIT DESCRIPTION

DTC

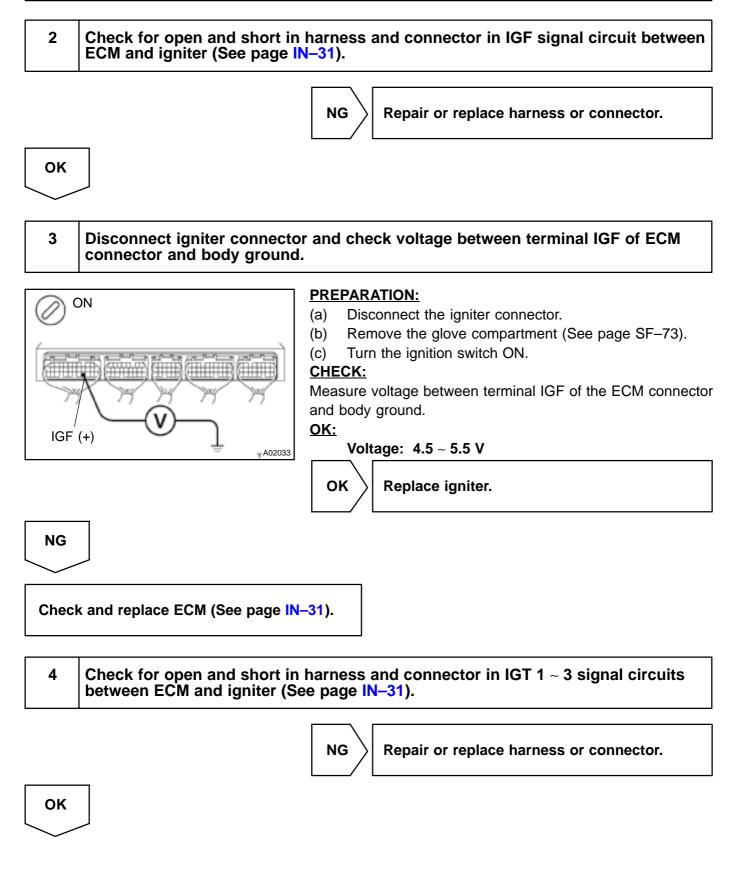
A DIS (Direct Ignition System) has been adopted. The DIS improves the ignition timing accuracy, reduces high–voltage loss, and enhances the overall reliability of the ignition system by eliminating the distributor. The DIS is a 2–cylinder simultaneous ignition system which ignites 2 cylinders simultaneously with one ignition coil. In the 2–cylinder simultaneous ignition system, each of the 2 spark plugs is connected to the end of the secondary winding. High voltage generated in the secondary winding is applied directly to the spark plugs. The sparks of the 2 spark plugs pass simultaneously from the center electrode to the ground electrode.


The ECM determines ignition timing and outputs the ignition signals (IGT) for each cylinder. Based on IGT signals, the igniter controls the primary ignition signals (IGC) for all ignition coils. At the same time, the igniter also sends an ignition confirmation signal (IGF) as a fail–safe measure to the ECM.

DTC No.	DTC Detecting Condition	Trouble Area
P1300	Condition (a) is repeated 3 times consecutively during 6 consecutively IGT signals while engine is running (a) IGF signal is not input to ECM for 2 or more ignitions	 Open or short in IGF or IGT circuit from igniter to ECM Igniter ECM

DI084-06

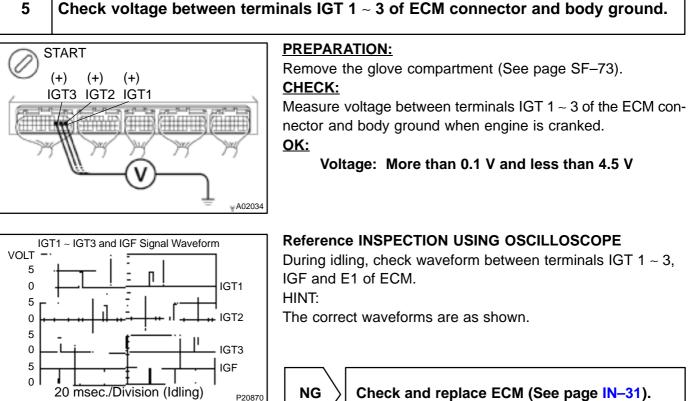
WIRING DIAGRAM



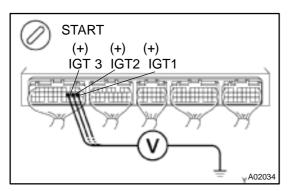
INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.


1	Check spark plug and spark of misfiring cylinder (See page DI–276).
	NG Go to step 4.
ок	

588


DI-353

5

OK

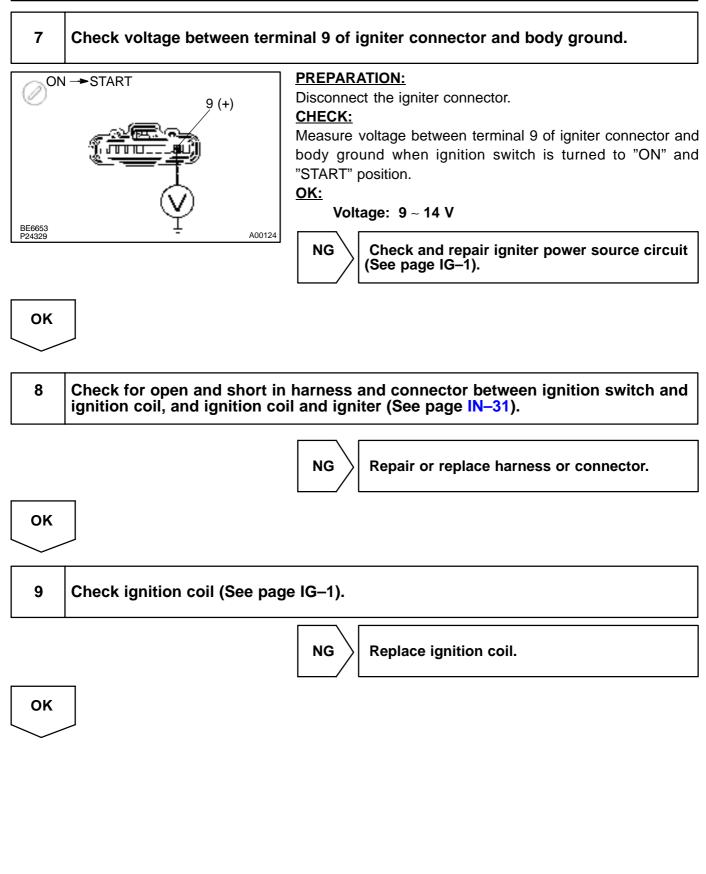
Disconnect igniter connector and check voltage between terminals IGT 1 \sim 3 of 6 ECM connector and body ground.

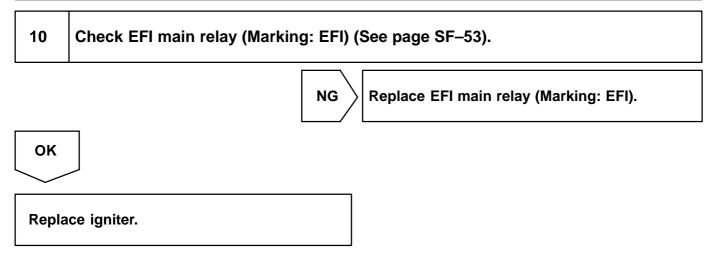
PREPARATION:

- Disconnect the igniter connector. (a)
- (b) Remove the glove compartment (See page SF-73).

CHECK:

Measure voltage between terminals IGT 1 ~ 3 of the ECM connector and body ground when engine is cranked.


<u>OK:</u>


Voltage: More than 0.1 V and less than 4.5 V

NG

Check and replace ECM (See page IN–31).

DI085-06

DTC P1335 Crankshaft Position Sensor Circuit Malfunction (during engine running)

CIRCUIT DESCRIPTION

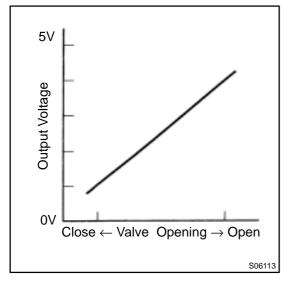
Refer to DTC P0335 (Crankshaft Position Sensor "A" Circuit Malfunction) on page DI-287.

DTC No.	DTC Detecting Condition	Trouble Area
P1335	No crankshaft position sensor signal to ECM with engine speed 1,000 rpm or more	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Starter ECM

WIRING DIAGRAM

Refer to DTC P0335 (Crankshaft Position Sensor "A" Circuit Malfunction) on page DI-287.

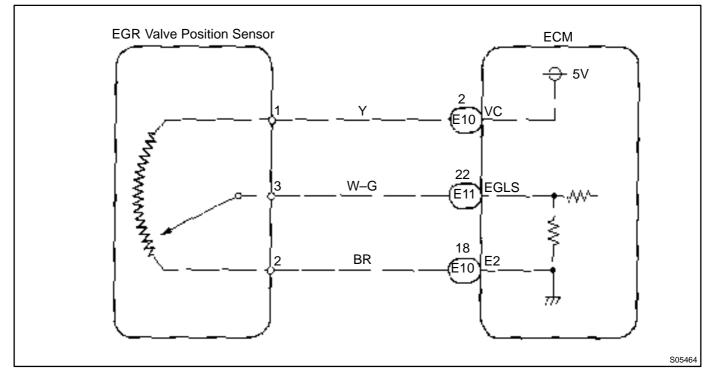
INSPECTION PROCEDURE


Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

Refer to DTC P0335 (Crankshaft Position Sensor "A" Circuit Malfunction) on page DI-287.

DI086-06

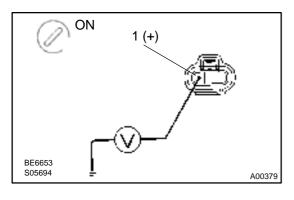
DTC	P1410	EGR Valve Position Sensor Circuit Malfunction


CIRCUIT DESCRIPTION

The EGR valve position sensor is mounted on the EGR valve and detects the lift amount of EGR valve. The lift amount of EGR valve which is detected by the EGR valve position sensor provides feedback to the ECM to control the lift amount of EGR valve in response to engine operating conditions.

DTC No.	DTC Detecting Condition	Trouble Area
P1410	Open or short in EGR valve position sensor circuit (2 trip detection logic)	 Open or short in EGR valve position sensor circuit EGR valve position sensor ECM

WIRING DIAGRAM



INSPECTION PROCEDURE

HINT:

- If DTCs "P0110" (Intake Air Temp. Circuit Malfunction), "P0115" (Engine Coolant Temp. Circuit Malfunction), "P0120" (Throttle/Pedal Position/Switch "A" Circuit Malfunction), "P1410" (EGR Valve Position Sensor Circuit Malfunction) are output simultaneously, E2 (Sensor Ground) may be open.
- Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

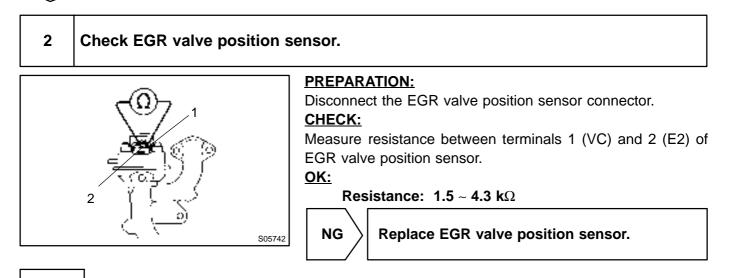
1 Check voltage between terminal VC of wire harness side connector and body ground.

PREPARATION:

- (a) Disconnect the vacuum hose from EGR valve.
- (b) Disconnect the EGR valve position sensor connector.
- (c) Turn the ignition switch ON.

CHECK:

Measure voltage between terminal 1 of wire harness side connector and body ground.


NG

Voltage: 4.5 ~ 5.5 V

 \langle Go to step 4.

ок

OK

3

Check voltage between terminals EGLS and E2 of ECM connectors.

PREPARATION:

- (a) Disconnect the vacuum hose from EGR valve.
- (b) Connect the hand-held vacuum pump to EGR valve.
- (c) Remove the glove compartment (See page SF-73).
- (d) Turn the ignition switch ON.

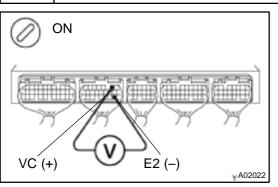
CHECK:

Measure voltage between terminals EGLS and E2 of the ECM connectors.

<u>OK:</u>

Cond			
EGR valve	Vacuum	Voltage	
Fully closed	0 kPa (0 mmHg, 0 in.Hg)	0.4 ~ 1.6 V	
Fully open	17.3 kPa (130 mmHg, 5.12 in.Hg)	3.2 ~ 5.1 V	

NG


Check for open and short in harness and connector between ECM and EGR valve position sensor (EGLS or E2 line).

OK

Check and replace ECM (See page IN-31).

Check voltage between terminals VC and E2 of ECM connector.

PREPARATION:

(a) Remove the glove compartment (See page SF-73).

(b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminals VC and E2 of the ECM connector.

<u>OK:</u>

Voltage: 4.5 ~ 5.5 V

ОК

Check for open and short in harness and connector between ECM and EGR valve position sensor (VC line).

Range/Performance Problem	DTC		EGR Valve Position Sensor Circuit Range/Performance Problem
---------------------------	-----	--	--

CIRCUIT DESCRIPTION

Refer to DTC P1410 (EGR Valve Position Sensor Circuit Malfunction) on page DI-358.

DTC No.	DTC Detecting Condition	Trouble Area
P1411	Conditions (a) and (b) continue for 500 msec. or more: (2 trip detection logic) (a) Engine Coolant Temp. < 5°C (41°F) (b) EGLS ~ 1.65 V or EGLS < 0.35 V	●EGR valve position sensor

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

	1	Are there any other codes (besides DTC P1411) being output?
--	---	---

YES Go to relevant DTC chart.

 \checkmark

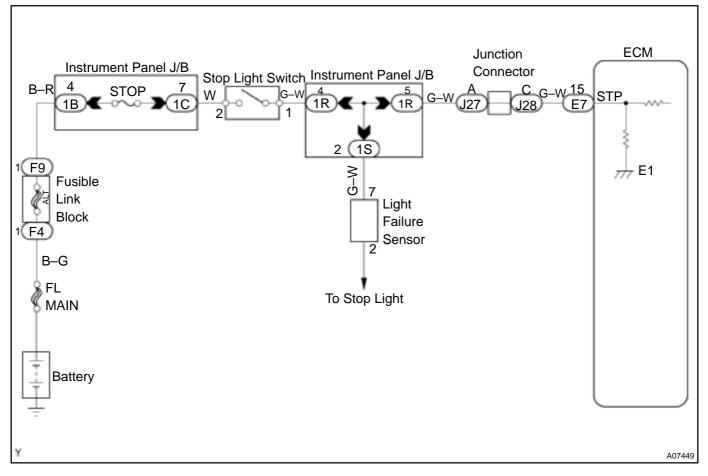
NO

Replace EGR valve position sensor.

597

DI087-06

		1
DTC	P1520	Stop Light Switch Signal Malfunction
		(Only for A/T)

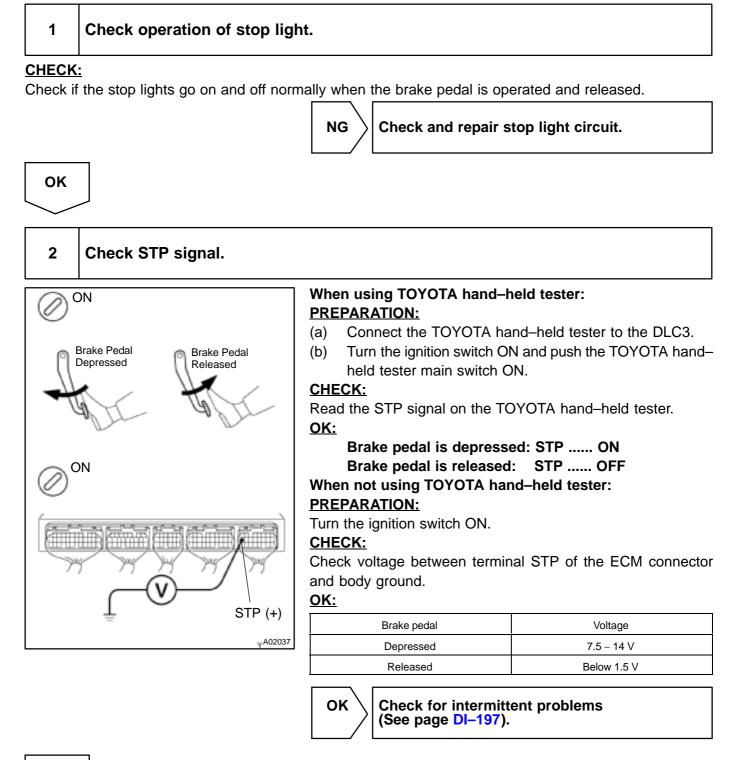

CIRCUIT DESCRIPTION

This signal is used to detect when the brakes have been applied. The STP signal voltage is the same as the voltage supplied to the stop lights.

The STP signal is used mainly to control the fuel cut–off engine speed (The fuel cut–off engine speed is reduced slightly when the vehicle is braking.).

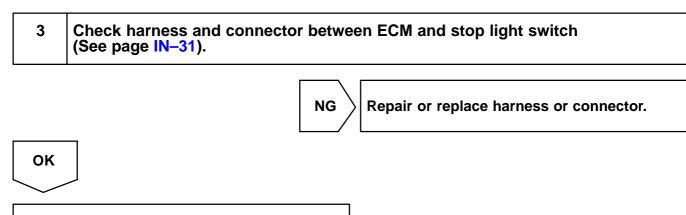
DTC No.	DTC Detecting Condition	Trouble Area
P1520	Stop light switch does not turn off when repeating the driving at 30 km or more 10 times or more after depressing brake (2 trip detection logic)	 Short in stop light switch signal circuit Stop light switch ECM

WIRING DIAGRAM


DI088-06

598

INSPECTION PROCEDURE


HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

NG

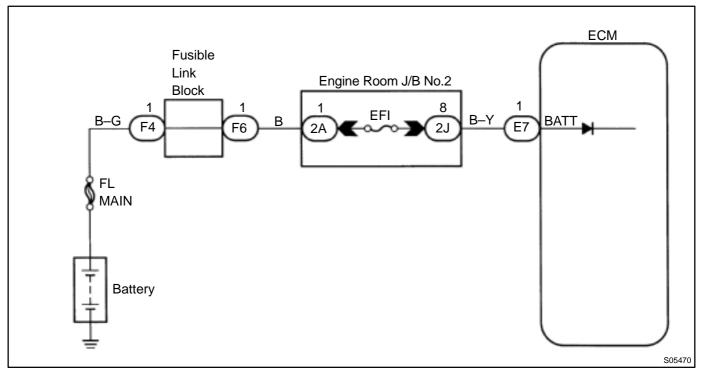
DI-365

Check and replace ECM (See page IN-31).

P1600

ECM BATT Malfunction

CIRCUIT DESCRIPTION

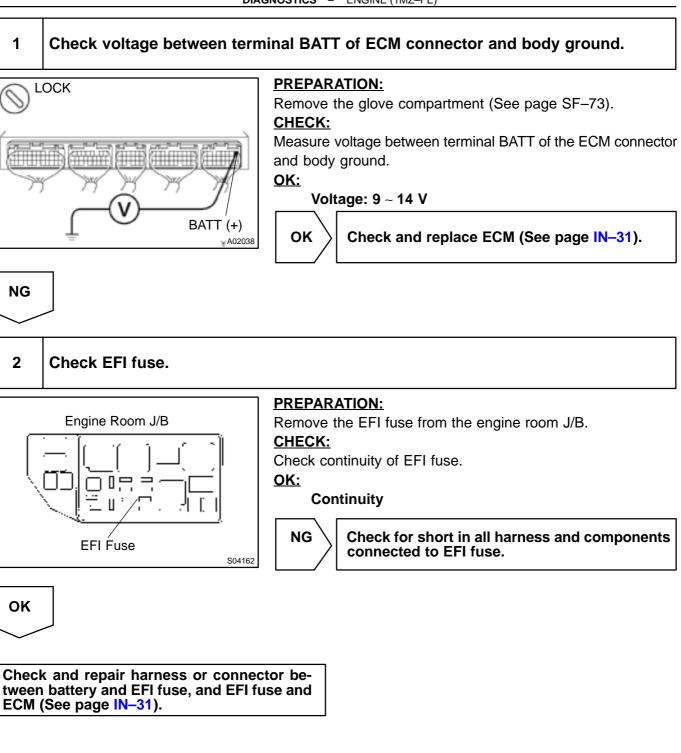

Battery positive voltage is supplied to terminal BATT of the ECM even when the ignition switch is OFF for use by the DTC memory and air-fuel ratio adaptive control value memory, etc.

DTC No.	DTC Detecting Condition	Trouble Area
P1600	Open in back up power source circuit	Open in back up power source circuitECM

HINT:

If DTC P1600 appear, the ECM does not store another DTC.

WIRING DIAGRAM


INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. Because free frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

601

DI089-06

DTC	P1780	Park/Neutral Position Switch Malfunction
-----	-------	--

CIRCUIT DESCRIPTION

The park/neutral position switch go on when the shift lever is in the N or P shift position. When it goes on terminal NSW of the ECM is grounded to body ground via the starter relay, thus the terminal NSW voltage becomes 0V. When the shift lever is in the D, 2, L or R position, the park/neutral position switch goes off, so the voltage of ECM. Terminal NSW becomes battery voltage, the voltage of the ECM internal power source. If the shift lever is moved from the N position to the D position, this signal is used for air–fuel ratio correction and for idle speed control (estimated control), etc.

DTC No.	DTC Detecting Condition	Trouble Area
	2 or more switches are ON simultaneously for "N", "2", "L" and "R" positions (2 trip detection logic)	•Short in park/neutral position switch circuit
P1780	 When driving under conditions (a) and (b) for 30 sec. or more the park/neutral position switch is ON (N position): (2 trip detection logic) (a) Vehicle speed: 70 km/h (44 mph) or more (b) Engine speed: 1,500 ~ NE and 2,500 rpm 	 Short in park/neutral position switch circuit Park/neutral position switch ECM

HINT:

After confirming DTC P1780, use the TOYOTA hand-held tester to confirm the PNP switch signal from "CURRENT DATA".

WIRING DIAGRAM

Refer to DTC P1780 on page DI-479.

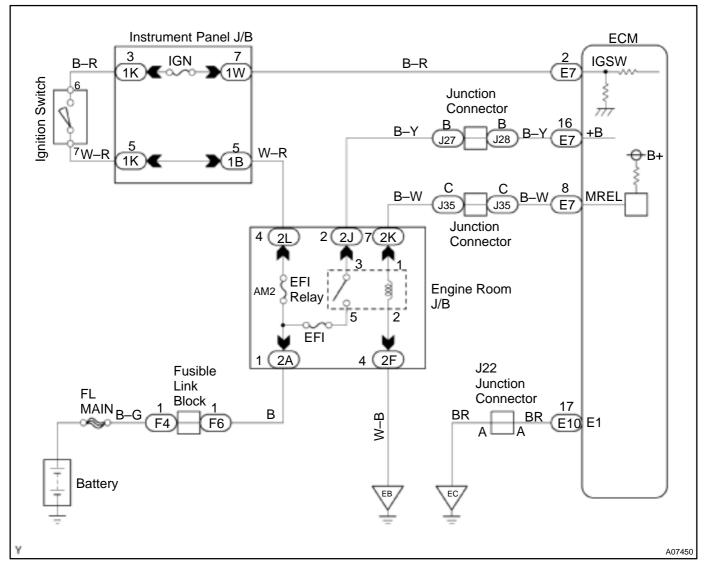
INSPECTION PROCEDURE

Refer to DTC P1780 (Park/Neutral Position Switch Malfunction) on page DI–479. HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool. because freeze frame records the engine conditions when the malfunction is detected, when troubleshooting it is useful for determining whether the vehicle was running or stopped, the engine warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.

DI08A-06

ECM Power Source Circuit

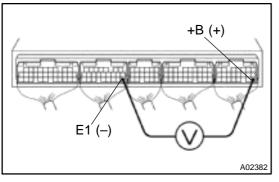

CIRCUIT INSPECTION

When the ignition switch is turned on, battery positive voltage is applied to terminal IGSW of the ECM and the EFI main relay (Marking: EFI) control circuit in the ECM sends a signal to terminal MREL of the ECM switching on the EFI main relay.

This signal causes current to flow to the coil, closing the contacts of the EFI, main relay and supplying power to terminals +B of the ECM.

If the ignition switch is turned off, the ECM continues to switch on the EFI main relay for a maximum of 2 seconds for the initial setting of the IAC valve.

WIRING DIAGRAM


DI4DU-01

DI-370

INSPECTION PROCEDURE

1

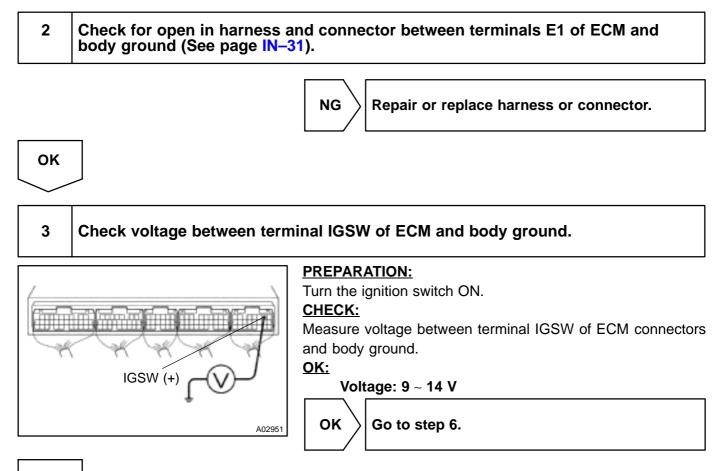
Check voltage between terminals +B and E1 or ECM connectors.

PREPARATION:

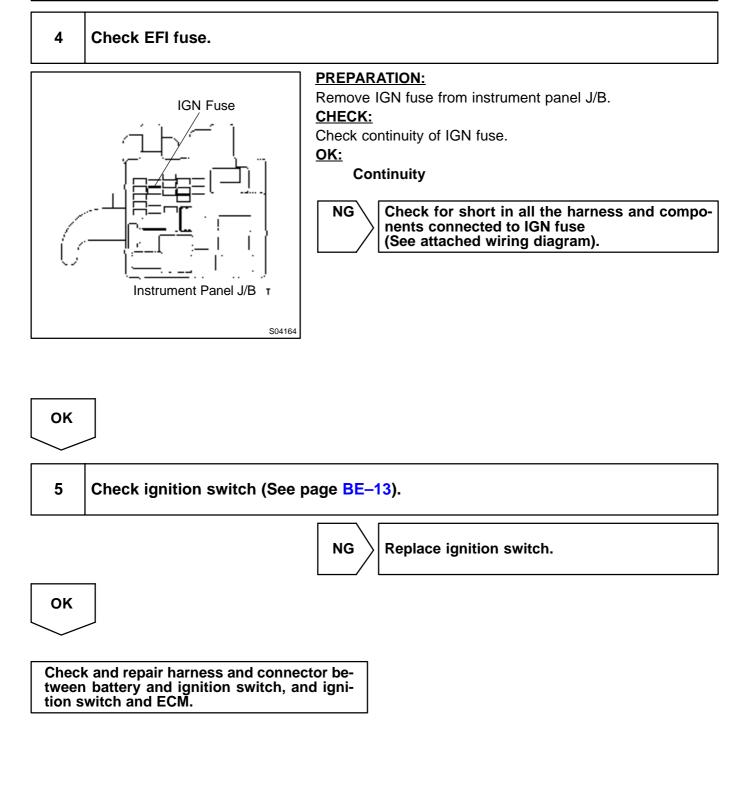
- (a) Remove the glove compartment (See page SF-73).
- (b) Turn the ignition switch ON.

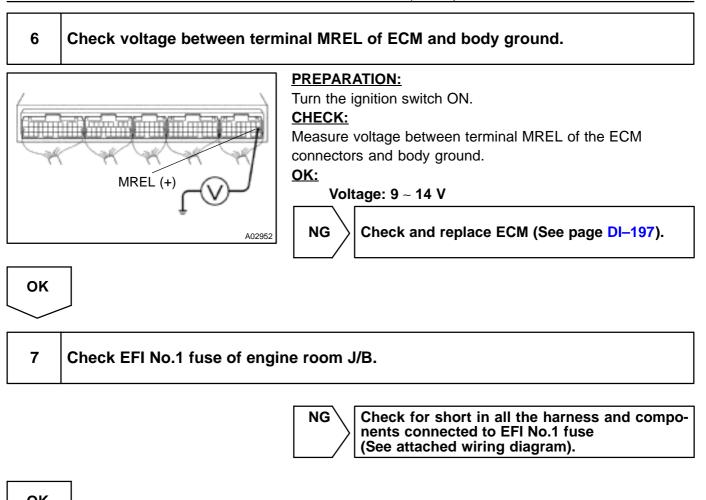
CHECK:

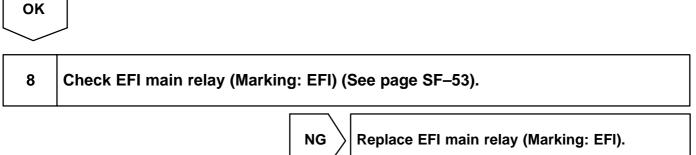
Measure voltage between terminals +B and E1 of the ECM connectors.


<u>OK:</u>

Voltage: 9 ~ 14 V




Proceed to next circuit inspection shown on problem symptoms table (See page DI-221).


NG

NG

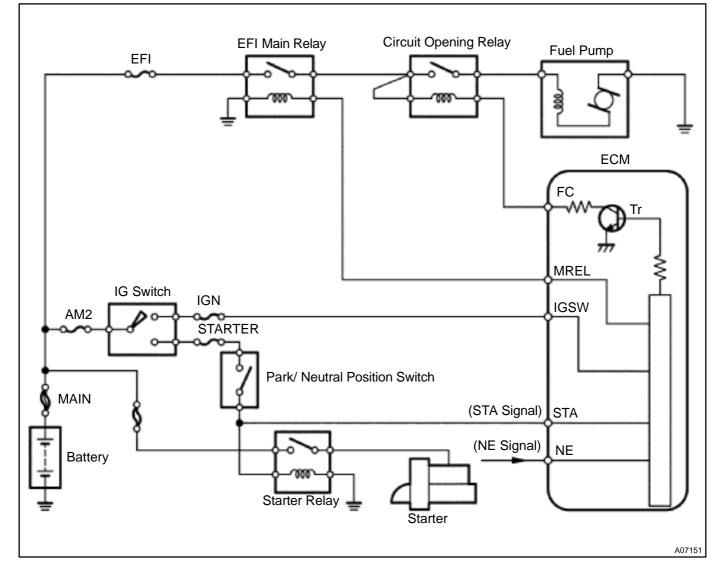
ОК

9	Check for open and short in harness and connector between terminal MREL of ECM and body ground (See page $IN-31$).
	NG Repair or harness or connector.

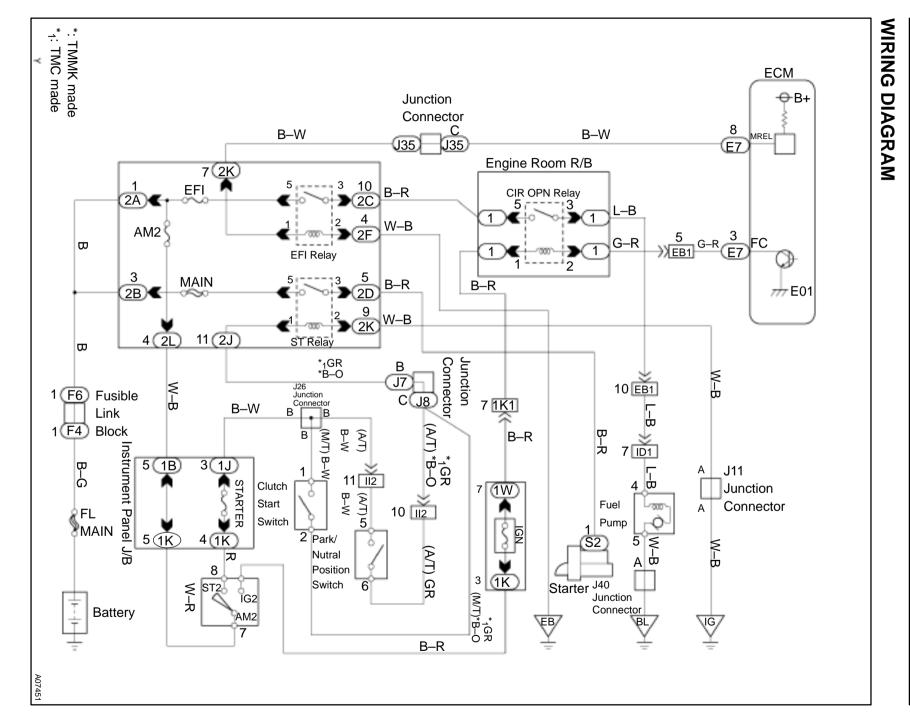
Check and repair harness or connector between EFI No.1 fuse and battery (See page IN-31).

οк

DI-373


Fuel Pump Control Circuit

CIRCUIT DESCRIPTION


In the diagram below, when the engine is cranked, current flows from terminal ST of the ignition switch to the starter relay coil and also current flows to terminal STA of ECM (STA signal).

When the STA signal and NE signal are input to the ECM, Tr is turned ON, current flows to coil of the circuit opening relay, the relay switches on, power is supplied to the fuel pump and the fuel pump operates.

While the NE signal is generated (engine running), the ECM keeps Tr ON (circuit opening relay ON) and the fuel pump also keeps operating.

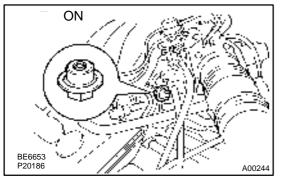
DI4DV-01

DIAGNOSTICS - ENGINE (1MZ-FE)

DI-375

Author :

Date :


610

INSPECTION PROCEDURE TOYOTA hand-held tester

1

NG

Connect TOYOTA hand-held tester and check operation of fuel pump.

PREPARATION:

- (a) Connect the TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the TOYOTA handheld tester main switch ON.
- (c) Use ACTIVE TEST mode to operate the fuel pump.

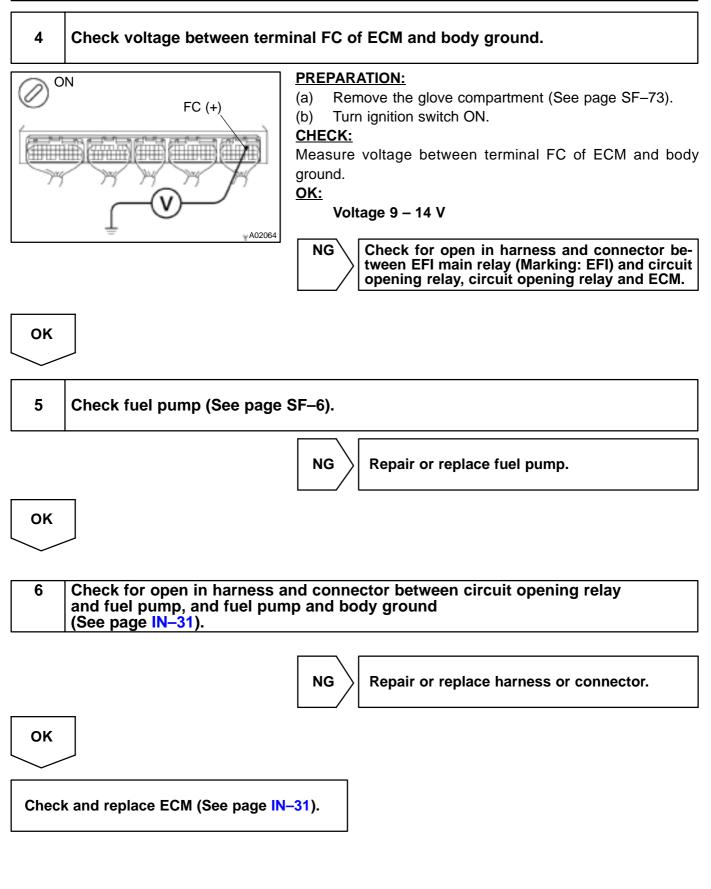
CHECK:

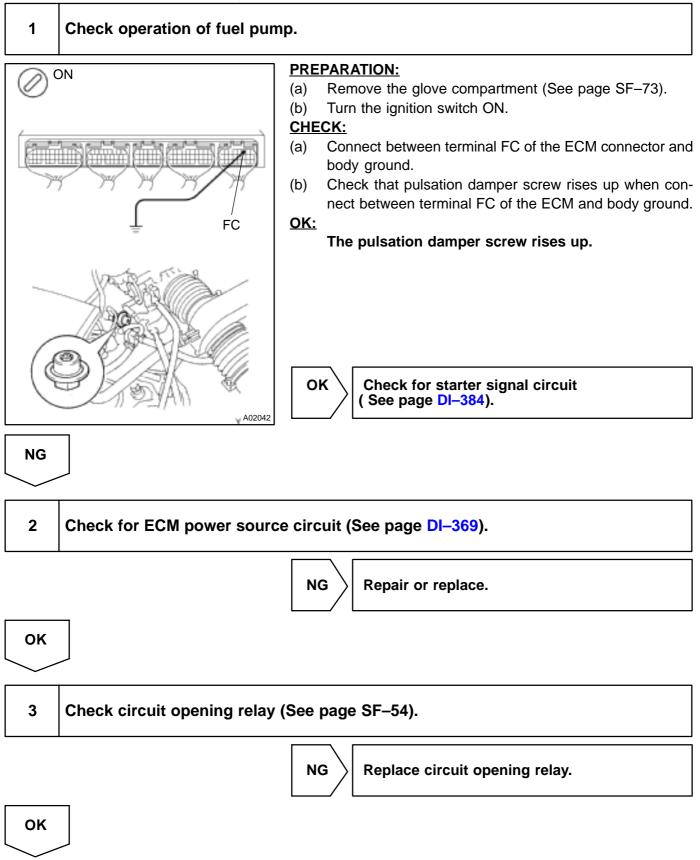
Check that pulsation damper screw rises up when fuel pump is on by TOYOTA hand-held tester.

<u>OK:</u>

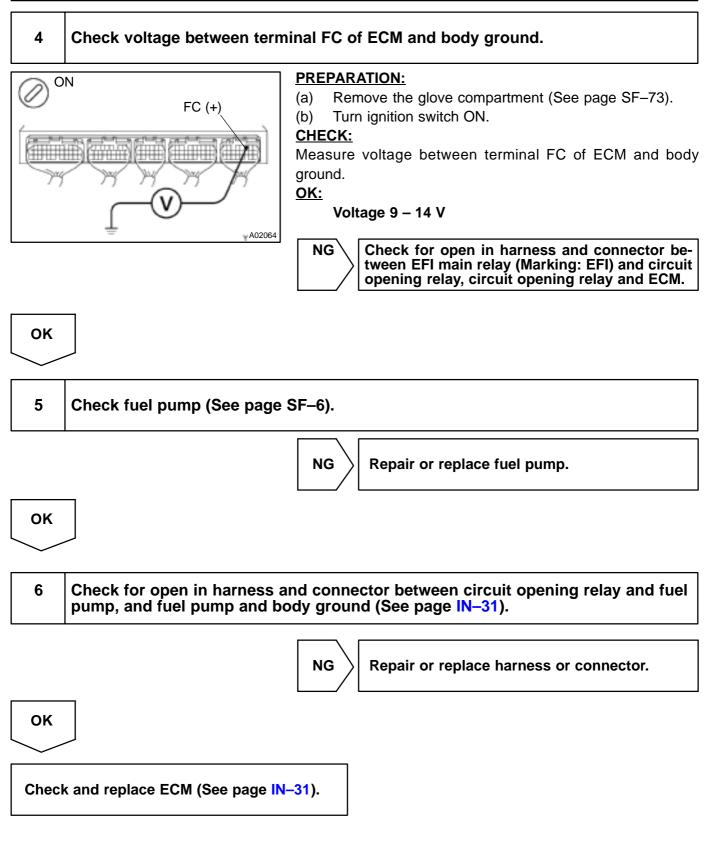
The pulsation damper screw rises up.

Check for starter signal circuit (See page DI–384).


2 Check for ECM power source circuit (See page DI–369).

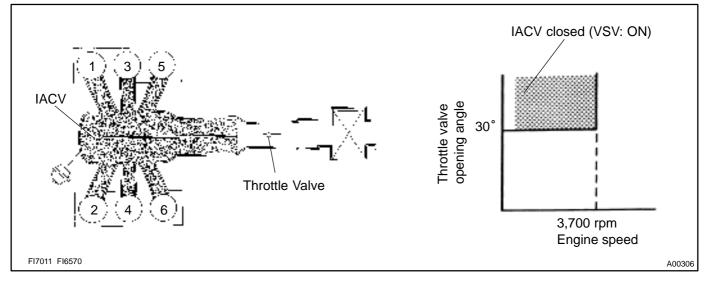

Repair or replace.

ОК	
3	Check circuit opening relay (See page SF–54).
	NG Replace circuit opening relay.

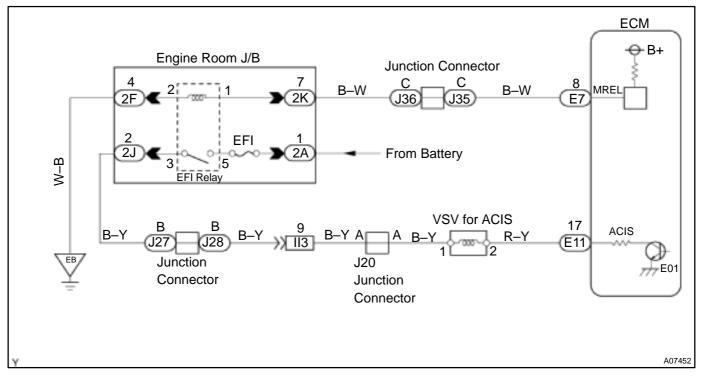

OK

OBD II scan tool (excluding TOYOTA hand-held tester)

Date :

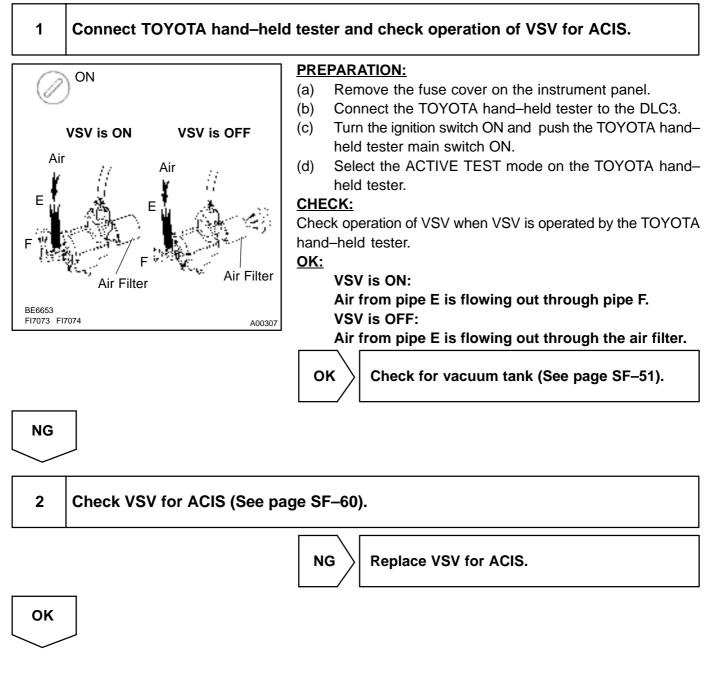


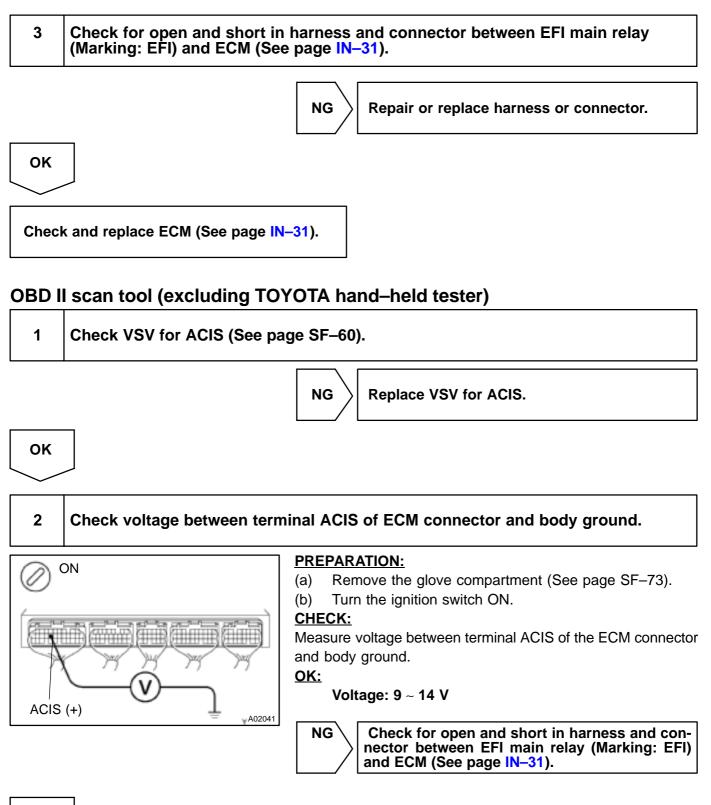
IACV Control VSV Circuit


CIRCUIT DESCRIPTION

This circuit opens and closes the IACV (Intake Air Control Valve) in response to the engine load in order to increase the intake efficiency (ACIS: Acoustic Control Induction System).

When the engine speed is 3,700 rpm or less and the throttle valve opening angle is 60° or more, the ECM turns the VSV ON and closes the IACV. At all other times, the VSV is OFF, so the IACV is open.

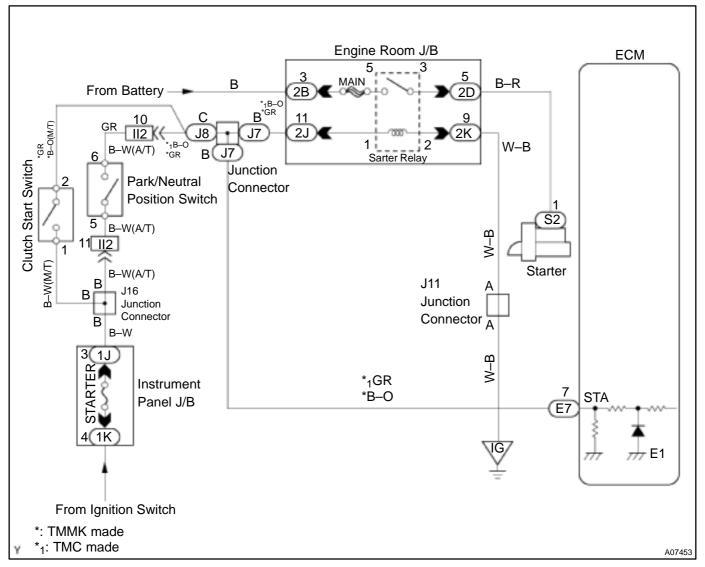



WIRING DIAGRAM

DI08E-06

INSPECTION PROCEDURE TOYOTA hand-held tester

ОК


3	Check for vacuum tank (See page SF–60).
	NG Repair or replace.
ОК	
Checl	k and replace ECM (See page IN–31).

Starter Signal Circuit

CIRCUIT DESCRIPTION

When the engine is cranked, the intake air flow is slow, so fuel vaporization is poor. A rich mixture is therefore necessary in order to achieve good startability. While the engine is being cranked, the battery positive voltage is applied to terminal STA of the ECM. The starter signal is mainly used to increase the fuel injection volume for the starting injection control and after–start injection control.

WIRING DIAGRAM

DI08B-06

INSPECTION PROCEDURE

HINT:

This diagnostic chart is based on the premise that the engine is cranked normally. If the engine is not cranked, proceed to the problem symptoms table on page DI-221.

TOYOTA hand-held tester

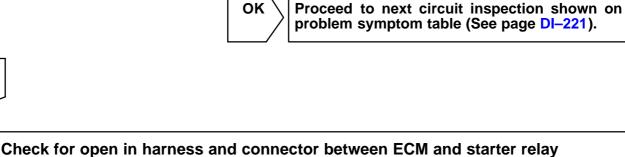
	1
	1

Connect TOYOTA hand-held tester, and check STA signal.

PREPARATION:

- (a) Connect the TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the TOYOTA hand-held tester main switch ON.

CHECK:


Read STA signal on the TOYOTA hand-held tester while starter operates.

OK:

NG

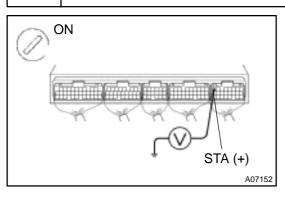
2

Ignition switch position	ON	START
STA signal	OFF	ON

(See page IN-31).

NG Repair

Repair or replace or connector.


ОК

Check and replace ECM (See page IN-31).

OBD II scan tool (excluding TOYOTA hand-held tester)

1

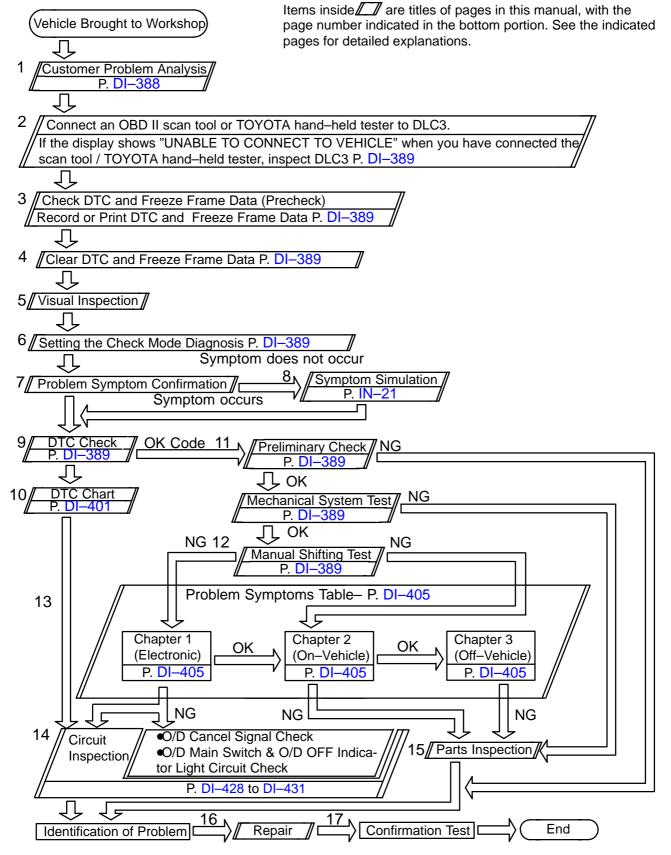
Check voltage between terminal STA of ECM connector and body ground.

PREPARATION:

Remove the glove compartment (See page SF–73). CHECK:

Measure voltage between terminal STA of the ECM connector and body ground during engine cranking. <u>OK:</u>

Voltage: 6 V or more



Proceed to next circuit inspection shown on problem symptom table (See page DI–221).

NG

2	Check for open in harness and connector between ECM and starter relay (See page IN–31).		
	NG Repair or replace harness or connector.		
ОК			
Chec	k and replace ECM (See page IN–31).		

AUTOMATIC TRANSAXLE (A140E) HOW TO PROCEED WITH TROUBLESHOOTING

DI02U-02

CUSTOMER PROBLEM ANALYSIS CHECK

Transaxle Control	Inspector's
System Check Sheet	Name :

			Registration No.		
Customer's Name			Registration Year	/	/
			Frame No.		
Date Vehicle Brought In	/	/	Odometer Reading		km mile

Date Problem Occurred	/	/		
How Often Prob- lem Occurs ?	Continuous	□ Intermittent (times a day)	

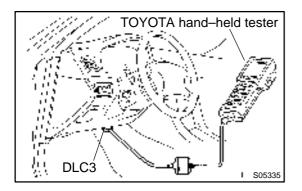
	\Box Vehicle does not move (\Box Any position \Box Particular position)	
	$\Box \text{ No up-shift } (\Box 1st \rightarrow 2nd \Box 2nd \rightarrow 3rd \Box 3rd \rightarrow O/D)$	
	\Box No down–shift (\Box O/D \rightarrow 3rd \Box 3rd \rightarrow 2nd \Box 2nd \rightarrow 1st)	
	Lock-up malfunction	
Symptoms	□ Shift point too high or too low	
	\Box Harsh engagement (\Box N \rightarrow D $\ \Box$ Lock–up $\ \Box$ Any drive position)	
	□ Slip or shudder	
	No kick–down	
	□ _ Others	
)

Check Item	Malfunction Indicator Lamp	Normal	Remains ON	
DTC Check	1st Time	□ Normal code	□ Malfunction code (Code)
	2nd Time	□ Normal code	□ Malfunction code (Code)

DI02V-02

PRE-CHECK

1. DIAGNOSIS SYSTEM


(a) Description

FI0534

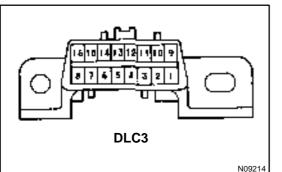
When troubleshooting OBD II vehicles, the only difference from the usual troubleshooting procedure is that you connect an OBD II scan tool complying with SAE J1987 or TOYOTA hand-held tester to the vehicle, and read off various data output from the vehicle's ECM.

OBD II regulations require that the vehicle's onboard computer lights up the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in the computer itself or in drive system components which affect vehicle emissions. In addition to the MIL lighting up when a malfunction is detected, the applicable DTCs prescribed by SAE J2012 are recorded in the ECM memory (See page DI–16).

If the malfunction only occurs in 3 trips, the MIL goes off but the DTCs remain recorded in the ECM memory.

 To check the DTCs, connect an OBD II scan tool or TOYOTA hand-held tester to DLC3 on the vehicle. The OBD II scan tool or TOYOTA hand-held tester also enables you to erase the DTCs and check freeze frame data and various forms of engine data (For instruction book).

DTCs include SAE controlled codes and Manufacturer controlled codes.


SAE controlled codes must be set as the codes prescribed by the SAE, while Manufacturer controlled codes can be set freely by the manufacturer within the prescribed limits.

(See DTC chart on page DI-401)

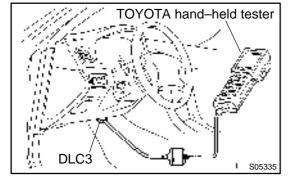
The diagnosis system operates in normal mode during normal vehicle use, and also has a check mode for technicians to simulate malfunction symptoms and perform troubleshooting. Most DTCs use 2 trip detection logic(*) to prevent erroneous detection. By switching the ECM to check mode when troubleshooting, the technician can cause the MIL to light up and for a malfunction that is only detected once or momentarily.

(TOYOTA hand-held tester) (See page DI-401)

*2 trip detection logic:
 When a logic malfunction is first detected, the malfunction is temporarily stored in the ECM memory.
 If the same malfunction is detected again during the 2nd test drive, this 2nd detection causes the MIL to light up.

(b) Inspect the DLC3.

The vehicle's ECM uses V.P.W. (Variable Pulse Width) for communication to comply with SAE J1850. The terminal arrangement of DLC3 complies with SAE J1962 and matches the V.P.W. format.


Tester connection	Condition	Specified condition	
2 (Bus \sim Line) – 5 (Signal ground)	During communication	Pulse generation	
4 (Chassis Ground) – Body	Always	1 Ω or less	
5 (Signal Ground) – Body	Always	1 Ω or less	
16 (B+) – Body	Always	9 – 14 V	

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of OBD II scan tool or TOY-OTA hand-held tester to DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

2. **INSPECT DIAGNOSIS (NORMAL MODE)**

- (a) Check the MIL.
 - The MIL comes on when the ignition switch is turned (1) ON and the engine is not running.

HINT:

FI0534

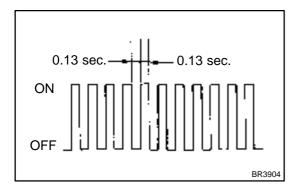
If the MIL does not light up, troubleshoot the combination meter (See page BE-47).

- (2) When the engine is started, the MIL should go off. If the lamp remains on, the diagnosis system has detected a malfunction or abnormality in the system.
- (b) Check the DTC.

NOTICE:

(TOYOTA hand-held tester only): When the diagnostic system is switched from normal mode to check mode, it erases all DTCs and freeze frame data recorded in normal mode. So before switching modes, always check the DTCs and freeze frame data, and note them down.

- (1) Prepare an OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester.
- (2) Connect the OBD II scan tool or TOYOTA handheld tester to DLC3 at the lower portion of the instrument panel.
- (3) Turn the ignition switch ON and turn the OBD II scan tool or TOYOTA hand-held tester switch ON.
- Use the OBD II scan tool or TOYOTA hand-held (4) tester to check the DTCs and freeze frame data and note them down (For operating instructions, see the OBD II scan tool's instruction book).


See page DI–401 to confirm the details of the DTCs. (5) NOTICE:

When simulating symptoms with an OBD II scan tool (excluding TOYOTA hand-held tester) to check the DTCs, use normal mode. For codes on the DTCs chart subject to "2 trip detection logic", turn the ignition switch off after the symptoms have been simulated the 1st time. Then repeat the simulation process again. When the program has DTCs, the DTCs are recorded in the ECM.

3. INSPECT DIAGNOSIS (CHECK MODE) HINT:

TOYOTA hand-held tester only: Compared to the Normal mode, the Check mode has high sensing ability to detect malfunctions. Furthermore, the same diagnostic items which are detected in Normal mode can also be detected in Check mode.

- (a) Check the DTC.
 - (1) Check the initial conditions.
 - Battery positive voltage 11 V or more
 - Throttle valve fully closed
 - Transaxle in P position
 - Air conditioning switched off
 - (2) Turn the ignition switch OFF.
 - (3) Prepare a TOYOTA hand-held tester.
 - (4) Connect the TOYOTA hand-held tester to DLC3 at the lower side of the instrument panel.
 - (5) Turn the ignition switch ON and switch the TOYOTA hand-held tester ON.

DLC3

TOYOTA hand-held tester

S0533

- (6) Switch the TOYOTA hand-held tester from Normal mode to Check mode (Check that the MIL flashes).
- (7) Start the engine (MIL goes out after the engine starts).
- (8) Simulate the conditions of the malfunction described by the customer.

NOTICE:

Leave the ignition switch ON until you have checked the DTCs, etc.

(9) After simulating the malfunction conditions, use the TOYOTA hand-held tester diagnosis selector to check the DTCs and freeze frame data, etc.

HINT:

Take care not to turn the ignition switch OFF, as turning it off the diagnosis system switches from Check mode to Normal mode, so all DTCs, etc. are erased.

(10) After checking the DTC, inspect the applicable circuit.

(b) Clearance the DTC.

The following actions will erase the DTC and freeze frame data. Operating an OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester to erase the codes. (See the OBD II scan tool's instruction book for operating instructions.)

4. ROAD TEST

NOTICE:

Perform the test at normal operating ATF temperature 50 – 80 °C (122 – 176 °F).

- (a) D position test
 - Shift into the D position and fully depress the accelerator pedal and and check the following points:
 - (1) Check up-shift operation.
 - $1 \rightarrow 2$, $2 \rightarrow 3$ and $3 \rightarrow O/D$ up-shifts take place, at the shift point shown in the automatic shift schedule (See page SS-54).

HINT:

- O/D Gear Up-shift Prohibition Control (1. Coolant temp. is 50 °C (122 °C) or less. 2. If there is a 10 km/h (6 mph) difference between the set cruise control speed and vehicle speed.)
- O/D Gear Lock-up Prohibition Control (1. Brake pedal is depressed. 2. Coolant temp. is 50 °C (122 °C) or less.)
 - (2) Check for shift shock and slip.
 - Check for shock and slip at the 1 \rightarrow 2, 2 \rightarrow 3 and 3 \rightarrow O/D up–shifts.
 - (3) Check for abnormal noises and vibration.
 - Run at the D position lock-up or O/D gear and check for abnormal noises and vibration.

HINT:

The check for the cause of abnormal noises and vibration must be done very thoroughly as it could also be due to loss of balance in the differential or torque converter clutch, etc.

- (4) Check kick–down operation. While running in the D position, 2nd, 3rd and O/D gears, check to see that the possible kick–down vehicle speed limits for 2 → 1, 3 → 2 and O/D → 3 kick–downs conform to those indicated on the automatic shift schedule (See page SS–54).
- (5) Check abnormal shock and slip at kick–down.
- (6) Check the lock-up mechanism.
 - Drive in D position, O/D gear, at a steady speed (lock–up ON) of about 75 km/h (47 mph).
 - Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.

If there is a big jump in engine speed, there is no lock-up.

(b) 2 position test

Shift into the 2 position and fully depress the accelerator pedal and check the following points:

- (1) Check up-shift operation.
 - Check to see that the $1 \rightarrow 2$ up–shift takes place and that the shift point conforms to the automatic shift schedule (See page SS–54).

HINT:

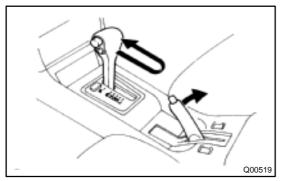
There is no O/D up-shift and lock-up in the 2 position.

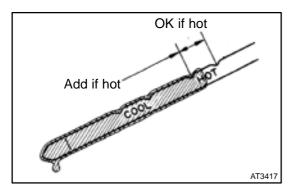
Check engine braking.
 While running in the 2 position and 2nd gear, release the accelerator pedal and check the engine braking effect.

- (3) Check for abnormal noises during acceleration and deceleration, and for shock at up–shift and down–shift.
- (c) L position test

Shift into the 2 position and fully depress the accelerator pedal and check the following points:

- (1) Check no up-shift.
 - While running in the L position, check that there is no up-shift to 2nd gear.
- (2) Check engine braking. While running in the L position, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration.
- (d) R position test


Shift into the R position and fully depress the accelerator pedal and check for slipping.


CAUTION:

Before conducting this test ensure that the test area is free from people and obstruction.

(e) P position test

Stop the vehicle on a grade (more than 5°) and after shifting into the P position, release the parking brake. Then, check to see that the parking lock pawl holds the vehicle in place.

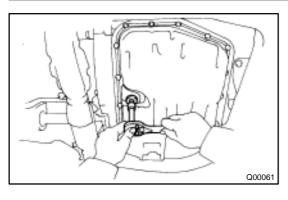
5. BASIC INSPECTION

(a) Check the fluid level.

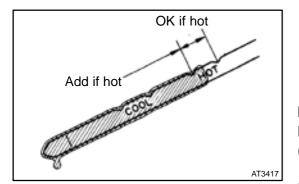
HINT:

- Drive the vehicle so that the engine and transaxle are at normal operating temperature.
 - Fluid temp.: 70 80 °C (158 176 °F)
- Only use the COOL range on the dipstick as a rough reference when the fluid is replaced or the engine does not run.
 - (1) Park the vehicle on a level surface and set the parking brake.
 - (2) With the engine idling and the brake pedal depressed, shift the shift lever into all positions from P to L position and return to P position.
 - (3) Pull out the dipstick and wipe it clean.
 - (4) Push it back fully into the pipe.
 - (5) Pull it out and check that the fluid level is in the HOT range.

If the level is not within the range, add new fluid.


Fluid type: ATF D–II or DEXRON®III (DEXRON®II)

NOTICE:


Do not overfill.

(b) Check the fluid condition.

If the level is not within the hot range.

AT8562

Replace the ATF.

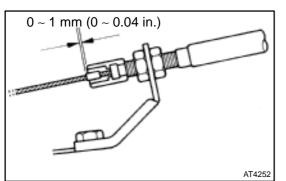
(c)

- (1) Remove the drain plug and drain the fluid.
- (2) Reinstall the drain plug securely.

(3) With the engine OFF add new fluid through the oil filler pipe.

Fluid type: ATF D–II or DEXRON®III (DEXRON®II) Capacity: 2.5 liters (2.6 US qts, 2.1 lmp. qts)

- (4) Start the engine and shift the shift lever into all positions from P to L position and then shift into P position.
- (5) With the engine idling, check the fluid level. Add fluid up to the COOL level on the dipstick.
- (6) Check the fluid level is at the normal operating temperature, 70 80 °C (158 176 °F), and add as necessary.

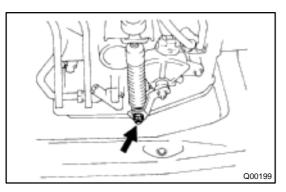

NOTICE:

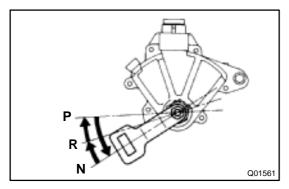
Do not overfill.

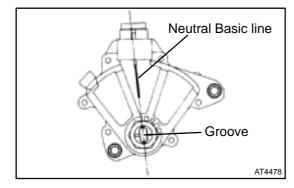
(d) Check the fluid leaks.

Check for leaks in the transaxle.

If there are leaks, it is necessary to repair or replace O-rings, gasket, oil seals, plugs or other parts.




(e) Inspect and adjust the throttle cable.


- (1) Check that the accelerator pedal is fully released.
- (2) Check that the inner cable is not slack.
- (3) Measure the distance between the outer cable end and stopper on the cable.

Standard distance: 0 – 1 mm (0 – 0.04 in.)

If the distance is not standard, adjust the cable by the adjusting nuts.

(f) Inspect and adjust the shift lever position. When shifting the shift lever from the N position to other positions, check that the lever can be shifted smoothly and accurately to each position and that the position indicator is aligned with the correct position.

If the indicator is not aligned with the correct position, carry out the following adjustment procedures.

- (1) Loosen the nut on the shift lever.
- (2) Push the control shaft fully rearward.
- (3) Return the control shaft lever 2 notches to N position.
- (4) Set the shift lever to N position.
- (5) While holding the shift lever lightly toward the R position side, tighten the shift lever nut.

Torque: 13 N·m (130 kgf·cm, 9 ft·lbf)

- (6) Start the engine and make sure that the vehicle moves forward when shifting the lever from the N to D position and reverses when shifting it to the R position.
- (g) Inspect and adjust the park/neutral position. Check that the engine can be started with the shift lever

only in the N or P position, but not in other positions.

If it is not as stated above, carry out the following adjustment procedures.

- (1) Loosen the park/neutral position switch bolt and set the shift lever to the N position.
- (2) Align the groove and neutral basic line.
- (3) Hold the switch in position and tighten the bolt.

Torque: 5.4 N·m (55 kgf·cm, 48 in·lbf)

For continuity inspection of the park/neutral position switch, see page DI-424.

(h) Check the idle speed.

Idle speed : 750 \pm 50 rpm (In N position and air conditioner OFF)

6. MECHANICAL SYSTEM TESTS

 Measure the stall speed.
 The object of this test is to check the overall performance of the transaxle and engine by measuring the stall speeds in the D and R positions.

NOTICE:

- Do the test at normal operating fluid temperature 50 80 °C (122 176 °F).
- Do not continuously run this test for longer than 5 seconds.
- To ensure safety, conduct this test in a wide, clear level area which provides good traction.
- The stall test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
 - (1) Chock the 4 wheels.
 - (2) Connect an OBD II scan tool or TOYOTA hand-held tester to DLC3.
 - (3) Fully apply the parking brake.
 - (4) Keep your left foot depressing firmly on the brake pedal.
 - (5) Start the engine.
 - (6) Shift into the D position. Press all the way down on the accelerator pedal with your right foot. Quickly read the stall speed at this time.

Stall speed: 2,450 ± 150 rpm

(7) Do the same test in R position.

Stall speed: $2,450 \pm 150$ rpm

Evaluation:

Problem	Possible cause
(a) Stall speed low in D and R positions	 Engine output may be insufficient Stator one–way clutch is operating properly HINT: If more than 600 rpm below the specified value, the torque converter clutch could be faulty.
(b) Stall speed high in D position	 Line pressure too low Forward clutch slipping No.2 one–way clutch not operating properly O/D clutch slipping
(c) Stall speed high in R position	 Line pressure too low Direct clutch slipping 1st & reverse brake slipping O/D clutch slipping
(d) Stall speed high in D and R positions	 Line pressure too low Improper fluid level O/D one-way clutch not operating properly

(b) Measure the time lag.

When the shift lever is shifted while the engine is idling, there will be a certain time lapse or lag before the shock can be felt. This is used for checking the condition of the O/D direct clutch, forward clutch, and 1st & reverse brake.

NOTICE:

- Do the test at normal operating fluid temperature 50 80 °C (122 176 °F).
- Be sure to allow 1 minute interval between tests.
- Take 3 measurements and take the average value.
 - (1) Connect an OBD II scan tool or TOYOTA hand-held tester to DLC3.
 - (2) Fully apply the parking brake.
 - (3) Start the engine and check idle speed.

Idle speed : 750 ± 50 rpm (In N position and air conditioner OFF)

(4) Shift the shift lever from N to D position. Using a stop watch, measure the time from when the lever is shifted until the shock is felt.

Time lag: $N \rightarrow D$ Less than 1.2 seconds

(5) In the same manner, measure the time lag for $N \rightarrow R$.

Time lag: $N \rightarrow R$ Less than 1.5 seconds

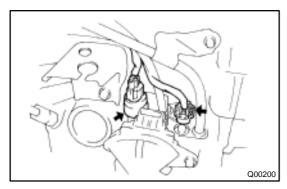
Evaluation (If $N \rightarrow D$ time or $N \rightarrow R$ time lag is longer than the specified):

Problem	Possible cause	
$N\toD$ time lag is longer	Line pressure too lowForward clutch worn	
	 O/D one-way clutch not operating 	
	Line pressure too low Direct clutch worn	
$N \rightarrow R$ time lag is longer	•1st & reverse brake worn	
	 O/D one-way clutch not operating properly 	

7. HYDRAULIC TEST

Measure the line pressure.

NOTICE:


- Do the test at normal operation fluid temperature 50 80 °C (122 176 °F).
- The line pressure test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
- Be careful to prevent SST's hose from interfering with the exhaust pipe.
 - (1) Warm up the ATF.
 - (2) Remove the test plug on the transaxle case front left side and connect SST. (See page AX–17 for the location to connect SST)
 - SST 09992-00095 (09992-00231, 09992-00271)
 - (3) Fully apply the parking brake and chock the 4 wheels.
 - (4) Connect an OBD II scan tool or TOYOTA hand-held tester to DLC3.
 - (5) Start the engine and check idling speed.
 - (6) Keep your left foot pressing firmly on the brake pedal and shift into D position.
 - (7) Measure the line pressure when the engine is idling.
 - (8) Depress the accelerator pedal all the way down. Quickly read the highest line pressure when engine speed reaches stall speed.
 - (9) In the same manner, do the test in R position.

Specified line pressure:

Condition	D position kPa (kgf/cm ² , psi)	R position kPa (kgf/cm ² , psi)
Idling	362 - 422 (3.7 - 4.3, 53 - 61)	618 – 794 (6.3 – 8.1, 90 – 115)
Stall	735 – 862 (7.5 – 8.8, 107 – 125)	1,373 – 1,608 (14.0 – 16.4, 199 – 233)

If the measured pressure is not up to the specified value, recheck the throttle cable adjustment and retest. **Evaluation**

Problem	Possible cause
If the measured values at all positions are higher	Throttle cable out of adjustmentThrottle valve defectiveRegulator valve defective
If the measured values at all positions are lower	 Throttle cable out of adjustment Throttle valve defective Regulator valve defective Oil pump defective O/D direct clutch defective
If pressure is low in the D position only	D position circuit fluid leakageForward clutch defective
If pressure is low in the R position only	 R position circuit fluid leakage Direct clutch defective 1st & reverse brake defective

MANUAL SHIFTING TEST

HINT:

8.

By this test, it can be determined whether the trouble is within the electrical circuit or is a mechanical problem in the transaxle. (a) Disconnect the solenoid wire.

(b) Inspect the manual driving operation.

Check that the shift and gear positions correspond to the table below.

While driving, shift through the L, 2 and D positions. Check that the gear change corresponds to the shift position.

Shift Position	Gear Position
D	O/D
2	Зrd
L	1st
R	Reverse
Р	Pawl Lock

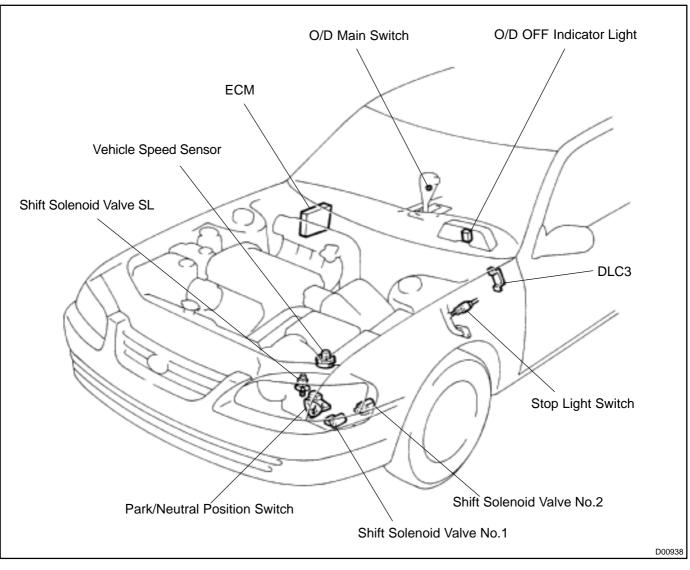
HINT:

If the L, 2 and D gear positions are difficult to distinguish, do the above test.

If any abnormality is found in the above test, the problem is in the transaxle itself.

- (c) Connect the solenoid wire.
- (d) Clear out the DTC (See page DI–389).

DIAGNOSTIC TROUBLE CODE CHART

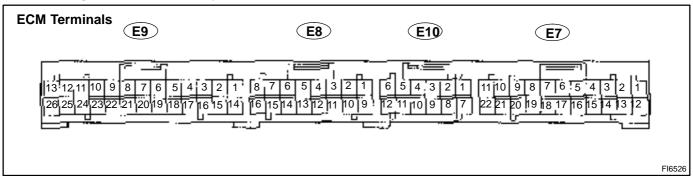

If a DTC is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the page given.

*: •...MIL light up

DTC No. (See Page)	Detection Item	Trouble Area	MIL *	Memory
P0500 (DI–408)	Vehicle Speed Sensor Malfunc- tion (No.1 Vehicle Speed Sensor)	 Open or short in No.1 vehicle speed sensor circuit No.1 vehicle speed sensor Combination meter ECM Automatic transaxle (clutch, brake or gear etc.) 	•	0
P0750 (DI–411)	Shift Solenoid A Malfunction (Shift Solenoid Valve No.1)	Shift solenoid valve No.1 is stuck open or closed Valve body is blocked up or stuck Automatic transaxle (clutch, brake or gear etc.)	•	0
P0753 (DI–413)	Shift Solenoid A Electrical Mal- function (Shift Solenoid Valve No.1)	©pen or short in shift solenoid valve No.1 circuit Shift solenoid valve No.1 □ECM	•	0
P0755 (DI–411)	Shift Solenoid B Malfunction (Shift Solenoid Valve No.2)	☐Shift solenoid valve No.2 is stuck open or closed ☐Valve body is blocked up or stuck ☐Automatic transaxle (clutch, brake or gear etc.)	•	0
P0758 (DI–413)	Shift Solenoid B Electrical Mal- function (Shift Solenoid Valve No.2)	□Open or short in shift solenoid valve No.2 circuit Shift solenoid valve No.2 ECM	•	0
P0770 (DI-417)	Shift Solenoid E Malfunction (Shift Solenoid Valve SL)	Shift solenoid valve SL is stuck open or closed Valve body is blocked up or stuck Lock-up clutch Automatic transaxle (clutch, brake or gear etc.)	•	0
P0773 (DI–419)	Shift Solenoid E Electrical Mal- function (Shift Solenoid Valve SL)	□Open or short in shift solenoid valve SL circuit □Shift solenoid valve SL □ECM	•	0
P1520 (DI–170)	Stop Light Switch Signal Mal- function	Open or short in stop light switch circuit Stop light switch ECM	•	0
P1780 (DI–424)	Park/Neutral Position Switch Malfunction	Short in park/neutral position switch circuit Park/neutral position switch ECM	•	0

DI02X-02

PARTS LOCATION

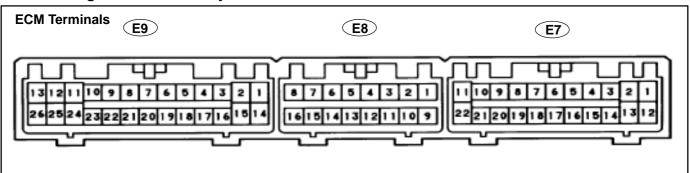


DI-403

DI1IZ-01

TERMINALS OF ECM

w/ Engine Immobiliser System



Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
S1 \leftrightarrow E1 (E9–8 \leftrightarrow E9–24) V \leftrightarrow BR		IG ON	9 ~ 14
		1st or 2nd gear	9 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
$S2 \leftrightarrow E1 (E9-21 \leftrightarrow E9-24)$	$L\!\!-\!\!B \leftrightarrow BR$	1st or 2nd gear	9 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
$SL \leftrightarrow E1$ (E9–20 \leftrightarrow E9–24)	$P \leftrightarrow BR$	Vehicle driving under lock-up position	9 ~ 14
$OD1 \leftrightarrow E1 \; (E718 \leftrightarrow E924)$	$Y – B \leftrightarrow BR$	IG ON	9 ~ 14
$OD2 \leftrightarrow E1 \; (E75 \leftrightarrow E924) \qquad \qquad GO \leftrightarrow BR$		O/D main switch ON	9 ~ 14
		O/D main switch OFF	Below 1
$L \leftrightarrow E1 (E7-15 \leftrightarrow E9-24) \qquad \qquad Y \leftrightarrow BR$		IG ON and Shift lever L position	9 ~ 14
		IG ON and Shift lever other than L position	Below 1
	$^{*1}L-W \leftrightarrow BR$	IG ON and Shift lever 2 position	9 ~ 14
$2 \leftrightarrow \text{E1} (\text{E7-16} \leftrightarrow \text{E9-24}) \qquad \qquad *^2\text{O} \leftrightarrow \text{BR}$		IG ON and Shift lever other than 2 position	Below 1
		IG ON and Shift lever R position	9 ~ 14
R ↔ E1 (E7–17 – E9–24)	$R-B \leftrightarrow BR$	IG ON and Shift lever other than R position	Below 1
		IG ON and Shift lever P or N position	9 ~ 14
$NSW \leftrightarrow E1 \ (E7-22 \leftrightarrow E9-24) \qquad \qquad B-W \leftrightarrow BR$		IG ON and Shift lever other than P or N position	Below 1

*1: TMC made

*2: TMMK made

w/o Engine Immobiliser System

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
		IG ON	9 ~ 14
S1 \leftrightarrow E1 (E9–7 \leftrightarrow E9–14)	$V \leftrightarrow BR$	1st or 2nd gear	9 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
S2 \leftrightarrow E1 (E9–6 \leftrightarrow E9–14)	$L\!\!-\!\!B \leftrightarrow BR$	1st or 2nd gear	9 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
$SL \leftrightarrow E1 (E9-1 \leftrightarrow E9-14)$	$P \leftrightarrow BR$	Vehicle driving under lock-up position	9 ~ 14
$OD1 \leftrightarrow E1 \; (E720 \leftrightarrow E914)$	$Y – B \leftrightarrow BR$	IG ON	9 ~ 14
		O/D main switch ON	9 ~ 14
$OD2 \leftrightarrow E1 (E7-7 \leftrightarrow E9-14) \qquad \qquad G-O \leftrightarrow BR$		O/D main switch OFF	Below 1
		IG ON and Shift lever L position	9 ~ 14
$L \leftrightarrow E1 (E7-19 \leftrightarrow E9-14)$	$Y \leftrightarrow BR$	IG ON and Shift lever other than L position	Below 1
$2 \leftrightarrow E1 (E7-18 \leftrightarrow E9-14) \qquad \qquad \stackrel{*1}{\overset{*1}{}} L-W \leftrightarrow BR \\ \stackrel{*2}{\overset{*2}{}} O \leftrightarrow BR$		IG ON and Shift lever 2 position	9 ~ 14
		IG ON and Shift lever other than 2 position	Below 1
		IG ON and Shift lever R position	9 ~ 14
R ↔ E1 (E7–17 – E9–14)	$R-B \leftrightarrow BR$	IG ON and Shift lever other than R position	Below 1
		IG ON and Shift lever P or N position	9 ~ 14
$NSW \leftrightarrow E1 \ (E7-22 \leftrightarrow E9-14) \qquad \qquad B-W \leftrightarrow BR$		IG ON and Shift lever other than P or N position	Below 1

*1: TMC made

*2: TMMK made

If a normal code is displayed during the DTC check but the trouble still occurs, check the circuits for each
symptom in the order given in the charts on the following pages and proceed to the page given for trouble-
shooting.

The Matrix Chart is divided into 3 chapters.

shooting.

PROBLEM SYMPTOMS TABLE

Chapter 1: Electronic Circuit Matrix Chart

Chapter 2: On-vehicle Repair Matrix Chart

Chapter 3: Off-vehicle repair Matrix Chart

- If the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- If the trouble still occurs even though there are no abnormalities in any of the other circuits, then check and replace the ECM.

Chapter 1: Electronic Circuit Matrix Chart 1.

Symptom	Suspect Area	See page
No up–shift (A particular gear, from 1st to 3rd gear, is not up–shifted)	1. ECM	IN-31
No up–shift (3rd \rightarrow O/D)	 O/D main switch & O/D OFF indicator light circuit O/D cancel signal circuit ECM 	DI-431 DI-428 IN-31
No down–shift (O/D \rightarrow 3rd)	1. ECM	IN-31
No down–shift (A particular gear, from 3rd to 1st gear, is not down–shifted)	1. ECM	IN-31
No lock–up or No lock–up off	 Stop light switch circuit ECM 	DI-423 IN-31
Shift point too high or too low	1. ECM	IN-31
Up-shift to O/D from 3rd while O/D main switch is OFF	1. O/D main switch & O/D OFF indicator light circuit 2. ECM	DI-431 IN-31
Up-shift to O/D from 3rd while engine is cold	1. ECM	IN-31
Poor acceleration	1. ECM	IN-31
No kick–down	1. ECM	IN-31
Engine stalls when starting off or stopping	1. ECM	IN-31

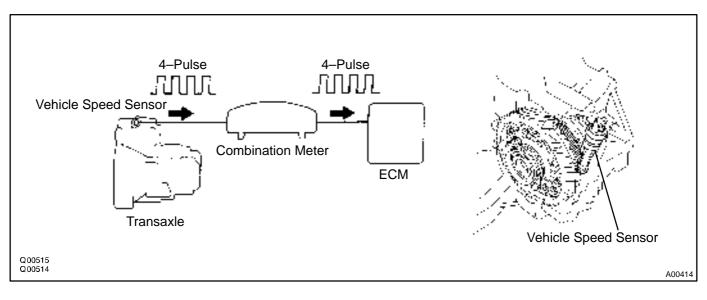
DI-405

Date :

Chapter 2: On–Vehicle Repair (• : A140E AUTOMATIC TRANSAXLE Repair Manual Pub. No. RM385U)

Symptom	Suspect Area	See page
Vehicle does not move in any forward positions and reverse posi- tion	 Manual valve Throttle valve Primary regulator valve Off–vehicle repair matrix chart 	•
Vehicle does not move in R position	1. Off-vehicle repair matrix chart	_
No up–shift (1st \rightarrow 2nd)	 1. 1–2 shift valve 2. Off–vehicle repair matrix chart 	•
No up–shift (2nd \rightarrow 3rd)	 2–3 shift valve Off–vehicle repair matrix chart 	•
No up–shift (3rd \rightarrow O/D)	 3–4 shift valve Off–vehicle repair matrix chart 	•
No down–shift (O/D \rightarrow 3rd)	1. 3–4 shift valve	•
No down–shift (3rd \rightarrow 2nd)	1. 2–3 shift valve	•
No down–shift (2nd \rightarrow 1st)	1. 1–2 shift valve	•
No lock–up or No lock–up off	 Lock–up relay valve Off–vehicle repair matrix chart 	•
Harsh engagement (N \rightarrow D)	 C₁ accumulator Off–vehicle repair matrix chart 	•
Harsh engagement (N \rightarrow R)	 C₂ accumulator Off–vehicle repair matrix chart 	•
Harsh engagement (N \rightarrow L)	1. Low coast modulator valve	•
Harsh engagement (Lock–up)	 Lock–up relay valve Off–vehicle repair matrix chart 	•
Harsh engagement (1st \rightarrow 2nd \rightarrow 3rd \rightarrow O/D)	 Throttle modulator valve Cut back valve Throttle valve 	•
Harsh engagement (2nd \rightarrow 3rd)	1. C ₂ accumulator	•
Harsh engagement (3rd \rightarrow O/D)	1. B ₀ accumulator	•
Harsh engagement (O/D \rightarrow 3rd)	1. C ₀ accumulator 2. B ₀ accumulator	•
Slip or shudder (Forward and reverse)	 Throttle valve Oil strainer Off–vehicle repair matrix chart 	•
No engine braking (1st: L position)	 Low coast modulator valve Off–vehicle repair matrix chart 	•
No engine braking (2nd: 2 position)	 2. Off–vehicle repair matrix chart 	•
No kick-down	 1. 1–2 shift valve 2. 2–3 shift valve 3. 3–4 shift valve 	•

Chapter 3: Off–Vehicle Repair (• : A140E AUTOMATIC TRANSAXLE Repair Manual Pub. No. RM385U)


Symptom	Suspect Area	See page
Vehicle does not move in any forward positions and reverse posi- tion	 Front and rear planetary gear O/D planetary gear O/D one-way clutch (F₀) O/D direct clutch (C₀) O/D brake (B₀) Forward clutch (C₁) 	• • • •
Vehicle does not move in R position	 Front and rear planetary gear unit Direct clutch (C₂) O/D direct clutch (C₀) 1st & reverse brake (B₃) 	• • •
No up–shift (1st \rightarrow 2nd)	1. No. 1 one–way clutch (F ₁) 2. 2nd brake (B ₂)	•
No up–shift (2nd \rightarrow 3rd)	1. Direct clutch (C ₂)	•
No up–shift (3rd \rightarrow O/D)	1. O/D brake (B ₀)	•
No lock–up or No lock–up off	1. Torque converter clutch	AX-26
Harsh engagement (N \rightarrow D)	1. Forward clutch (C ₁) 2. O/D one–way clutch (F ₀) 3. No. 2 one–way clutch (F ₂)	•
Harsh engagement (N \rightarrow R)	 Direct clutch (C₂) 1st & reverse brake (B₃) 	•
Harsh engagement (Lock–up)	1. Torque converter clutch	AX-26
Slip or shudder (Forward position: After warm–up)	 Torque converter clutch O/D direct clutch (C₀) Forward clutch (C₁) O/D one–way clutch (F₀) 	AX-26
Slip or shudder (R position)	 Direct clutch (C₂) 1st & reverse brake (B₃) O/D direct clutch (C₀) 	•
Slip or shudder (1st)	1. No. 2 one-way clutch (F ₂)	•
Slip or shudder (2nd)	1. No. 1 one–way clutch (F ₁) 2. 2nd brake (B ₂)	•
Slip or shudder (3rd)	1. Direct clutch (C ₂)	•
Slip or shudder (O/D)	1. O/D brake (B ₀)	•
No engine braking (1st ~ 3rd: D position)	1. 2nd brake (B ₂)	•
No engine braking (1st: L position)	1. 1st & reverse brake (B ₃)	•
No engine braking (2nd: 2 position)	1. 2nd coast brake (B ₁)	•
Poor acceleration (All positions)	 Torque converter clutch O/D planetary gear 	AX–26 ●
Poor acceleration (O/D)	 O/D direct clutch (C₀) O/D planetary gear 	•
Large shift shock or engine stalls when starting off or stopping	1. Torque converter clutch	AX-26

CIRCUIT INSPECTION

DTC	P0500	Vehicle Speed Sensor Malfunction
-----	-------	----------------------------------

CIRCUIT DESCRIPTION

The vehicle speed sensor outputs a 4–pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. After this signal is converted into a more precise rectangular wave form by the wave form shaping circuit inside the combination meter, it is then transmitted to the ECM. The ECM determines the vehicle speed based on the frequency of these pluse signals.

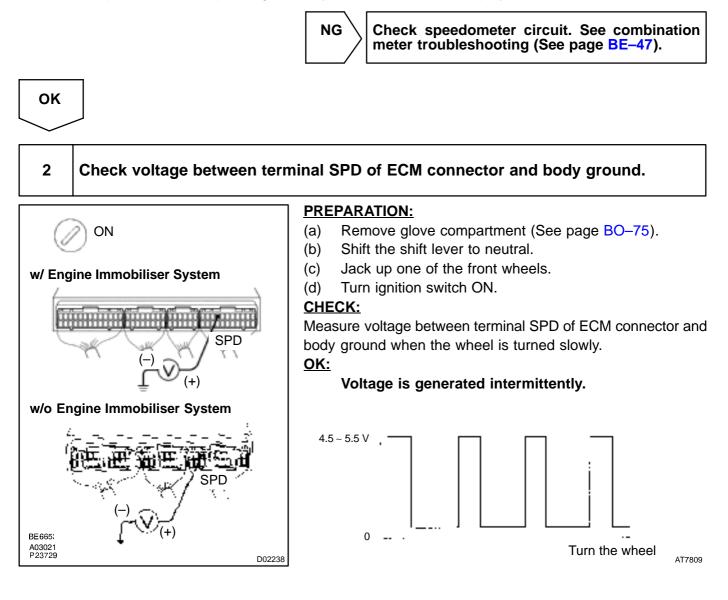
DTC No.	DTC Detecting Condition	Trouble Area
P0500	During vehicle is being driven, no vehicle speed sensor signal to ECM (2 trip detection logic)	 Combination meter Open or short in vehicle speed sensor circuit Vehicle speed sensor
	Clutch or brake slips or gear is broken	 ECM Automatic transaxle (clutch, brake or gear etc.)

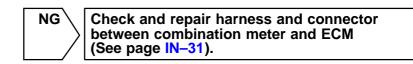
WIRING DIAGRAM

See page DI-145.

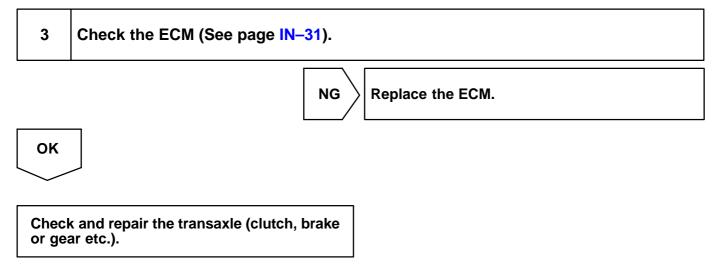
DI1J0-01

INSPECTION PROCEDURE


1


Check operation of speedometer.

CHECK:


Drive the vehicle and check if the operation of the speedmeter in the combination meter is normal. HINT:

The vehicle speed sensor is operating normally if the speedometer display is normal.

ΟΚ

DI032-02

P0750, P0755 Shift Solenoid A/B Malfunction (Shift Solenoid Valve No.1/No.2)

SYSTEM DESCRIPTION

DTC

The ECM uses signals from the vehicle speed sensor and crankshaft position sensor to detect the actual gear position (1st, 2nd, 3rd or O/D gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical trouble of the shift solenoid valves, valve body or automatic transaxle (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0750 P0755	During normal driving, the gear required by the ECM does not match the actual gear (2 trip detection logic)	 Shift solenoid valve No.1/No.2 is stuck open or closed Valve body is blocked up or stuck Automatic transaxle (clutch, brake or gear etc.)

Check the shift solenoid valve No.1 when DTC P0750 is output and check the shift solenoid valve No.2 when DTC P0755 is output.

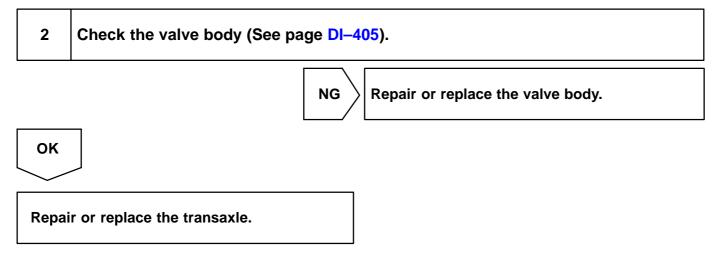
INSPECTION PROCEDURE

	1	Check shift solenoid valve No.1 or No.2 operation.	
Γ		2 Jun	PREPARATION:
		State and the state of the stat	(a) Remove the oil pan.
			(b) Remove the shift solenoid valve No.1 or No.2.

CHECK:

- (a) By applying 490 kPa (5 kgf/cm², 71 psi) of compressed air, check that the solenoid valve does not leak air.
- (b) When battery positive voltage is supplied to the shift solenoid valve, check that the valve opens.

<u>OK:</u>


Q07741

(a) Solenoid valve does not leak air.(b) Solenoid valve opens.

NG

Replace the shift solenoid valve No.1 or No.2.

DI033-02

DTC

P0753, P0758

Shift Solenoid A/B Electrical Malfunction (Shift Solenoid Valve No.1/No.2)

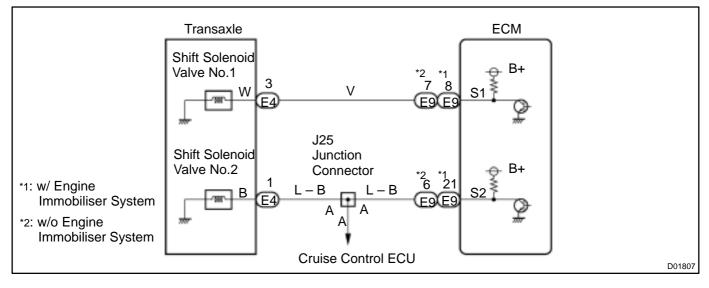
CIRCUIT DESCRIPTION

Shifting from 1st to O/D is performed in combination with ON and OFF of the shift solenoid valves No.1 and No.2 controlled by ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valve to allow the vehicle to be operated smoothly (Fail safe function).

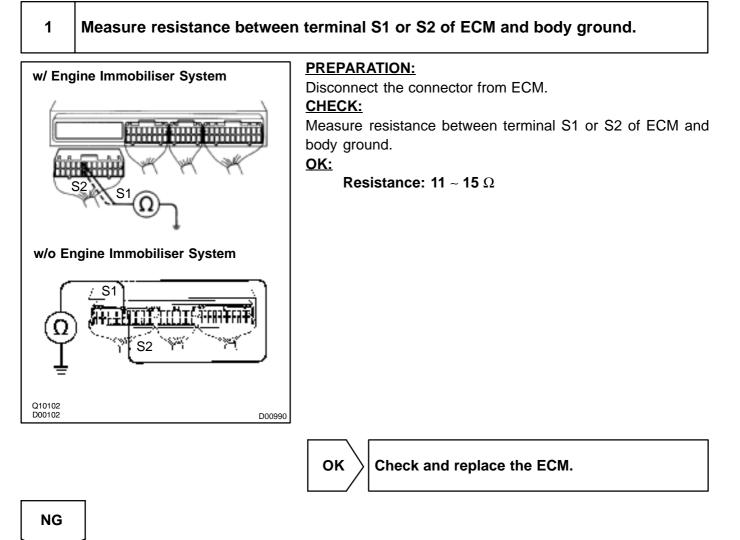
Fail Safe Function:

If either of the shift solenoid valve circuits develops an open or short, the ECM turns the other shift solenoid ON and OFF to shift to the gear positions shown in the table below. The ECM also turns the shift solenoid valve SL OFF at the same time. If both solenoids are malfunction, hydraulic control cannot be performed electronically and must be done manually.

Manual shifting as shown in the following table must be done (In the case of a short circuit, the ECM stops sending current to the short circuited solenoid).

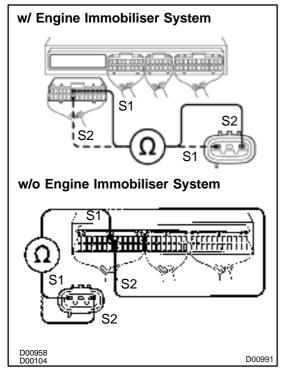

Desition	NORMAL		SHIFT SOLENOID NO.1 MALFUNCTIONING		SHIFT SOLENOID NO.2 MALFUNCTIONING			BOTH SOLENOIDS MAL- FUNCTIONING		
Position	Soleno No.1	id valve No.2	Gear	Solenoi No.1	d valve No.2	Gear	Solenoi No.1	d valve No.2	Gear	Gear when shift selector is manually operated
	ON	OFF	1st	Х	ON	3rd	ON	Х	1st	O/D
D	ON	ON	2nd	х	ON	3rd	OFF	Х	O/D	O/D
	OFF ON 3rd	3rd	Х	ON	3rd	OFF	Х	O/D	O/D	
	OFF	OFF	O/D	Х	OFF	O/D	OFF	Х	O/D	O/D
	ON	OFF	1st	х	ON	3rd	ON	х	1st	3rd
2	ON	ON	2nd	Х	ON	3rd	OFF	Х	3rd	3rd
	OFF	ON	3rd	Х	ON	3rd	OFF	Х	3rd	3rd
	ON	OFF	1st	Х	OFF	1st	ON	Х	1st	1st
	ON	ON	2nd	Х	ON	2nd	ON	Х	1st	1st

X: Malfunctions


Check the shift solenoid valve No.1 when DTC P0753 is output and check the shift solenoid valve No.2 when DTC P0758 is output.

DTC No.	DTC Detecting Condition	Trouble Area
P0753 P0758	The ECM checks for an open or short circuit in the shift sole- noid valves No.1 and No.2 circuit when it changes gear posi- tion. The ECM records DTC P0753 or P0758 if condition (a) or (b) is detected once, but it does not light up MIL. After 1 sec. ECM detects condition (a) or (b) in a trip again, it causes the MIL to light up. (a) When the solenoid is energized, the solenoid resistance is	 Open or short in shift solenoid valve No.1/No.2 circuit Shift solenoid valve No.1/No.2 ECM
	 (a) When the solenoid is energized, the solenoid resistance is 8 Ω or less and is counted. (b) When the solenoid is not energized, the solenoid resistance is 100 kΩ or more and is counted. 	

WIRING DIAGRAM



INSPECTION PROCEDURE

2

Check harness and connector between ECM and automatic transaxle solenoid connector.

PREPARATION:

Disconnect the solenoid connector from the automatic transaxle.

CHECK:

Check the harness and connector between terminal S1 or S2 of ECM and terminal S1 or S2 of solenoid connector.

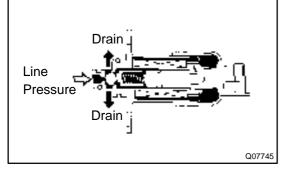
<u>OK:</u>

There is no open and no short circuit.

Repair or replace the harness or connector.

ОК

3 Check shift solenoid valve No.1 or No.2. **PREPARATION:** Jack up the vehicle. (a) (b) Remove the oil pan. Disconnect the solenoid connector. (c) Remove the shift solenoid valve No.1 or No.2. (d) **CHECK:** Measure resistance between solenoid connector and (a) body ground. Connect the positive \sim lead to terminal of solenoid con-(b) nector, negative > lead to solenoid body. <u>OK:</u> (a) Resistance: 11 ~ 15 Ω (b) The solenoid makes an operating noise. Q07744 NG Replace the shift solenoid valve. ΟΚ Repair or replace the solenoid wire.


DI-417

DI034-02

DTC

P0770

Shift Solenoid E Malfunction (Shift Solenoid Valve SL)

SYSTEM DESCRIPTION

The ECM uses the signals from the Throttle position sensor, Air–flow meter and Crankshaft position sensor to monitor the engagement condition of the lock–up clutch.

Then the ECM compares the engagement condition of the lock–up clutch with the lock–up schedule in the ECM memory to detect mechanical trouble of the shift solenoid valve SL, valve body, torque converter clutch or automatic transaxle (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0770	 Lock-up does not occur when driving in the lock-up range (normal driving at 80 km/h [50 mph]), or lock-up remains ON in the lock-up OFF range. (2 trip detection logic) When lock-up is ON, clutch or brake slips or gear is broken. 	 Shift solenoid valve SL is stuck open or closed Valve body blocked up or stuck Lock-up clutch Automatic transaxle (clutch, brake or gear etc.)

INSPECTION PROCEDURE

 1
 Check solenoid value SL operation.

 Image: Present of the solenoid value SL operation.
 Image: Present operation.

 Image: Image: Image: Present operation.
 Image: Present operation.

 Image: Image: Image: Image: Image: Present operation.
 Image: Im

CHECK:

- (a) By applying 490 kPa (5 kgf/cm², 71 psi) of compressed air, check that the solenoid valve does not leak air.
- (b) When battery positive voltage is supplied to the shift solenoid valve, check that the solenoid valve opens.

<u>OK:</u>

Q07746

(a) Solenoid valve does not leak air.(b) Solenoid valve opens.

ОК

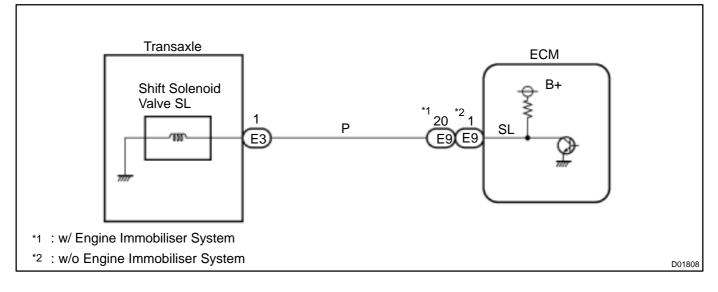
DI-418

2	Check valve body (See page DI–405).		
	NG Repair or replace the valve body.		
ОК			
3	Check the torque converter clutch (See page AX–26).		
	NG Replace the torque converter clutch.		
ОК			
Repai	r or replace the transaxle.		

DI035-02

DTC P0773 Shift Solenoid E Electrical Malfunction (Shift Solenoid Valve SL)

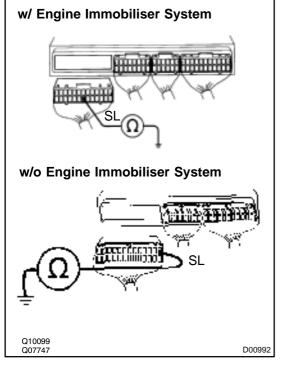
CIRCUIT DESCRIPTION


The shift solenoid valve SL is turned ON and OFF by signals from the ECM to control the hydraulic pressure acting on the lock–up relay valve, which then controls operation of the lock–up clutch.

Fail safe function

If the ECM detects a malfunction, it turns the shift solenoid valve SL OFF.

DTC No.	DTC Detecting Condition	Trouble Area
P0773	 Either (a) or (b) is detected for 1 time.(2 trip detection logic) (a) Solenoid resistance is 8 Ω or less short circuit when solenoid is energized. (b) Solenoid resistance is 100 kΩ or more open circuit when solenoid is not energized. 	 Open or short in shift solenoid valve SL circuit Shift solenoid valve SL ECM


WIRING DIAGRAM

INSPECTION PROCEDURE

1

Measure resistance between terminal SL of ECM and body ground.

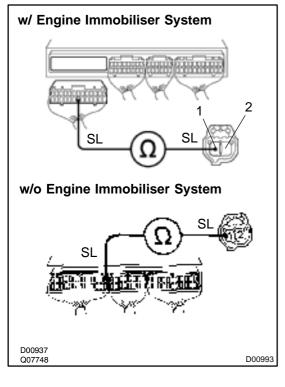
PREPARATION:

Disconnect the connector from ECM.

CHECK:

Measure resistance between terminal SL of ECM and body ground.

<u>OK:</u>


Resistance: 11 ~ 15 Ω

OK

Check and replace the ECM.

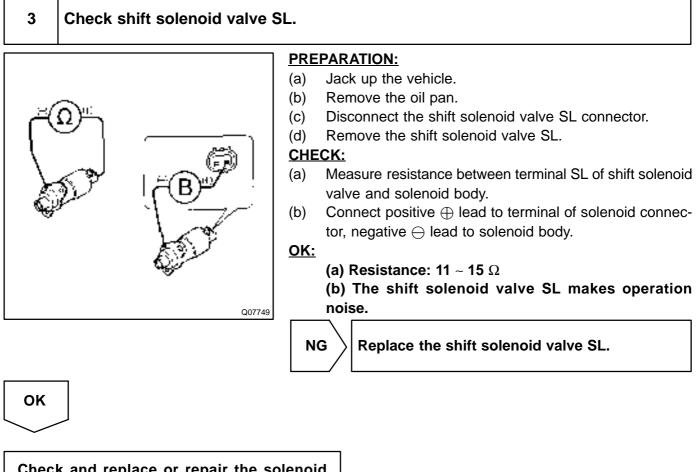
NG

2 Check harness and connector between ECM and automatic transaxle solenoid connector.

PREPARATION:

Disconnect the solenoid connector from the transaxle. **CHECK:**

Check the harness and connector between terminal SL of ECM and terminal SL of solenoid connector.


<u> 0K:</u>

There is no open or short circuit.

Repair or replace the harness or connector.

ΟΚ

Check and replace or repair the solenoid wire.

DTC

P1520

Stop Light Switch Signal Malfunction

CIRCUIT DESCRIPTION

The purpose of this circuit is to prevent the engine from stalling, while driving in lock-up condition, when brakes are suddenly applied.

When the brake pedal is depressed, this switch sends a signal to ECM. Then the ECM cancels operation of the lock–up clutch while braking is in progress.

DTC No.	DTC Detecting Condition	Trouble Area
P1520	No stop light switch signal to ECM during driving. (2 trip detection logic)	 Open or short in stop light switch circuit Stop light switch ECM

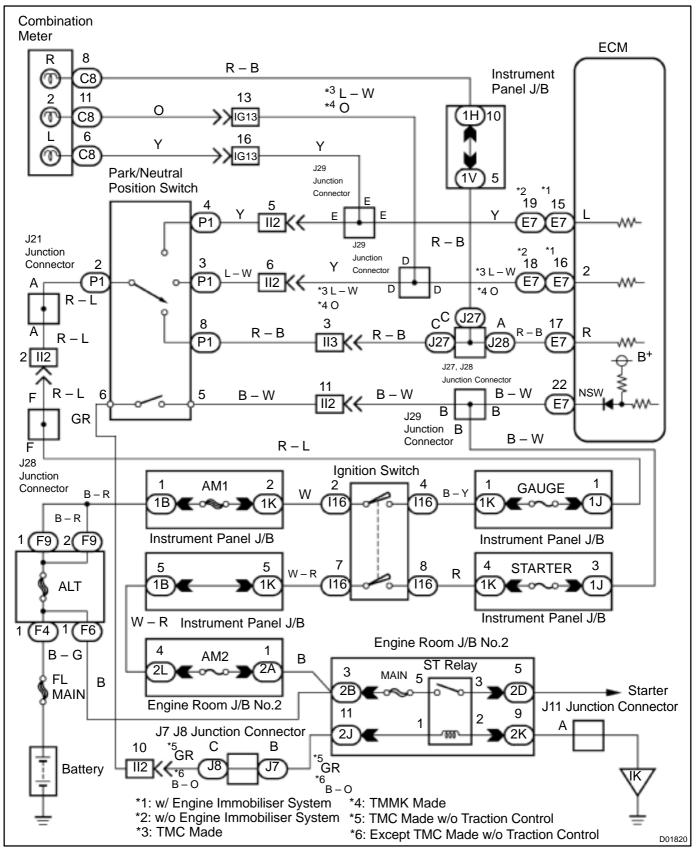
WIRING DIAGRAM

See page DI-170.

INSPECTION PROCEDURE

See page DI-170.

DTC	P1780	Park/Neutral Position Switch Malfunction
-----	-------	--


CIRCUIT DESCRIPTION

The park/neutral position switch detects the shift lever position and sends signals to the ECM. The ECM receives signals (NSW, R, 2 and L) from the park/neutral position switch. When the signal is not sent to the ECM from the park/neutral position switch, the ECM judges that the shift lever is in D position.

DTC No.	DTC Detection Condition	Trouble Area
P1780	 When driving under conditions (a) and (b) for 30 seconds or more, the park/neutral position switch is ON (N position). (2 trip detection logic) (a) Vehicle speed: 80 km/h (50 mph) or more (b) Engine speed: 2,000 ~ 5,000 rpm 	 Short in park/neutral position switch circuit Park/neutral position switch ECM

DI037-02

WIRING DIAGRAM

INSPECTION PROCEDURE

1

Read PNP, REVERSE, 2ND and LOW signals.

When using TOYOTA hand-held tester: <u>PREPARATION:</u>

- (a) Remove the DLC3 cover.
- (b) Connect a TOYOTA hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and TOYOTA hand-held tester main switch ON.

CHECK:

Shift the shift lever into the P, R, N, 2 and L positions, and read the PNP, REVERSE, 2ND and LOW signals on the TOYOTA hand-held tester.

<u>OK:</u>

Shift position	Signal	
2	$2ND \text{ OFF} \rightarrow ON$	
L	$LOW\:OFF\toON$	
R	$REVERSE\:OFF\toON$	
P, N	$PNP\:OFF\toON$	

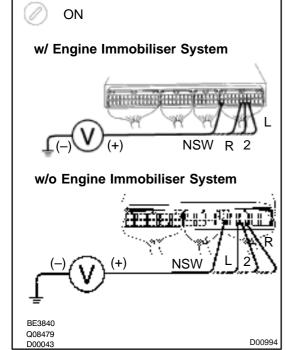
When not using TOYOTA hand-held tester: <u>PREPARATION:</u>

Turn the ignition switch ON.

CHECK:

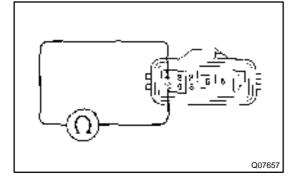
Measure voltage between terminals NSW, 2, L and R of ECM and body ground when the shift lever is shifted in the following positions.

<u> 0K:</u>


Position	NSW–Body ground	R–Body ground	2–Body ground	L–Body ground
P, N	0 V	0 V	0 V	0 V
R	9 ~ 14 V*	9 ~ 14 V*	0 V	0 V
D	9 ~ 14 V	0 V	0 V	0 V
2	9 ~ 14 V	0 V	9 ~ 14 V	0 V
L	9 ~ 14 V	0 V	0 V	9 ~ 14 V

HINT:

The voltage will drop slightly due to lighting up of the back up light.



Proceed to next circuit inspection shown on matrix chart (See page DI-405).

Check park/neutral position switch.

PREPARATION:

(a) Jack up the vehicle.

(b) Remove the park/neutral position switch.

CHECK:

Check continuity between each terminal shown below when the shift lever is moved to each position.

Shift Position	Terminal No. to continuity	Terminal No. to continuity
Р	4 – 7	5 – 6
R	4 – 8	_
Ν	4 – 10	5 – 6
D	4-9	-
2	2-4	-
L	2-3	-
01/		

<u>OK:</u>

There is continuity.

Replace the park/neutral position switch.

OK

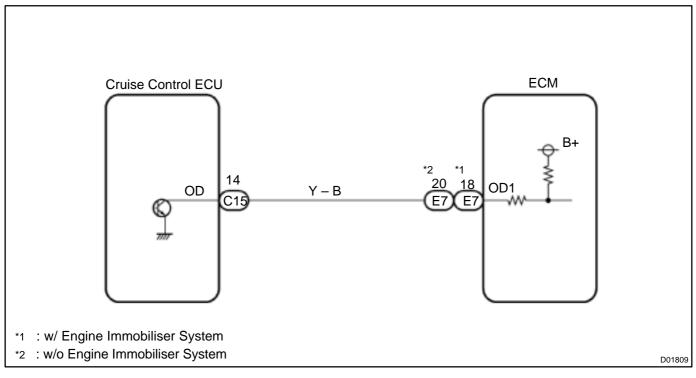
2

3 Check harness and connector between battery and park/neutral position switch, park/neutral position switch and ECM (See page IN-31).

Repair or replace the harness and connector.

ΟΚ

Check and replace the ECM.

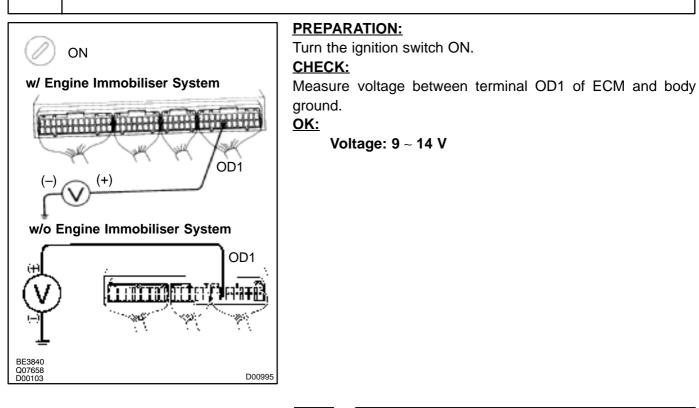

O/D Cancel Signal Circuit

CIRCUIT DESCRIPTION

While driving uphill with cruise control activated, in order to minimize gear shifting and provide smooth cruising overdrive may be prohibited temporarily under some conditions.

The cruise control ECU sends O/D cut signals to the ECM as necessary and the ECM cancels overdrive shifting until these signals are discontinued.

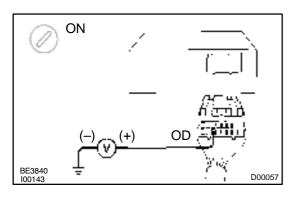
WIRING DIAGRAM



DI038-02

INSPECTION PROCEDURE

Check voltage between terminal OD1 of ECM and body ground.



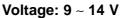
ΟΚ

Proceed to next circuit inspection shown on matrix chart (See page DI-405).

NG

2 Check voltage between terminal OD of cruise control ECU harness side connector and body ground.

PREPARATION:


- (a) Disconnect the cruise control ECU connector.
- (b) Turn the ignition switch ON.

CHECK:

Measure voltage between terminal OD of cruise control ECU harness side connector and body ground.

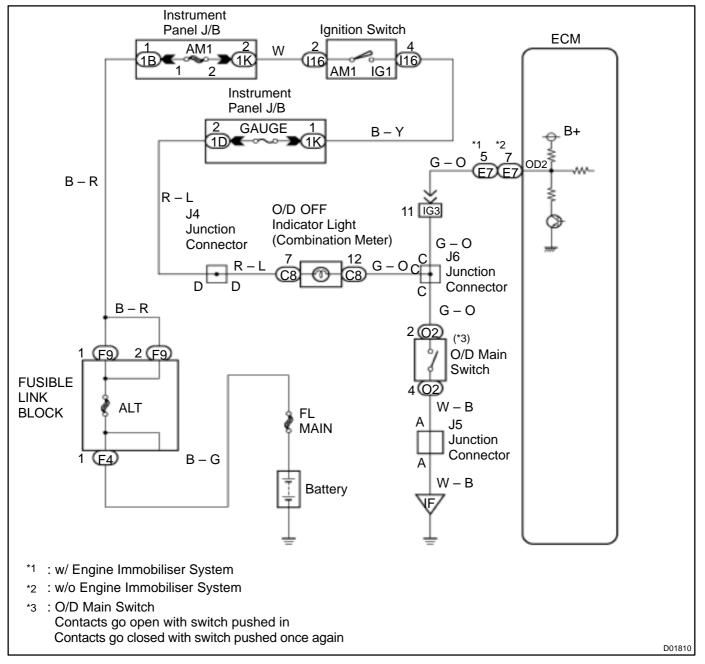
ΟΚ

 \rangle Check and replace the cruise control ECU.

NG

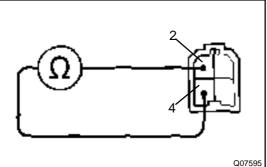
3	Check harness and connector between cruise control ECU and ECM.		
	NG Repair or replace the harness or connector.		
ОК			
Checl	k and replace the ECM.		

DI-431


DI1J1-01

O/D Main Switch & O/D OFF Indictor Light Circuit

CIRCUIT DESCRIPTION


The O/D main switch contacts go open when the switch is pushed in and go closed when it is pushed out. In O/D main switch in OFF position, the O/D OFF indicator light lights up, and the ECM prohibits shifting overdrive.

WIRING DIAGRAM

INSPECTION PROCEDURE O/D OFF indicator light does not light up

1 Check O/D main switch.

PREPARATION:

Disconnect the O/D main switch connector.

CHECK:

Check continuity at each terminal 2 and 4 of O/D main switch connector.

<u>OK:</u>

O/D main switch	Specified condition	
ON	No continuity	
OFF	Continuity	

NG

 \rangle Replace the O/D main switch.

2 Check and replace combination meter (See page BE–47).

NG Replace the combination meter.

ΟΚ

ΟΚ

Check OVRDRIVE CUT SW2 signal.

When using TOYOTA hand-held tester: <u>PREPARATION:</u>

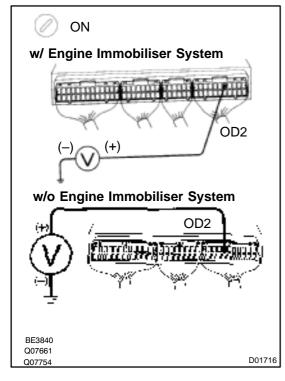
- (a) Remove the DLC3 cover.
- (b) Connect TOYOTA hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and TOYOTA hand-held tester main switch ON.

CHECK:

Read the OVRDRIVE CUT SW2 signal on the TOYOTA hand-held tester.

<u>OK:</u>

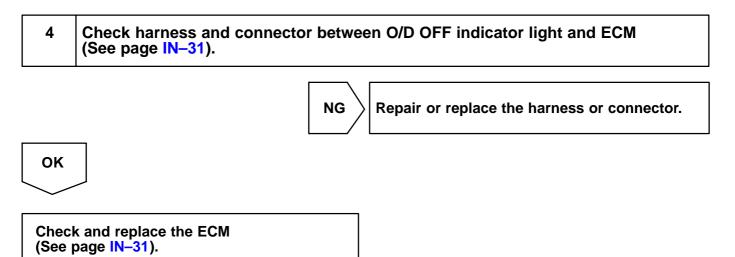
O/D main switch condition	OVRDRIVE CUT SW2 signal
O/D ON (Pushed in)	OFF
O/D OFF (Pushed once again)	ON


When not using TOYOTA hand-held tester: <u>PREPARATION:</u>

Turn the ignition switch ON.

CHECK:

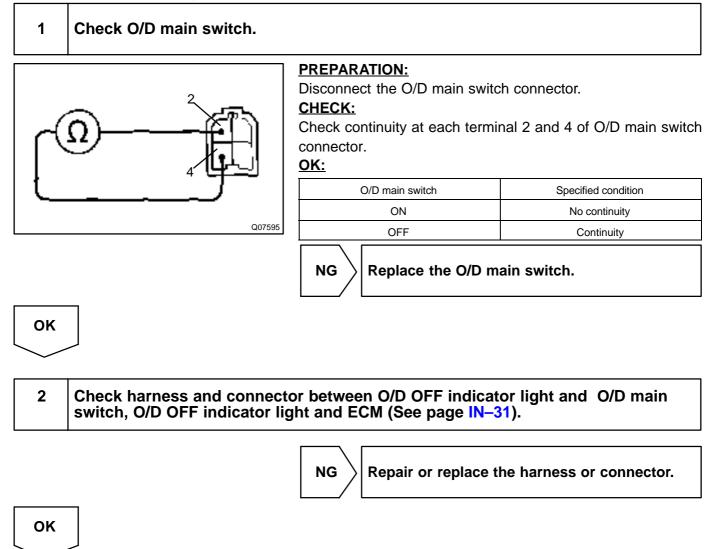
Check voltage between terminal OD2 of ECM and body ground. **OK:**


O/D main switch condition	Voltage
O/D ON (Pushed in)	9 ~ 14
O/D OFF (Pushed once again)	Below 1.5 V

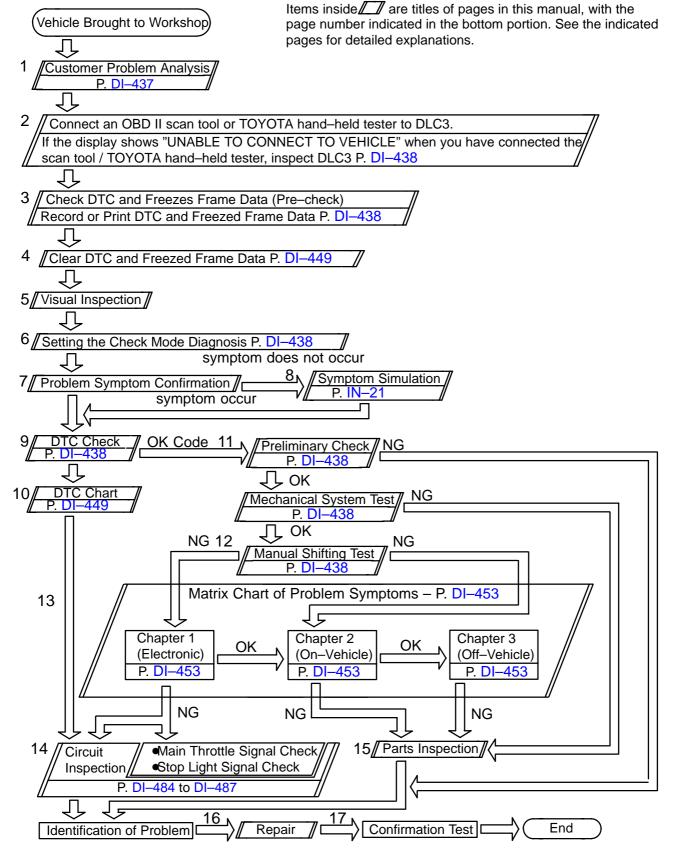
ок ∖

Check and replace the ECM (See page IN-31).

NG



Author :


O/D OFF indicator light remains ON

Check and replace the ECM

(See page IN-31).

AUTOMATIC TRANSAXLE (A541E) HOW TO PROCEED WITH TROUBLESHOOTING

DI02C-02

CUSTOMER PROBLEM ANALYSIS CHECK

Transaxle Control	Inspector's
System Check Sheet	Name
System Check Sheet	Name

		Registration No.			
Customer's Name			Registration Year	/	/
			Frame No.		
Date Vehicle Brought In	/	/	Odometer Reading		km mile

Date Problem Occurred	/	/		
How Often Does Problem Occur?		□ Intermittent (times a day)	

	\Box Vehicle does not move (\Box Any position \Box Particular position)		
	$\Box \text{ No up-shift} \qquad (\ \Box \ 1st \rightarrow 2nd \qquad \Box \ 2nd \rightarrow 3rd \qquad \Box \ 3rd \rightarrow O/D \text{)}$		
	\Box No down–shift (\Box O/D \rightarrow 3rd \Box 3rd \rightarrow 2nd \Box 2nd \rightarrow 1st)		
	Lock-up malfunction		
Symptoms	mptoms 🛛 Shift point too high or too low		
	\Box Harsh engagement (\Box N \rightarrow D $\ \Box$ Lock–up $\ \Box$ Any drive position)		
	□ Slip or shudder		
	No kick–down		
	□ _ Others		
)	

Check Item	Malfunction Indicator Lamp	Normal	Remains ON	
DTC Check	1st Time	□ Normal code	□ Malfunction code (Code)
	2nd Time	Normal code	□ Malfunction code (Code)

DI02D-01

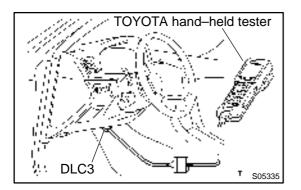
672

DI02E-02

"Сэ Снеск

PRE-CHECK

1. DIAGNOSIS SYSTEM


(a) Description

FI0534

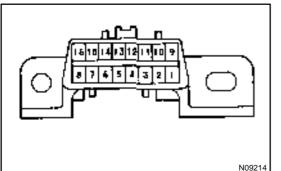
When troubleshooting OBD II vehicles, the only difference from the usual troubleshooting procedure is that you connect to the vehicle an OBD II scan tool complying with SAE J1987 or TOYOTA hand– held tester, and read off various data output from the vehicle's ECM.

OBD II regulations require that the vehicle's onboard computer lights up the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in the computer itself or in drive system components which affect vehicle emissions. In addition to the MIL lighting up when a malfunction is detected, the applicable DTCs prescribed by SAE J2012 are recorded in the ECM memory. (See page DI–211)

If the malfunction only occurs in 3 trips, the MIL goes off but the DTCs remain recorded in the ECM memory.

 To check the DTCs, connect an OBD II scan tool or TOYOTA hand-held tester to DLC3 on the vehicle. The OBD II scan tool or TOYOTA hand-held tester also enables you to erase the DTCs and check freeze frame data and various forms of engine data (For instruction book).

DTCs include SAE controlled codes and Manufacturer controlled codes.


SAE controlled codes must be set as prescribed by the SAE, while Manufacturer controlled codes can be set freely by the manufacturer within the prescribed limits (See DTC chart on page DI-449).

DIAGNOSTICS – AUTOMATIC TRANSAXLE (A541E)

The diagnosis system operates in normal mode during normal vehicle use, and also has a check mode for technicians to simulate malfunction symptoms and perform troubleshooting. Most DTCs use 2 trip detection logic(*) to prevent erroneous detection. By switching the ECM to check mode when troubleshooting, the technician can cause the MIL to light up and for a malfunction that is only detected once or momentarily.

(TOYOTA hand-held tester) (See page DI-438)

*2 trip detection logic:
 When a logic malfunction is first detected, the malfunction is temporarily stored in the ECM memory.
 If the same malfunction is detected again during the 2nd test drive, this 2nd detection causes the MIL to light up.

(b) Inspect the DLC3.

The vehicle's ECM uses ISO 9141–2 for communication. The terminal arrangement of DLC3 complies with SAE J1962 and matches the ISO 9141–2 format.

Tester connection	Condition	Specified condition
7 (Bus \sim Line) – 5 (Signal ground)	During communication	Pulse generation
4 (Chassis Ground) – Body	Always	1 Ω or less
5 (Signal Ground) – Body	Always	1 Ω or less
16 (B+) – Body	Always	9 – 14 V

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of OBD II scan tool or TOY-OTA hand-held tester to DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- (1) If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- (2) If communication is still not possible when the tool is connected connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

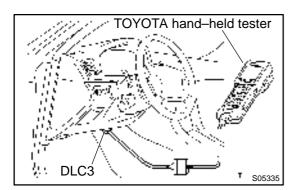
2. INSPECT DIAGNOSIS (NORMAL MODE)

- (a) Check the MIL.
 - (1) The MIL comes on when the ignition switch is turned ON and the engine is not running.

HINT:

FI0534

If the MIL does not light up, troubleshoot the combination meter (See page BE-2).


- (2) When the engine is started, the MIL should go off. If the lamp remains on, the diagnosis system has detected a malfunction or abnormality in the system.
- (b) Check the DTC.

NOTICE:

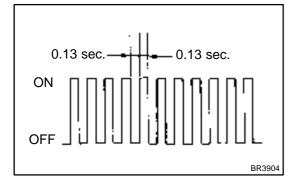
TOYOTA hand-held tester only:

When the diagnostic system is switched from normal mode to check mode, it erases all DTCs and freeze frame data recorded in normal mode. So before switching modes, always check the DTCs and freeze frame data, and note them down.

Prepare an OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester.

- (2) Connect the OBD II scan tool or TOYOTA handheld tester to DLC3 at the lower of the instrument panel.
- (3) Turn the ignition switch ON and turn the OBD II scan tool or TOYOTA hand-held tester switch ON.
- (4) Use the OBD II scan tool or TOYOTA hand-held tester to check the DTCs and freeze frame data and note them down (For operating instructions, see the OBD II scan tool's instruction book).

(5) See page DI–449 to confirm the details of the DTCs. **NOTICE:**


When simulating symptoms with an OBD II scan tool (excluding TOYOTA hand-held tester) to check the DTCs, use normal mode. For codes on the DTCs chart subject to "2 trip detection logic", turn the ignition switch off after the symptoms have been simulated the 1st time. Them repeat the simulation process again. When the program has DTCs are recorded in the ECM.

3. INSPECT DIAGNOSIS (CHECK MODE) HINT:

TOYOTA hand-held tester only: Compared to the normal mode, the check mode has high sensing ability to detect malfunctions. Furthermore, the same diagnostic items which are detected in Normal mode can also be detected in Check mode.

- (a) Check the DTC.
 - (1) Check the initial conditions.
 - Battery positive voltage 11 V or more.
 - Throttle valve fully closed.
 - Transaxle in P position.
 - Air conditioning switched off.
 - (2) Turn the ignition switch OFF.
 - (3) Prepare a TOYOTA hand-held tester.

TOYOTA hand-held tester

- (4) Connect the TOYOTA hand-held tester to DLC3 at the lower of the instrument panel.
- (5) Turn the ignition switch ON and switch the TOYOTA hand-held tester ON.

- (6) Switch the TOYOTA hand-held tester from Normal mode to Check mode (Check that the MIL flashes).
- (7) Start the engine (MIL goes out after the engine starts).
- (8) Simulate the conditions of the malfunction described by the customer.

NOTICE:

Leave the ignition switch ON until you have checked the DTCs, etc..

(9) After simulating the malfunction conditions, use the TOYOTA hand-held tester diagnosis selector to check the DTCs and freeze frame data, etc..

HINT:

Take care not to turn the ignition switch OFF, as turning it off switches the diagnosis system from Check mode to Normal mode, so all DTCs, etc. are erased.

(10) After checking the DTC, inspect the applicable circuit.

(b) Clearance the DTC.

The following actions will erase the DTC and freezed frame data. Operating an OBD II scan tool (complying with SAE J1978) or TOYOTA hand-held tester to erase the codes.

(See the OBD II scan tool's instruction book for operating instructions.)

4. ROAD TEST

NOTICE:

Perform the test at normal operating ATF temperature 50 – 80 °C (122 – 176 °F).

- (a) D POSITION TEST
 - Shift into the D position and fully depress the accelerator pedal and and check the following points:
 - (1) Check up-shift operation. $1 \rightarrow 2, 2 \rightarrow 3$ and $3 \rightarrow O/D$ up-shift takes place, at the shift point shown in the automatic shift schedule (See page SS-56).

HINT:

- O/D Gear Up–shift Prohibition Control (1. Coolant temp. is 60 °C (140 °F) or less. 2. If there is a 10 km/h (6 mph) difference between the set cruise control speed and vehicle speed.)
- O/D Gear Lock–up Prohibition Control (1. Brake pedal is depressed. 2. Coolant temp. is 60 °C (140 °F) or less.)
 - (2) Check for shift shock and slip. Check for shock and slip at the 1 \rightarrow 2, 2 \rightarrow 3 and 3 \rightarrow O/D up–shifts.
 - (3) Check for abnormal noises and vibration.
 Run at the D position lock-up or O/D gear and check for abnormal noises and vibration.

HINT:

The check for the cause of abnormal noises and vibration must be done very thoroughly as it could also be due to loss of balance in the differential torque converter clutch, etc..

- (4) Check kick–down operation. While running in the D position, 2nd, 3rd and O/D gears, check to see that the possible kick–down vehicle speed limits for 2 → 1, 3 → 2 and O/D → 3 kick–downs conform to those indicated on the automatic shift schedule (See page SS–56).
- (5) Check abnormal shock and slip at kick–down.
- (6) Check the lock–up mechanism.
 - Drive in D position, O/D gear, at a steady speed (lock-up ON) of about 60 km/h (37 mph).
 - Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.
- If there is a big jump in engine speed, there is no lock-up.

(b) 2 POSITION TEST

Shift into the 2 position and fully depress the accelerator pedal and check the following points:

(1) Check up–shift operation. Check to see that the $1 \rightarrow 2$ up–shift takes place and that the shift point conforms to the automatic shift schedule (See page SS–56).

HINT:

There is no O/D up-shift and lock-up in the 2 position.

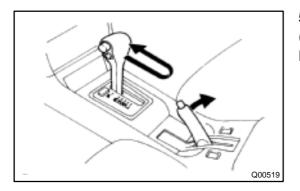
- (2) Check engine braking. While running in the 2 position and 2nd gear, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration, and for shock at up–shift and down–shift.

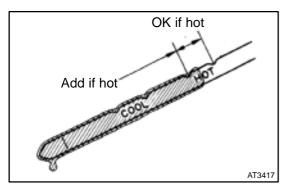
Date :

(c) L POSITION TEST

Shift into the 2 position and fully depress the accelerator pedal and check the following points:

- Check no up-shift.
 While running in the L position, check that there is no up-shift to 2nd gear.
- (2) Check engine braking. While running in the L position, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration.
- (d) R POSITION TEST


Shift into the R position and fully depress the accelerator pedal and check for slipping.


CAUTION:

Before conducting this test ensure that the test area is free from people and obstruction.

(e) P POSITION TEST

Stop the vehicle on a grade (more than 5°) and after shifting into the P position, release the parking brake. Then, check to see that the parking lock pawl holds the vehicle in place.

5. BASIC INSPECTION

(a) Check the fluid level. HINT:

- Drive the vehicle so that the engine and transaxle are at normal operating temperature.
 - Fluid temp.: 70 80 °C (158 176 °F)
- Only use the COOL range on the dipstick as a rough reference when the fluid is replaced or the engine does not run.
 - (1) Park the vehicle on a level surface and set the parking brake.
 - (2) With the engine idling and the brake pedal depressed, shift the shift lever into all positions from P to L position and return to P position.
 - (3) Pull out the dipstick and wipe it clean.
 - (4) Push it back fully into the pipe.
 - (5) Pull it out and check that the fluid level is in the HOT range.

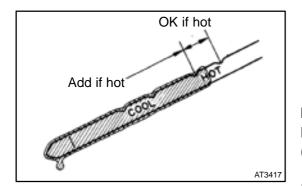
If the level is at the low side, add new fluid.

Fluid type: ATF D–II or DEXRON®III (DEXRON®II)

NOTICE:

Do not overfill.

(b) Check the fluid condition.


If the level is at the low side, add new fluid.

DIAGNOSTICS - AUTOMATIC TRANSAXLE (A541E)

- (c) Replace the ATF.
 - (1) Remove the drain plug and drain the fluid.
 - (2) Reinstall the drain plug securely.

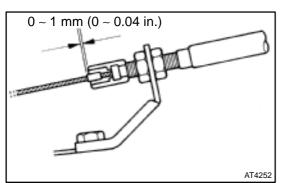
F C C C C C C C C

AT4657

(3) With the engine OFF add new fluid through the oil filler pipe.

Fluid type: ATF D–II or DEXRON®III (DEXRON®II) Capacity: 3.9 liters (4.1 US qts, 3.4 lmp. qts)

- (4) Start the engine and shift the shift lever into all positions from P to L position and then shift into P position.
- (5) With the engine idling, check the fluid level. Add fluid up to the COOL level on the dipstick.
- (6) Check the fluid level at the normal operating temperature, 70 80 °C (158 176 °F), and add as necessary.

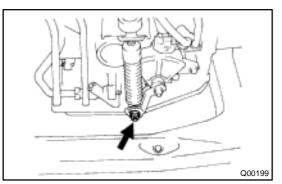

NOTICE:

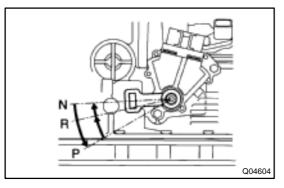
Do not overfill.

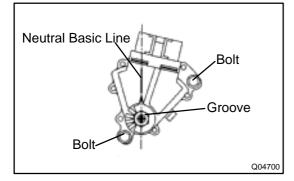
(d) Check the fluid leaks.

Check for leaks in the transaxle.

If there are leaks, it is necessary to repair or replace O–rings, gasket, oil seals, plugs or other parts.




(e) Inspect and adjust the throttle cable.


- (1) Check that the accelerator pedal is fully released.
- (2) Check that the inner cable is not slack.
- (3) Measure the distance between the outer cable end and stopper on the cable.

Standard distance: 0 – 1 mm (0 – 0.04 in.)

If the distance is not the standard, adjust the cable by the adjusting nuts.

(f) Inspect and adjust the shift lever position. When shifting the shift lever from the N position to other positions, check that the lever can be shifted smoothly and accurately to each position and that the position indicator is not aligned with the correct position.

If the indicator is not aligned with the correct position, carry out the following adjustment procedures.

- (1) Loosen the nut on the shift lever.
- (2) Push the control shaft fully rearward.
- (3) Return the control shaft lever 2 notches to N position.
- (4) Set the shift lever to N position.
- (5) While holding the shift lever lightly toward the R position side, tighten the shift lever nut.

Torque: 13 N·m (130 kgf·cm, 9 ft·lbf)

- (6) Start the engine and make sure that the vehicle moves forward when shifting the lever from the N to D position and reverses when shifting it to the R position.
- (g) Inspect and adjust the park/neutral position.Check that the engine can be started with the shift lever

only in the N or P position, but not in other positions.

If it is not as stated above, carry out the following adjustment procedures.

- (1) Loosen the park/neutral position switch bolt and set the shift lever to the N position.
- (2) Align the groove and neutral basic line.
- (3) Hold in position and tighten the bolt.

Torque: 5.4 N·m (55 kgf·cm, 48 in·lbf)

For continuity inspection of the park/neutral position switch, see page DI–479.

(h) Check the idle speed.

Idle speed: 700 ± 50 rpm

(In N position and air conditioner OFF)

6. MECHANICAL SYSTEM TESTS

(a) Measure the stall speed.

The object of this test is to check the overall performance of the transaxle and engine by measuring the stall speeds in the D and R positions.

NOTICE:

- Do the test at normal operating fluid temperature 50 80 °C (122 176 °F).
- Do not continuously run this test longer than 5 seconds.
- To ensure safety, conduct this test in a wide, clear level area which provides good traction.
- The stall test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
 - (1) Chock the 4 wheels.
 - (2) Connect an OBD II scan tool or TOYOTA hand-held tester to DLC3.
 - (3) Fully apply the parking brake.
 - (4) Keep your left foot pressed firmly on the brake pedal.
 - (5) Start the engine.

(6) Shift into the D position. Press all the way down on the accelerator pedal with your right foot. Quickly read the stall speed at this time.

Stall speed: 2,600 ± 150 rpm

(7) Do the same test in R position.

Stall speed: 2,600 ± 150 rpm

Evaluation:

Problem	Possible cause
(a) Stall speed low in D and R positions	 Engine output may be insufficient Stator one-way clutch is operating properly HINT: If more than 600 rpm below the specified value, the torque converter could be faulty.
(b) Stall speed high in D position	 Line pressure too low Forward clutch slipping No.2 one-way clutch not operating properly O/D clutch slipping
(c) Stall speed high in R position	 Line pressure too low Direct clutch slipping 1st and reverse brake slipping O/D clutch slipping
(d) Stall speed high in D and R positions	 Line pressure too low Improper fluid level O/D one-way clutch not operating properly

(b) Measure the time lag.

When the shift lever is shifted while the engine is idling, there will be a certain time lapse or lag before the shock can be felt. This is used for checking the condition of the O/D direct clutch, forward clutch, and 1st and reverse brake.

NOTICE:

- Do the test at normal operating fluid temperature 50 80 °C (122 176 °F).
- Be sure to allow 1 minute interval between tests.
- Take 3 measurements and take the average value.
 - (1) Connect an OBD II scan tool or TOYOTA hand-held tester to DLC3.
 - (2) Fully apply the parking brake.
 - (3) Start the engine and check idle speed.

Idle speed: 700 \pm 50 rpm (In N position and air conditioner OFF)

(4) Shift the shift lever from N to D position. Using a stop watch, measure the time from when the lever is shifted until the shock is felt.

In the same manner, measure the time lag for $N \rightarrow R$.

Time lag:

$N \rightarrow D$ Less than 1.2 seconds

$N \rightarrow R$ Less than 1.5 seconds

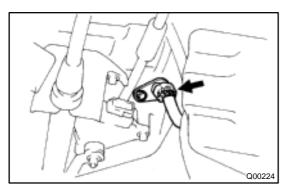
Evaluation (If $N \rightarrow D$ time or $N \rightarrow R$ time lag is longer than specified):

Problem	Possible cause
	•Line pressure too low
$N \rightarrow D$ time lag is longer	 Forward clutch worn
	 O/D one-way clutch not operating
	●Line pressure too low
$N\toR$ time lag is longer	Direct clutch worn
	●1st and reverse brake worn
	 O/D one-way clutch not operating properly

7. HYDRAULIC TEST

Measure the line pressure

NOTICE:


- Do the test at normal operation fluid temperature 50 80 °C (122 176 °F).
- The line pressure test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
- Be careful to prevent SST's hose from interfering with the exhaust pipe.
 - (1) Warm up the ATF.
 - (2) Remove the test plug on the transaxle case front left side and connect SST. (See page AX–21 for the location to connect SST)
 - SST 09992-00095 (09992-00231, 09992-00271)
 - (3) Fully apply the parking brake and chock the 4 wheels.
 - (4) Connect an OBD II scan tool or TOYOTA hand-held tester to DLC3.
 - (5) Start the engine and check idling speed.
 - (6) Keep your left foot pressed firmly on the brake pedal and shift into D position.
 - (7) Measure the line pressure when the engine is idling.
 - (8) Depress the accelerator pedal all the way down. Quickly read the highest line pressure when engine speed reaches stall speed.
 - (9) In the same manner, do the test in R position.

Specified line pressure:

Condition	D position kPa (kgf/cm ² , psi)	R position kPa (kgf/cm ² , psi)
Idling	401 - 461 (4.1 - 4.7, 58 - 66)	804 - 882 (8.2 - 9.0, 117 - 128)
Stall	1,138 – 1,236 (11.6 – 12.6, 165 – 179)	1,716 – 1,854 (17.5 – 18.9, 249 – 269)

If the measured pressure is not up to specified value, recheck the throttle cable adjustment and retest. **Evaluation**

Problem	Possible cause
If the measured values at all position are higher	 Throttle cable out of adjustment Throttle valve defective Regulator valve defective
If the measured values at all position are lower	 Throttle cable out of adjustment Throttle valve defective Regulator valve defective Oil pump defective O/D direct clutch defective
If pressure is low in the D position only	 D position circuit fluid leakage Forward clutch defective
If pressure is low in the R position only	 R position circuit fluid leakage Direct clutch defective 1st and reverse brake defective

MANUAL SHIFTING TEST

HINT:

8.

With this test, it can be determined whether the trouble is within the electrical circuit or is a mechanical problem in the transaxle. (a) Disconnect the solenoid wire.

(b) Inspect the manual driving operation.

Check that the shift and gear positions correspond with the table below.

While driving, shift through the L, 2 and D positions. Check that the gear change corresponds to the shift position.

Shift Position	Gear Position
D	O/D
2	O/D
L	1st
R	Reverse
Р	Pawl Lock

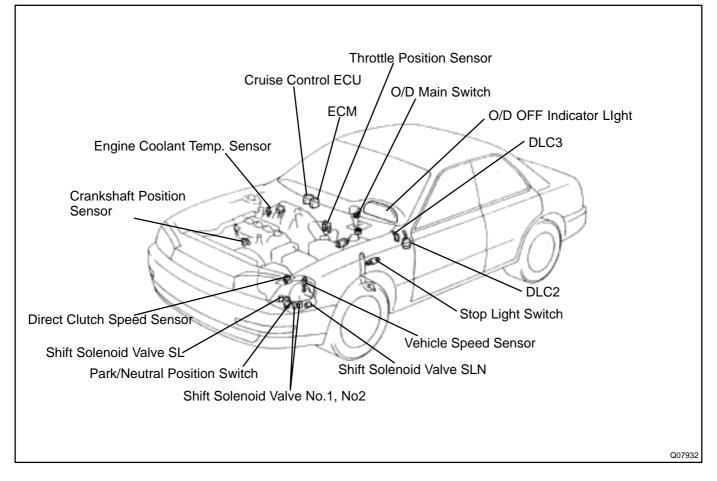
HINT:

If the L, 2 and D position gear positions are difficult to positions are difficult to distinguish, do the following read test.

If any abnormality is found in the above test, the problem is in the transaxle itself.

- (c) Connect the solenoid wire.
- (d) Cancel out the DTC (See page DI-438).

DIAGNOSTIC TROUBLE CODE CHART

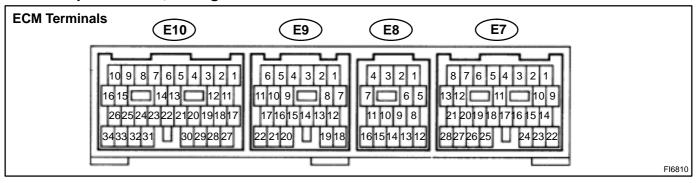

If a DTC is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the page given.

*: -...MIL does not light /• ...MIL light up

DTC No. (See Page)	Detection Item	Trouble Area	MIL *	Memory
P0500 (DI-456)	Vehicle Speed Sensor Malfunc- tion (No.1 Vehicle Speed Sensor)	 Open or short in No.1 vehicle speed sensor circuit No.1 vehicle speed sensor Combination meter ECM Automatic transaxle (clutch, brake or gear etc.) 	•	0
P0750 (DI–460)	Shift Solenoid A Malfunction (Shift Solenoid Valve No.1)	Shift solenoid valve No.1 is stuck open or closed Valve body is blocked up or stuck Automatic transaxle (clutch, brake or gear etc.)	•	0
P0753 (DI–462)	Shift Solenoid A Electrical Mal- function (Shift Solenoid Valve No.1)	Open or short in shift solenoid valve No.1 circuit Shift solenoid valve No.1 ECM	•	0
P0755 (DI–460)	Shift Solenoid B Malfunction (Shift Solenoid Valve No.2)	Shift solenoid valve No.2 is stuck open or closed Valve body is blocked up or stuck Automatic transaxle (clutch, brake or gear etc.)	•	0
P0758 (DI–462)	Shift Solenoid B Electrical Mal- function (Shift Solenoid Valve No.2)	□Open or short in shift solenoid valve No.2 circuit Shift solenoid valve No.2 ECM	•	0
P0770 (DI–466)	Shift Solenoid E Malfunction (Shift Solenoid Valve SL)	Shift solenoid valve SL is stuck open or closed Valve body is blocked up or stuck □Lock-up clutch □Automatic transaxle (clutch, brake or gear etc.)	•	0
P0773 (DI–468)	Shift Solenoid E Electrical Mal- function (Shift Solenoid Valve SL)	□Open or short in shift solenoid valve SL circuit □Shift solenoid valve SL □ECM	•	0
P1520 (DI–472)	Stop Light Switch Signal Mal- function	Open or short in stop light switch circuit Stop light switch ECM	•	0
P1705 (DI–473)	NC2 Revolution Sensor Circuit Malfunction (Direct Clutch Speed Sensor)	□Open or short in direct clutch speed sensor circuit □Direct clutch speed sensor □ECM	•	0
P1765 (DI–476)	Linear Solenoid for Accumulator Pressure Control Circuit Mal- function (Shift Solenoid Valve SLN)	□Open or short in shift solenoid valve SLN circuit □Shift solenoid valve SLN □ECM	•	0
P1780 (DI–479)	Park/Neutral Position Switch Malfunction	Short in park/neutral position switch circuit Park/neutral position switch ECM	•	0

DI02F-02

PARTS LOCATION


DI02G-02

TERMINALS OF ECM

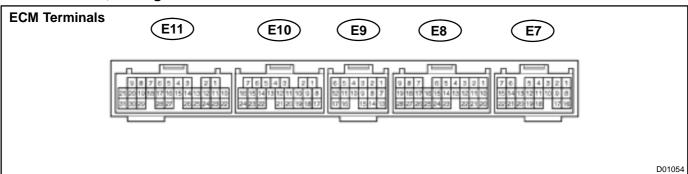
DI1KA-01

DI-451

Except California, w/ Engine Immobilizer and / or TRAC:

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
		IG ON	10 ~ 14
S1 \leftrightarrow E1 (E10–11 \leftrightarrow E8–16)	$V \leftrightarrow BR$	1st or 2nd gear	10 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
S2 \leftrightarrow E1 (E10–17 \leftrightarrow E8–16)	$LB\leftrightarrowBR$	1st or 2nd gear	10 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
$SL \leftrightarrow E1 (E10-27 \leftrightarrow E8-16)$	$P-L \leftrightarrow BR$	Vehicle driving under lock–up position	10 ~ 14
$NC2^+ \leftrightarrow NC2^- (E9-9 \leftrightarrow E9-4)$	$R \leftrightarrow G$	Engine is running	Pulse signal is output Below $1 \leftrightarrow 4 \sim 5$
$SLN^+ \leftrightarrow SLN^-$ (E10-2 \leftrightarrow E 8-2)	$WL\leftrightarrow BY$	IG ON	10 ~ 14
$OD1\leftrightarrowE1\ (E77\leftrightarrowE816)$	$Y – B \leftrightarrow BR$	IG ON	5~6
		O/D main switch ON	10 ~ 14
$OD2 \leftrightarrow E1 (E7-6 \leftrightarrow E8-16)$	$G-O \leftrightarrow BR$	O/D main switch OFF	Below 1
		IG ON and Shift lever L position	10 ~ 14
$L \leftrightarrow E1 (E7-1 \leftrightarrow E8-16)$	$Y \leftrightarrow BR$	IG ON and Shift lever other than L position	Below 1
	*1, *3 L–W \leftrightarrow BR	IG ON and Shift lever 2 position	10 ~ 14
$2 \leftrightarrow \text{E1} (\text{E7-10} \leftrightarrow \text{E8-16})$	*2, *4 O \leftrightarrow BR	IG ON and Shift lever other than 2 position	Below 1
		IG ON and Shift lever R position	10 ~ 14
$R \leftrightarrow E1 (E7-15 \leftrightarrow E8-16)$	$R-B \leftrightarrow BR$	IG ON and Shift lever other than R position	Below 1
$NSW \leftrightarrow E1$		IG ON and Shift lever P or N position	10 ~ 14
$(E10-14 \leftrightarrow E8-16) \qquad \qquad B-W \leftrightarrow BR$		IG ON and Shift lever other than P or N position	Below 1

*1: w/ Engine immobilizer system


*2: w/o Engine immobilizer system

*3 TMC made ex. USA w/ TRAC

*4: TMMK made, TMC made USA w/ TRAC

686

California, w/ Engine Immobilizer and / or TRAC:

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
	$V \leftrightarrow BR$	IG ON	10 ~ 14
$S1 \leftrightarrow E1$ (E11–7 \leftrightarrow E10–17)		1st or 2nd gear	10 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
S2 \leftrightarrow E1 (E11–8 \leftrightarrow E10–17)	$LB \leftrightarrow BR$	1st or 2nd gear	10 ~ 14
		3rd or O/D gear	Below 1
		IG ON	Below 1
$SL \leftrightarrow E1 (E11-9 \leftrightarrow E10-17)$	$P-L \leftrightarrow BR$	Vehicle driving under lock-up position	10 ~ 14
$\begin{array}{l} NC2^+ \leftrightarrow NC2^- \\ (E11-14 \leftrightarrow E11-26) \end{array}$	$R \leftrightarrow G$	Engine is running	Pulse signal is output Below $1 \leftrightarrow 4 \sim 5$
$\begin{array}{l} SLN^+ \leftrightarrow SLN^- \\ (E11-20 \leftrightarrow E11-19) \end{array}$	$W – L \leftrightarrow B – Y$	IG ON	10 ~ 14
$OD1\leftrightarrowE1\ (E8-24\leftrightarrowE10-17)$	$Y – B \leftrightarrow BR$	IG ON	5~6
		O/D main switch ON	10 ~ 14
$OD2 \leftrightarrow E1 (E8-10 \leftrightarrow E10-17)$ $G-O \leftrightarrow BR$		O/D main switch OFF	Below 1
		IG ON and Shift lever L position	10 ~ 14
$L \leftrightarrow E1 (E8-12 \leftrightarrow E10-17)$	$Y \leftrightarrow BR$	IG ON and Shift lever other than L position	Below 1
	*1, *3 L–W \leftrightarrow BR	IG ON and Shift lever 2 position	10 ~ 14
$2 \leftrightarrow E1 (E8-3 \leftrightarrow E10-17)$	*2, *4 O \leftrightarrow BR	IG ON and Shift lever other than 2 position	Below 1
		IG ON and Shift lever R position	10 ~ 14
$R \leftrightarrow E1 \ (E8-2 \leftrightarrow E10-17)$	$R-B \leftrightarrow BR$	IG ON and Shift lever other than R position	Below 1
$NSW \leftrightarrow E1$		IG ON and Shift lever P or N position	10 ~ 14
$(E8-20 \leftrightarrow E10-17)$	$B-W \leftrightarrow BR$	IG ON and Shift lever other than P or N position	Below 1

*1: w/ Engine immobilizer system

*2: w/o Engine immobilizer system

*3 TMC made ex. USA w/ TRAC

*4: TMMK made, TMC made USA w/ TRAC

PROBLEM SYMPTOMS TABLE

If a normal code is displayed during the diagnostic trouble code check but the trouble still occurs, check the circuits for each symptom in the order given in the charts on the following pages and proceed to the page given for troubleshooting.

The Matrix Chart is divided into 3 chapters.

Chapter 1: Electronic Circuit Matrix Chart

Chapter 2: On-vehicle Repair Matrix Chart

Chapter 3: Off-vehicle repair Matrix Chart

- □ If the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- □ If the trouble still occurs even though there are no abnormalities in any of the other circuits, then check and replace the ECM.

1. Chapter 1: Electronic Circuit Matrix Chart

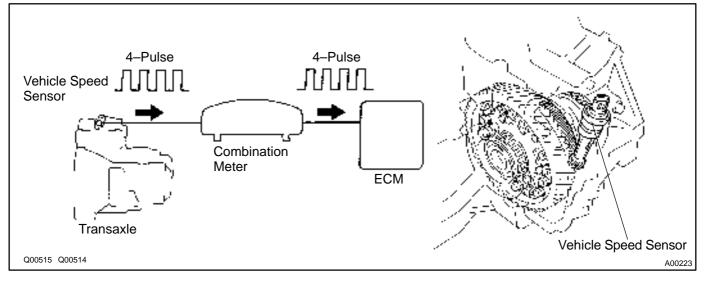
Symptom	Suspect Area	See page
No up–shift (1st \rightarrow 2nd)	ECM	IN-31
No up–shift (2nd \rightarrow 3rd)	ECM	IN-31
No up–shift (3rd \rightarrow O/D)	 O/D main switch circuit O/D cancel signal circuit ECM 	DI–487 DI–484 IN–31
No down–shift (O/D \rightarrow 3rd)	ECM	IN-31
No down–shift (3rd \rightarrow 2nd)	ECM	IN-31
No down–shift (2nd \rightarrow 1st)	ECM	IN-31
No lock–up or No lock–up off	ECM	IN-31
Shift point too high or too low	ECM	IN-31
Up–shift to 2nd while in L position	ECM	IN-31
Up–shift to 3rd while in L position	ECM	IN-31
Up-shift to O/D from 3rd	 O/D main switch circuit ECM 	DI–487 IN–31
Up–shift to O/D from 3rd while engine is cold	ECM	IN-31
Harsh engagement (N \rightarrow D)	ECM	IN-31
Harsh engagement (Lock–up)	ECM	IN-31
Harsh engagement (Any driving position)	ECM	IN-31
Poor acceleration	ECM	IN-31
Large shift shock or engine stalls when starting off or stopping	ECM	IN-31

Date :

Chapter 2: On–Vehicle Repair (• : A541E AUTOMATIC TRANSAXLE Repair Manual Pub. No. RM530U)

Symptom	Suspect Area	See page
Vehicle does not move in any forward position and reverse posi- tion	 Manual valve Throttle valve Primary regulator valve Off–vehicle repair matrix chart 	• • DI-453
Vehicle does not move in R position	Off-vehicle repair matrix chart	DI-453
No up–shift (1st \rightarrow 2nd)	 1. 1–2 shift valve 2. Off–vehicle repair matrix chart 	• DI-453
No up–shift (2nd \rightarrow 3rd)	 2–3 shift valve Off–vehicle repair matrix chart 	• DI–453
No up–shift (3rd \rightarrow O/D)	 3–4 shift valve Off–vehicle repair matrix chart 	• DI-453
No down–shift (O/D \rightarrow 3rd)	3–4 shift valve	•
No down–shift (3rd \rightarrow 2nd)	2–3 shift valve	•
No down–shift (2nd \rightarrow 1st)	1–2 shift valve	•
No lock–up or No lock–up off	 Lock–up relay valve Off–vehicle repair matrix chart 	• DI–453
Harsh engagement (N \rightarrow D)	 C₁ accumulator Off–vehicle repair matrix chart 	• DI-453
Harsh engagement (N \rightarrow R)	 C₂ accumulator No.1 accumulator control valve Off–vehicle repair matrix chart 	• • DI-453
Harsh engagement (N \rightarrow L)	Low coast modulator valve	•
Harsh engagement (Lock–up)	 Lock–up relay valve Off–vehicle repair matrix chart 	• DI–453
Harsh engagement (1st $ ightarrow$ 2nd $ ightarrow$ 3rd $ ightarrow$ O/D)	 Throttle modulator valve Cut back valve Throttle valve 	•
Harsh engagement (2nd \rightarrow 3rd)	C ₂ accumulator	•
Harsh engagement (3rd $ ightarrow$ O/D)	B ₀ accumulator	•
Harsh engagement (O/D $ ightarrow$ 3rd)	 C₀ accumulator B₀ accumulator 	•
Slip or shudder (Forward and reverse)	 Throttle valve Oil strainer Off–vehicle repair matrix chart 	• • DI-453
No engine braking (1st: L position)	 Low coast modulator valve Off-vehicle repair matrix chart 	• DI–453
No engine braking (2nd: 2 position)	 2. Off–vehicle repair matrix chart 	• DI-453
No kick–down	1. 1–2 shift valve 2. 2–3 shift valve 3. 3–4 shift valve	•

Chapter 3: Off–Vehicle Repair (• : A541E AUTOMATIC TRANSAXLE Repair Manual Pub. No. RM530U)


Symptom	Suspect Area	See page
Vehicle does not move in any forward position and reverse posi- tion	 Front and rear planetary gear O/D planetary gear O/D one-way clutch (F₀) O/D direct clutch (C₀) Forward clutch (C₁) O/D brake (B₀) 	• • • •
Vehicle does not move in R position	 Front and rear planetary gear unit Direct clutch (C₂) O/D direct clutch (C₀) 1st and reverse brake (B₃) 	• • • •
No up–shift (1st \rightarrow 2nd)	1. No. 1 one–way clutch (F ₁) 2. 2nd brake (B ₂)	•
No up–shift (2nd \rightarrow 3rd)	Direct clutch (C ₂)	•
No up–shift (3rd \rightarrow O/D)	O/D brake (B ₀)	٠
No lock–up or No lock–up off	Torque converter clutch	•
Harsh engagement (N \rightarrow D)	1. Forward clutch (C ₁) 2. O/D one–way clutch (F ₀) 3. No. 2 one–way clutch (F ₂)	•
Harsh engagement (N \rightarrow R)	 Direct clutch (C₂) 1st and reverse brake (B₃) 	•
Harsh engagement (Lock–up)	Torque converter clutch	•
Slip or shudder (Forward position: After warm–up)	 Torque converter clutch O/D direct clutch (C₀) Forward clutch (C₁) O/D one-way clutch (F₀) 	•
Slip or shudder (R position)	 Direct clutch (C₂) 1st and reverse brake (B₃) O/D direct clutch (C₀) 	•
Slip or shudder (1st)	No. 2 one-way clutch (F ₂)	•
Slip or shudder (2nd)	1. No. 1 one–way clutch (F ₁) 2. 2nd brake (B ₂)	•
Slip or shudder (3rd)	Direct clutch (C ₂)	•
Slip or shudder (O/D)	O/D brake (B ₀)	•
No engine braking (1st ~ 3rd: D position)	2nd brake (B ₂)	•
No engine braking (1st: L position)	1st and reverse brake (B ₃)	•
No engine braking (2nd: 2 position)	2nd coast brake (B ₁)	•
Poor acceleration (All position)	 Torque converter clutch O/D planetary gear 	•
Poor acceleration (O/D)	 O/D direct clutch (C₀) O/D planetary gear 	•
Large shift shock or engine stalls when starting off or stopping	Torque converter clutch	•

CIRCUIT INSPECTION

DTC	P0500	Vehicle Speed Sensor Malfunction
-----	-------	----------------------------------

CIRCUIT DESCRIPTION

The vehicle speed sensor outputs a 4–pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. After this signal is converted into a more precise rectangular waveform by the waveform shaping circuit inside the combination meter, it is then transmitted to the ECM. The ECM determines the vehicle speed based on the frequency of these pulse signals.

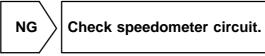
DTC No.	DTC Detecting Condition	Trouble Area	
P0500	No vehicle speed sensor signal to ECM under conditions (a) and (b) (2 trip detection logic) (a) Park/neutral position switch is OFF (b) Vehicle is being driven	 Open or short in vehicle speed sensor circuit Vehicle speed sensor Combination meter ECM Automatic transaxle (clutch, brake or gear etc.) 	
	Clutch or brake slips or gear is broken	· · · · · · · · · · · · · · · · · · ·	

WIRING DIAGRAM

See page DI-333.

DI1KB-01

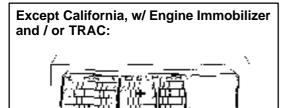
INSPECTION PROCEDURE


1

Check operation of speedometer.

CHECK:

Drive the vehicle and check if the operation of the speedometer in the combination meter is normal. HINT:


The vehicle speed sensor is operating normally if the speedometer display is normal.

0	κ

2

Check for short in harness and connector between terminal SPD of ECM and body ground.

California, w/ Engine Immobilizer

and / or TRAC:

PREPARATION:

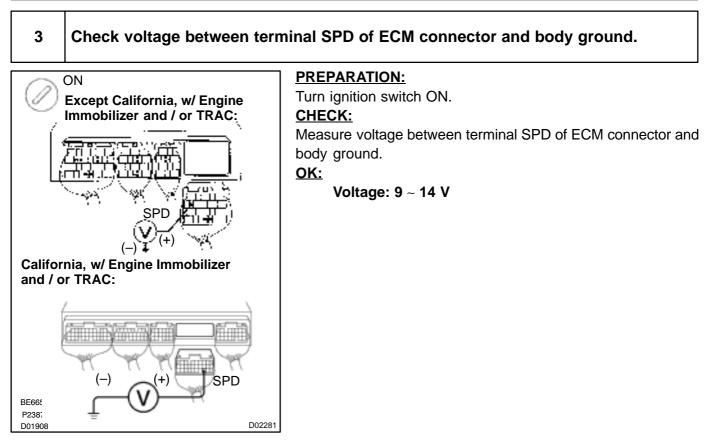
- (a) Remove the glove compartment (See page SF-73).
- (b) Disconnect the connector from ECM.

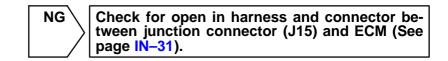
CHECK:

Check continuity between terminal SPD of ECM and body ground.

<u>OK:</u>

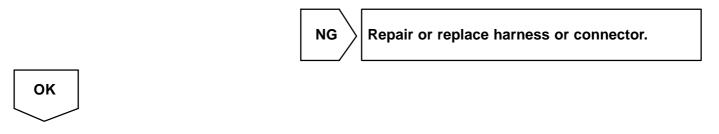
No continuity (1 M Ω or higher)

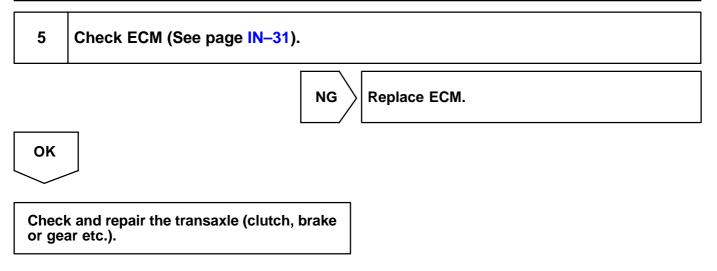

NG


A02155

Repair or replace harness or connector.

ΟΚ


P23875 A02373



ок	

4	Check for open in harness and connector between junction connector (J15) and combination meter (See page IN–31).

DI02K-02

DTC P0750, P0755 Shift Solenoid A/B Malfunction (Shift Solenoid Valve No.1/No.2)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor and direct clutch speed sensor to detect the actual gear position (1st, 2nd, 3rd or O/D gear).

Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical trouble of the shift solenoid valves, valve body or automatic transaxle (clutch, brake or gear etc.)

DTC No.	DTC Detecting Condition	Trouble Area
P0750 P0755	During normal driving, the gear required by the ECM does not match the actual gear (2 trip detection logic)	 Shift solenoid valve No.1/No.2 is stuck open or closed Valve body is blocked up or stuck Automatic transaxle (clutch, brake or gear etc.)

Check the shift solenoid valve No.1 when DTC P0750 is output and check the shift solenoid valve No.2 when DTC P0755 is output.

INSPECTION PROCEDURE

	PREPARATION:
6 00 6.	(a) Remove the oil pan.
	(b) Remove the shift solenoid valve No.1 or No.2.
Kalena -	CHECK:
	 (a) Applying 490 kPa (5 kgf/cm², 71 psi) of compressed ai check that the solenoid valve does not leak air.
	(b) When battery positive voltage is supplied to the shift sole noid valve, check that the valve opens.
B	
1¢	07781

ΟΚ

DTC P0753, P0758 Shift Solenoid A/B Electrical Malfunction (Shift Solenoid Valve No.1/No.2)

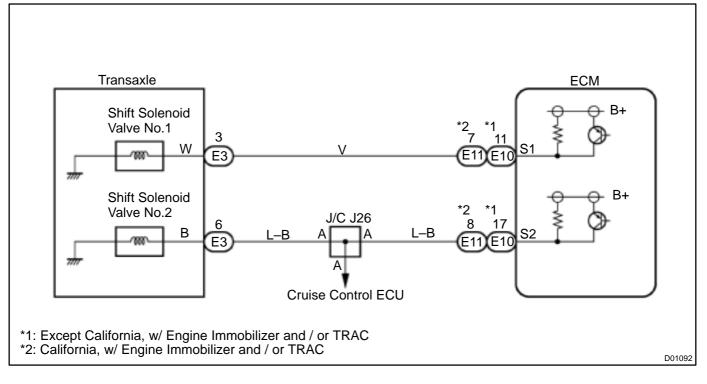
CIRCUIT DESCRIPTION

Shifting from 1st to O/D is performed in combination with ON and OFF of the shift solenoid valves No.1 and No.2 controlled by ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valve to allow the vehicle to be operated smoothly (Fail safe function).

Fail Safe Function:

If either of the shift solenoid valve circuits develops an open or short, the ECM turns the other shift solenoid ON and OFF to shift to the gear positions shown in the table below. The ECM also turns the shift solenoid valve SL OFF at the same time. If both solenoids are malfunction, hydraulic control cannot be performed electronically and must be done manually.

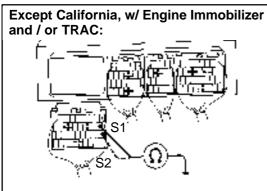
Manual shifting as shown in the following table must be done (In the case of a short circuit, the ECM stops sending current to the short circuited solenoid).

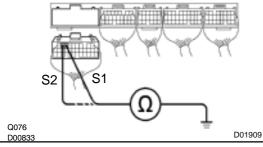

Desition	NORMAL		SHIFT SOLENOID NO.1 MALFUNCTIONING		SHIFT SOLENOID NO.2 MALFUNCTIONING			BOTH SOLENOIDS MAL- FUNCTIONING		
Position	Soleno No.1	noid valve No.2 Gear		Solenoid valve No.1 No.2		Gear	Solenoi No.1	d valve No.2	Gear	Gear when shift selector is manually operated
	ON	OFF	1st	X	ON	3rd	ON	X	1st	O/D
D	ON	ON	2nd	х	ON	3rd	OFF	х	O/D	O/D
	OFF	ON	3rd	Х	ON	3rd	OFF	Х	O/D	O/D
	OFF	OFF	O/D	Х	OFF	O/D	OFF	Х	O/D	O/D
	ON	OFF	1st	х	ON	3rd	ON	х	1st	O/D
2	ON	ON	2nd	Х	ON	3rd	OFF	Х	O/D	O/D
	OFF	ON	3rd	Х	ON	3rd	OFF	Х	O/D	O/D
	ON	OFF	1st	Х	OFF	1st	ON	Х	1st	1st
	ON	ON	2nd	Х	ON	2nd	ON	Х	1st	1st

X: Malfunctions

Check the shift solenoid valve No.1 when DTC P0753 is output and check the shift solenoid valve No.2 when DTC P0758 is output.

DTC No.	DTC Detecting Condition	Trouble Area
P0753 P0758	The ECM checks for an open or short circuit in the shift sole- noid valves No.1 and No.2 circuit when it changes. The ECM records DTC P0753 or P0758 if condition (a) or (b) is detected once, but it does not light up MIL. After ECM detects condition (a) or (b) continuously 8 times or more in a trip and the MIL light up. (a) When the solenoid is energized, the solenoid resistance is 8 Ω or less and is counted. (b) When the solenoid is not energized, the solenoid resistance is 100 k Ω or more and is counted.	 Open or short in shift solenoid valve No.1/No.2 circuit Shift solenoid valve No.1/No.2 ECM


WIRING DIAGRAM


INSPECTION PROCEDURE

1

Measure resistance between terminal S1 or S2 of ECM and body ground.

California, w/ Engine Immobilizer and / or TRAC:

PREPARATION:

Disconnect the connector from ECM.

CHECK:

Measure resistance between terminal S1 or S2 of ECM and body ground.

<u>OK:</u>

Resistance: 11 ~ 15 Ω

ок

Check and replace the ECM.

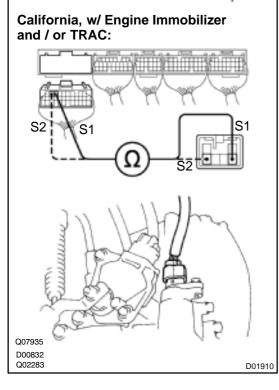
NG

S2

2 Check harness and connector between ECM and automatic transaxle solenoid connector.

0

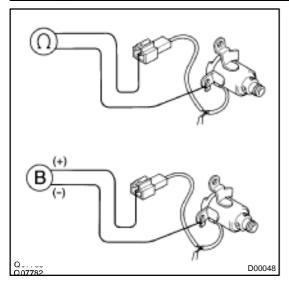
S1


S2

axle. CHECK:

Check the harness and connector between terminal S1 or S2 of ECM and terminal S1 or S2 of solenoid connector. **OK:**

There is no open and no short circuit.


NG

Repair or replace the harness or connector.

3

Check shift solenoid valve No.1 or No.2.

PREPARATION:

- (a) Jack up the vehicle.
- (b) Remove the oil pan.
- (c) Disconnect the solenoid connector.
- (d) Remove the shift solenoid valve No.1 or No.2.

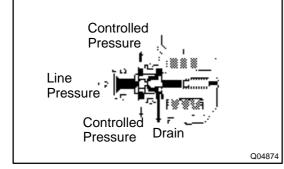
CHECK:

- (a) Measure resistance between solenoid connector and body ground.
- (b) Connect the positive \sim lead to terminal of solenoid connector, negative > lead to solenoid body.

<u>OK:</u>

- (a) Resistance: 11 ~ 15 Ω
 - (b) The solenoid makes an operating noise.

Replace the solenoid valve.


ΟΚ

Repair or replace the solenoid wire.

DI02M-02

DTC

Shift Solenoid E Malfunction (Shift Solenoid Valve SL)

P0770

SYSTEM DESCRIPTION

The ECM uses the signals from the throttle position sensor, airflow meter and crankshaft position sensor to monitor the engagement condition of the lock–up clutch.

Then the ECM compares the engagement condition of the lock-up clutch with the lock-up schedule in the ECM memory to detect mechanical trouble of the shift solenoid valve SL, valve body, torque converter clutch or automatic transaxle (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0770	 Lock-up does not occur when driving in the lock-up range (normal driving at 80 km/h [50 mph]), or lock-up remains ON in the lock-up OFF range. (2 trip detection logic) When lock-up is ON, clutch or brake slips or gear is broken. 	 Shift solenoid valve SL is stuck open or closed Valve body blocked up or stuck Lock-up clutch Automatic transaxle (clutch, brake or gear etc.)

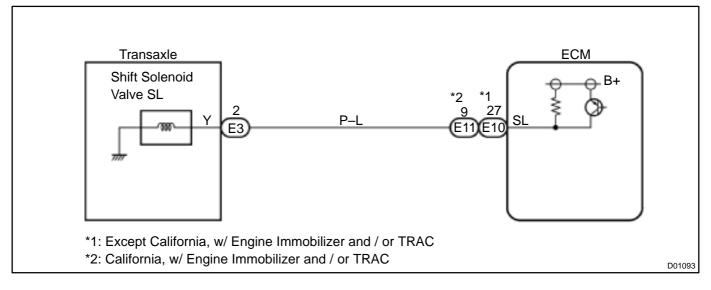
INSPECTION PROCEDURE

1 Check solenoid valve SL op	peration.
	 PREPARATION: (a) Remove the oil pan. (b) Remove the shift solenoid valve SL. CHECK: (a) Applying 490 kPa (5 kgf/cm², 71 psi) of compressed air, check that the solenoid valve does not leak air. (b) When battery positive voltage is supplied to the shift solenoid valve, check that the solenoid valve opens.
	NG Replace the solenoid valve SL.
ок	

2	Check valve body (See page DI–453).
	NG Repair or replace the valve body.
ОК	
Checl	k the torque converter clutch (See page AX–21).
	NG Replace the torque converter clutch.
ОК	
Repai	r the transaxle.

DTC		Shift Solenoid E Electrical Malfunction (Shift Solenoid Valve SL)	
-----	--	--	--

CIRCUIT DESCRIPTION


The shift solenoid valve SL is turned ON and OFF by signals from the ECM to control the hydraulic pressure acting on the lock–up relay valve, which then controls operation of the lock–up clutch.

Fail safe function

If the ECM detects a malfunction, it turns the shift solenoid valve SL OFF.

DTC No.	DTC Detecting Condition	Trouble Area
P0773	 Either (a) or (b) are detected for 1 time. (2 trip detection logic) (a) Solenoid resistance is 8 Ω or less short circuit when solenoid is energized. (b) Solenoid resistance is 100 kΩ or more open circuit when solenoid is not energized. 	 Open or short in shift solenoid valve SL circuit Shift solenoid valve SL ECM

WIRING DIAGRAM

DI02N-02

INSPECTION PROCEDURE

1

Measure resistance between terminal SL of ECM and body ground.

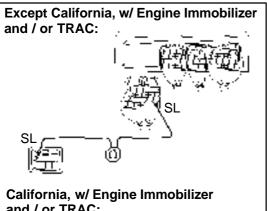
Except California, w/ Engine Immobilizer and / or TRAC:

California, w/ Engine Immobilizer and / or TRAC:

PREPARATION: Disconnect the connector from ECM. CHECK: Measure resistance between terminal SL of ECM and body ground. OK:

Resistance: 8 ~ 100,000 Ω

ок

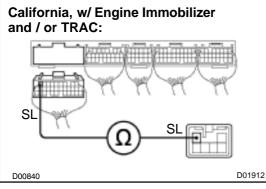

D01911

Check and replace the ECM.

NG

Q076 D00839

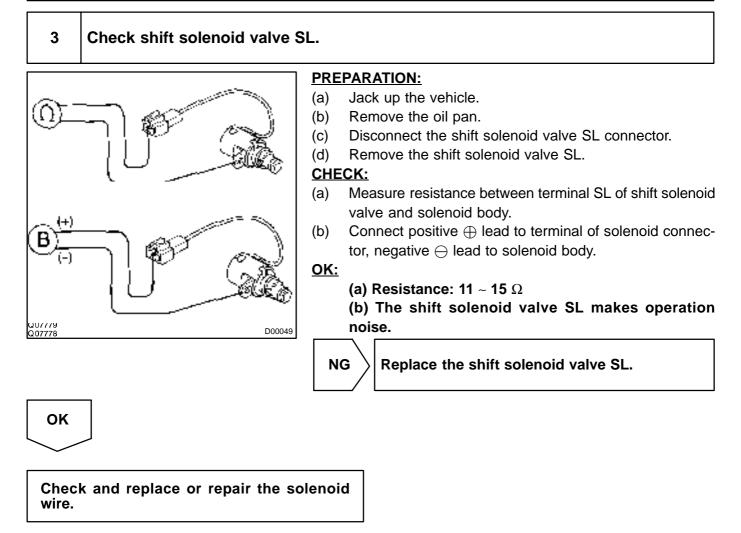
2 Check harness and connector between ECM and automatic transaxle solenoid connector (See page IN-31).


PREPARATION:

Disconnect the solenoid connector from the transaxle. **CHECK:**

Check the harness and connector between terminal SL of ECM and terminal SL of solenoid connector.

<u> 0K:</u>


There is no open or short circuit.

NG

Repair or replace the harness or connector.

ΟΚ

DTC	P1520	Stop Light Switch Signal Malfunction
-----	-------	--------------------------------------

CIRCUIT DESCRIPTION

The purpose of this circuit is to prevent the engine from stalling, while driving in lock-up condition, when brakes are suddenly applied.

When the brake pedal is operated, this switch sends a signals to ECM. Then the ECM cancels operation of the lock–up clutch while braking is in progress.

DTC N	DTC Detecting Condition	Trouble Area
P152	No stop light switch signal to ECM during driving. (2 trip detection logic)	 Open or short in stop light switch circuit Stop light switch ECM

WIRING DIAGRAM

See page DI-363.

INSPECTION PROCEDURE

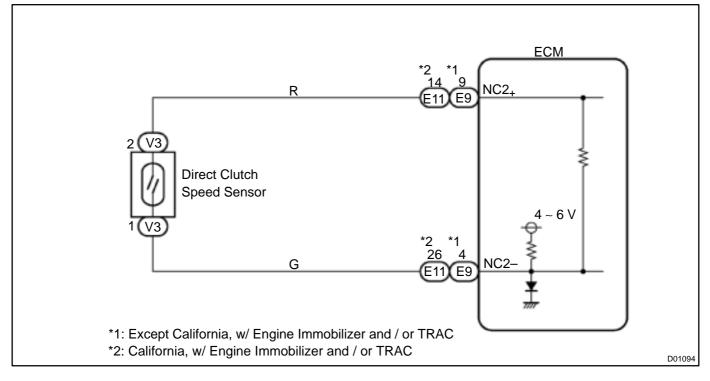
See page DI-363.


DI02O-02

DI02P-02

DTC

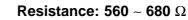
NC2 Revolution Sensor Circuit Malfunction (Direct Clutch Speed Sensor)

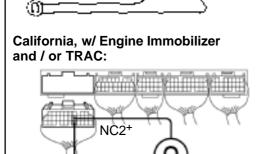

CIRCUIT DESCRIPTION

This sensor detects the rotation speed of the direct clutch drum. By comparing the direct clutch speed signal and the vehicle speed sensor signal, the ECM detects the shift timing of the gears and appropriately controls the engine torque and hydraulic pressure in response to various conditions, thus performing smooth gear shifting.

DTC No.	DTC Detecting Condition	Trouble Area
P1705	The ECM detects conditions (a), (b), (c), (d), (e) and (f) conti- nuity for 4 sec or more. (2 trip detection logic) (a) Vehicle speed : 32 km/h (20 mph) or more (b) 3rd or 4th gear (c) NC2 < 300 rpm (d) Park/neutral position switch: OFF (e) Solenoid valves and vehicle speed sensor are normal (f) L position: OFF	 Open or short in direct clutch speed sensor circuit Direct clutch speed sensor ECM

WIRING DIAGRAM


708


INSPECTION PROCEDURE

Check resistance between terminals NC2⁺ and NC2⁻ of ECM. **PREPARATION:** Except California, w/ Engine Immobilizer Disconnect the connector from ECM. and / or TRAC: **CHECK:**

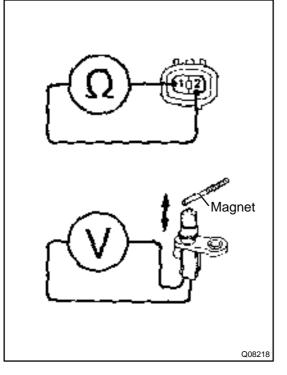
Check resistance between terminals NC2⁺ and NC2⁻ of ECM. <u>OK:</u>

NC

NC2

OK

D01913


Check and replace the ECM.

NG

D00834

NC2

Check No.2 vehicle speed sensor.

PREPARATION:

Remove the Direct clutch speed sensor from transaxle.

CHECK:

- (a) Measure resistance between terminals 1 and 2 of speed sensor.
- (b) Check voltage between terminals 1 and 2 of the speed sensor when a magnet is put close to the front end of the speed sensor then taken away quickly.

<u>OK:</u>

(a) Resistance: 560 ~ 680 Ω

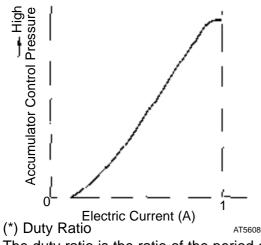
(b) Voltage is generated intermittently.

HINT:

The voltage generated is extremely low.

NG

Replace the Direct clutch speed sensor.


ΟΚ

2

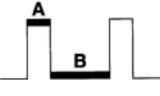
Check and repair the harness and connector between ECM and Direct clutch speed sensor (See page IN-31).

DTC	P1765	Linear Solenoid for Accumulator Pressure Control	
		Circuit Malfunction (Shift Solenoid Valve SLN)	

CIRCUIT DESCRIPTION

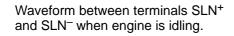
The shift solenoid valve SLN controls the hydraulic pressure acting on the accumulator control valve when gears are shifted and performs smooth gear shifting.

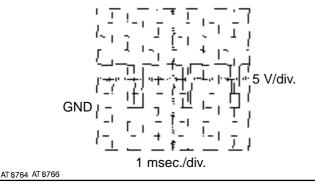
The ECM determines optimum operating pressure according to the signals from the throttle position sensor, vehicle speed sensor and direct clutch speed sensor and controls the volume of current flow to the solenoid valve.

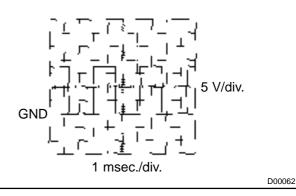

The amount of current to the solenoid is controlled by the (*) duty ratio of ECM output signals, causing a momentary change to the hydraulic pressure acting on the clutches during gear shifting.

When the duty ratio is high, the hydraulic pressure acting on the clutches is low.

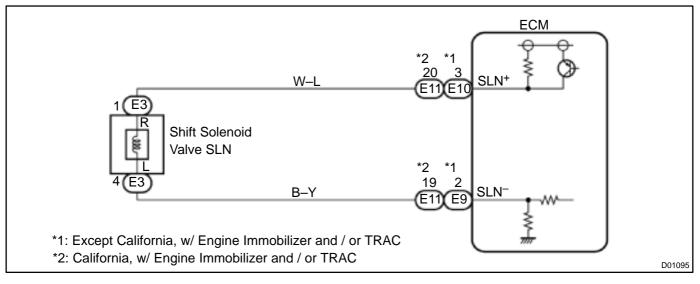
The duty ratio is the ratio of the period of continuity in one cycle.


For example, if A is the period of continuity in one cycle, and B is the period of non-continuity, then

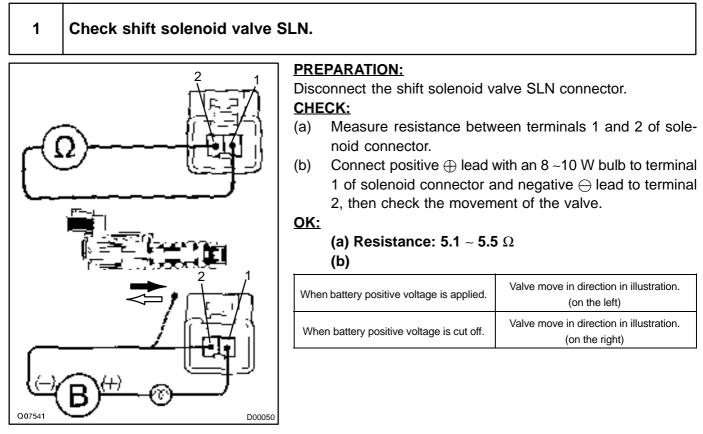

Duty Ratio =
$$\frac{A}{A+B} \times 100$$
 (%)

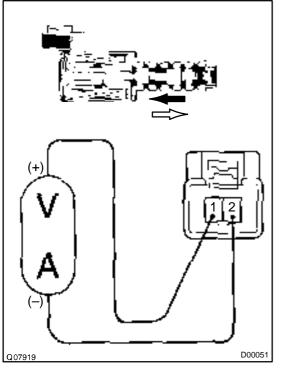

D00061 BE4056		D0006
DTC No.	DTC Detecting Condition	Trouble Area
P1765	After the engine is warmed up, the current flow to the shift solenoid valve SLN for 1 sec or more under condition (a) or (b): (a) Engine speed: 500 rpm or more (b) Park/neutral position switch: ON (P or N position)	 Open or short in shift solenoid valve SLN circuit Shift solenoid valve SLN ECM

Reference



Waveform between terminals SLN⁺ and SLN⁻ when during shift change.




Author:

WIRING DIAGRAM

INSPECTION PROCEDURE

Reference PREPARATION:

Connect positive \oplus lead of the variable power supply to terminal 1 of solenoid connector and negative \oplus lead to terminal 2. **CHECK:**

(a) Check the movement of the valve when the voltage is gradually increased.

(A current greater than 1A should not be supplied.)

(b) Check the movement of the valve when the voltage is cut off.

<u>OK:</u>

(a) As the voltage is increased, the valve should move slowly in the \triangleleft direction.

(b) The valve should return in the \Longrightarrow direction.

NG

Replace the shift solenoid valve SLN.

OK

OK

2 Check harness and connector between battery and shift solenoid valve SLN, shift solenoid valve SLN and ECM (See page IN–31).

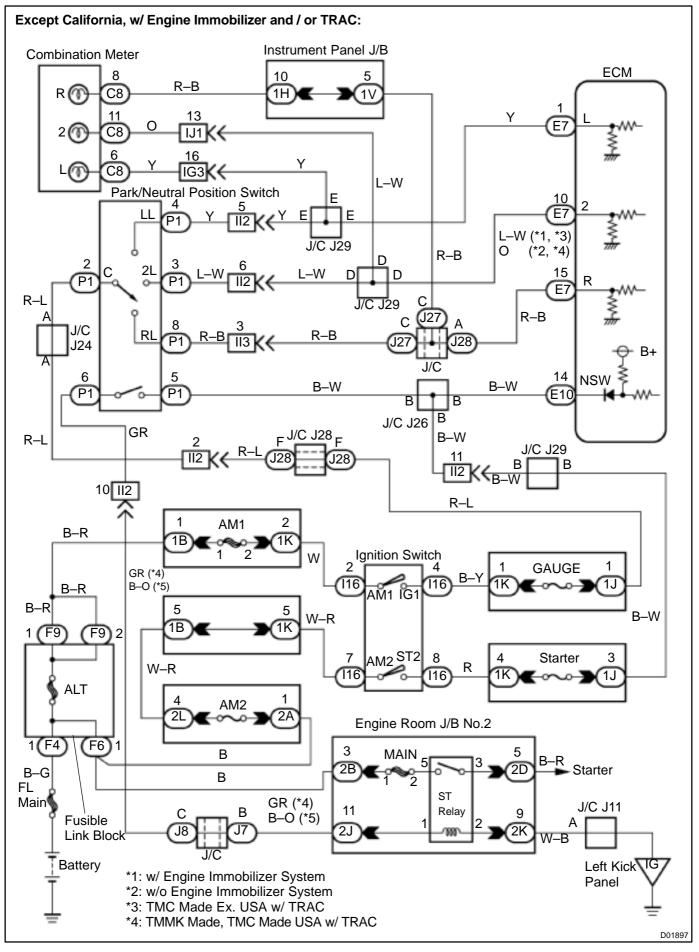
Repair or replace the harness or connector.

Check and replace the ECM.

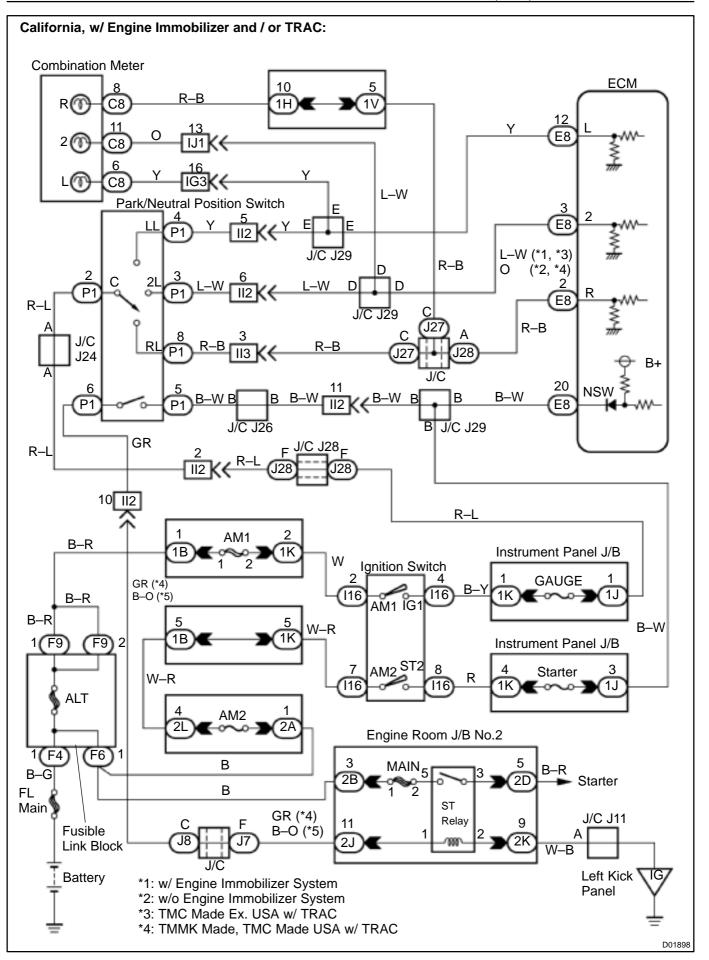
DI1KC-01

D	т	С
		U

P1780


Park/Neutral Position Switch Malfunction

CIRCUIT DESCRIPTION


The park/neutral position switch detects the shift lever position and sends signals to the ECM. The ECM receives signals (NSW, R, 2 and L) from the park/neutral position switch. When the signal is not sent to the ECM from the park/neutral position switch, the ECM judges that the shift lever is in D position.

DTC No.	DTC Detection Condition	Trouble Area
P1780	 When driving under conditions (a) and (b) for 30 seconds or more, the park/neutral position switch is ON (N position). (2 trip detection logic) (a) Vehicle speed: 70 km/h (44 mph) or more (b) Engine speed: 1,500 ~ 2,500 rpm 	 Short in park/neutral position switch circuit Park/neutral position switch ECM

WIRING DIAGRAM

Date :

INSPECTION PROCEDURE

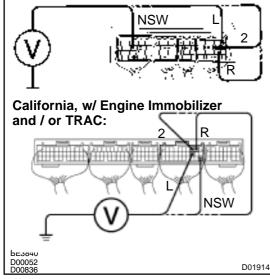
1

Read PNP, REVERSE, 2ND and LOW signals.

When using TOYOTA hand-held tester. <u>PREPARATION:</u>

- (a) Remove the DLC3 cover.
- (b) Connect a TOYOTA hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and TOYOTA hand-held tester main switch ON.

CHECK:


Shift lever into the P, R, N, 2 and L positions, and read the PNP, REVERSE, 2ND and LOW signals on the TOYOTA hand-held tester.

<u> 0K:</u>

Shift position	Signal	
2	$2ND \text{ OFF} \rightarrow ON$	
L	$LOW\:OFF\toON$	
R	$REVERSE\;OFF\toON$	
P, N	$NSW\:OFF\toON$	

> ON

Except California, w/ Engine Immobilizer and / or TRAC:

When not using TOYOTA hand-held tester. <u>PREPARATION:</u>

Turn the ignition switch ON.

CHECK:

Measure voltage between terminals NSW, 2, L and R of ECM and body ground when the shift lever is shifted to the following positions.

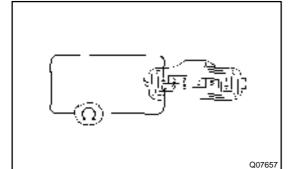
<u> 0K:</u>

Position	NSW–Body ground	R–Body ground	2–Body ground	L–Body ground
P, N	0 V	0 V	0 V	0 V
R	9 ~ 14 V*	9 ~ 14 V*	0 V	0 V
D	9 ~ 14 V	0 V	0 V	0 V
2	9 ~ 14 V	0 V	9 ~ 14 V	0 V
L	9 ~ 14 V	0 V	0 V	9 ~ 14 V

HINT:

*: The voltage will drop slightly due to lighting up of the back up light.

ок


Proceed to next circuit inspection shown on matrix chart (See page DI-453).

DI-483

NG

2

Check park/neutral position switch.

PREPARATION:

(a) Jack up the vehicle.

(b) Remove the park/neutral position switch.

CHECK:

Check continuity between each terminal shown below when the shift lever is moved to each position.

Shift Position	Terminal No. to continuity	
Р	2 – 7	5 – 6
R	2-8	-
Ν	2-9	5 – 6
D	2 – 10	-
2	2-3	-
L	2-4	-

<u>OK:</u>

There is continuity.

 \rangle Replace the park/neutral position switch.

 OK

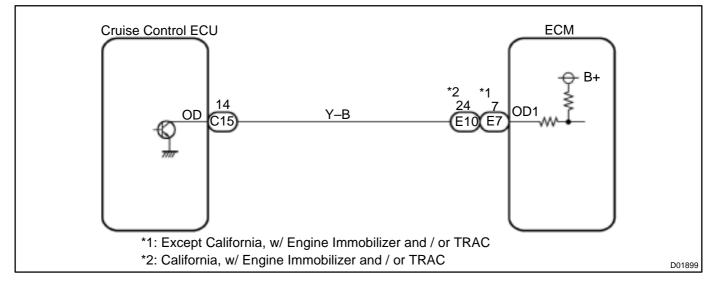
 3
 Check harness and connector between battery and park/neutral position switch, park/neutral position switch and ECM (See page IN-31).

 NG
 Repair or replace the harness and connector.

 OK
 OK

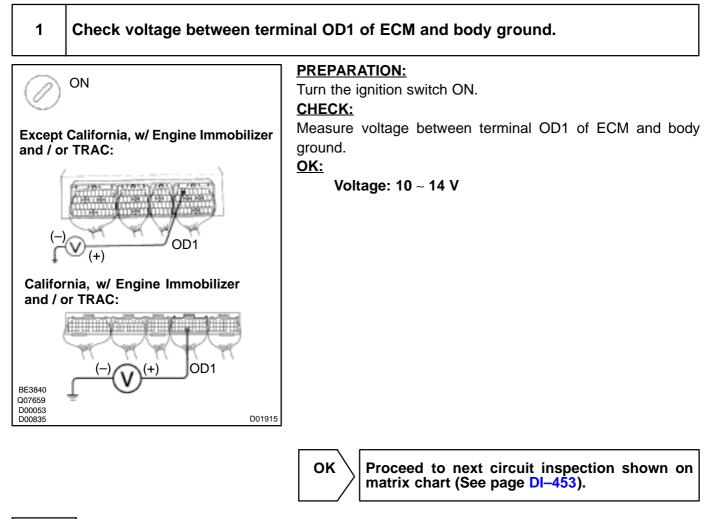
 Check and replace the ECM.

Date :

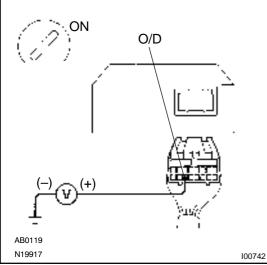

O/D Cancel Signal Circuit

CIRCUIT DESCRIPTION

While driving uphill with cruise control activated, in order to minimize gear shifting and provide smooth cruising overdrive may be prohibited temporarily under some condition.


The cruise control ECU sends O/D cut signals to the ECM as necessary and the ECM cancels overdrive shifting until these signals are discontinued.

WIRING DIAGRAM

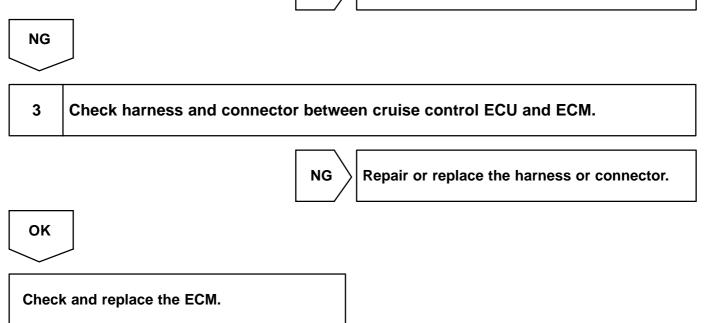

DI02S-02

INSPECTION PROCEDURE

NG

2 Check voltage between terminal OD of cruise control ECU harness side connector and body ground.

PREPARATION:


- (a) Disconnect the cruise control ECU connector.
- (b) Turn the ignition switch ON.

CHECK:

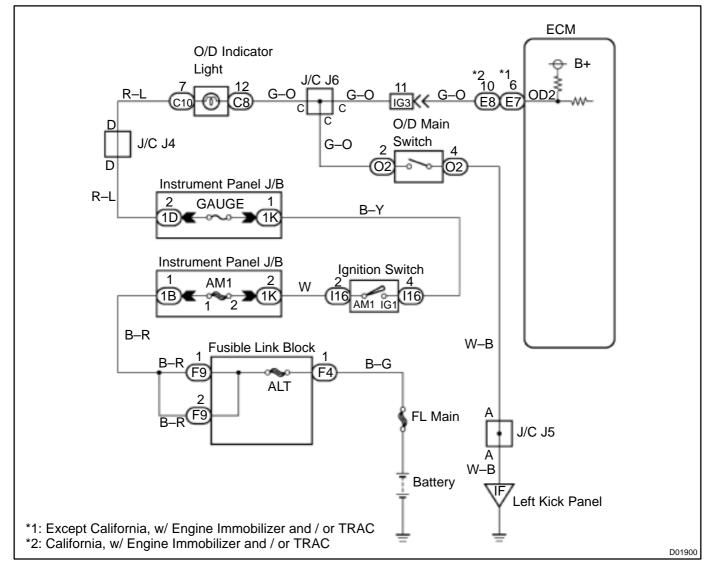
Measure voltage between terminal OD of cruise control ECU harness side connector and body ground.

<u>OK:</u> Voltage: 10 ~ 14 V

OK Check and replace the cruise control ECU.

Date :

DI-487


DI1KD-01

O/D Main Switch & O/D OFF Indictor Light Circuit

CIRCUIT DESCRIPTION

The O/D main switch contacts go open when the switch is pushed in and go closed when it is pushed out. In O/D main switch at OFF position, the O/D OFF indicator light lights up, and the ECM prohibits shifting overdrive.

WIRING DIAGRAM

INSPECTION PROCEDURE O/D OFF indicator light does not light up

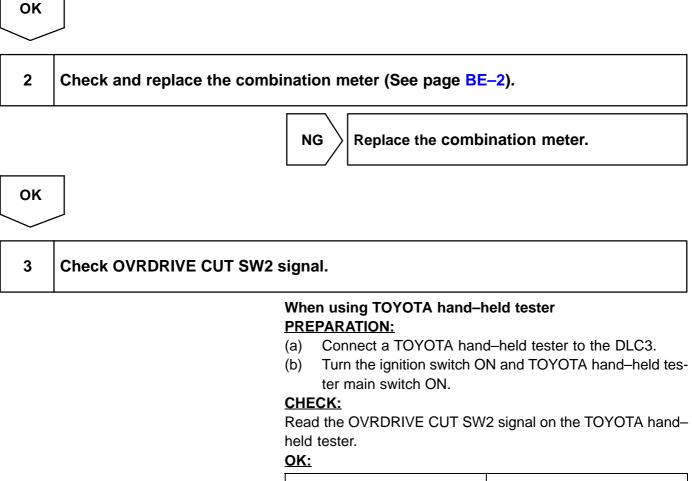
1 Check O/D main switch.

PREPARATION:

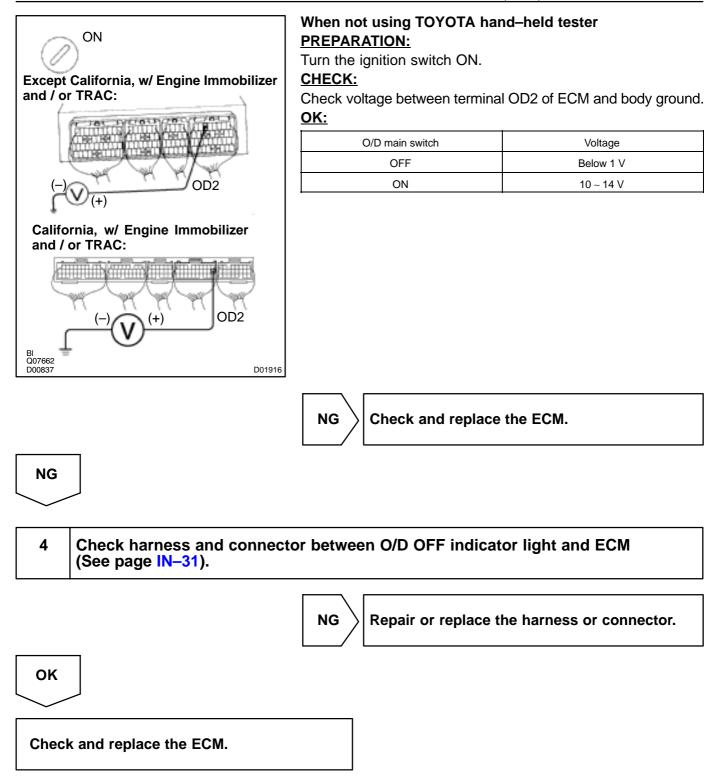
Disconnect the O/D main switch connector.

CHECK:

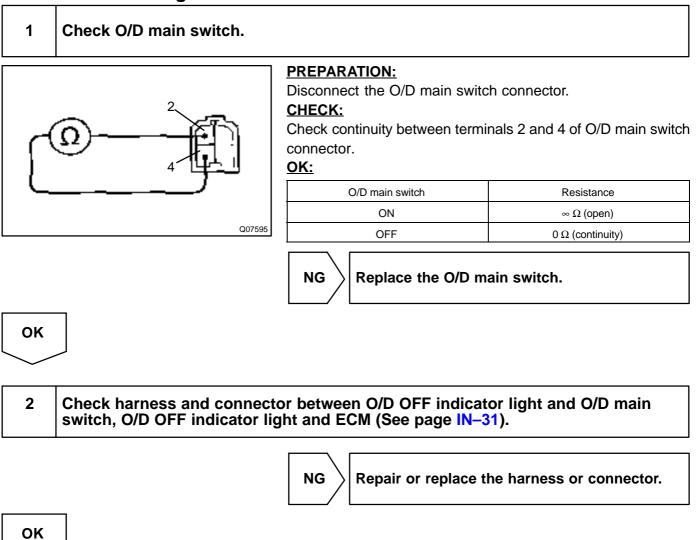
Check continuity between terminals 2 and 4 of O/D main switch connector.


<u>OK:</u>

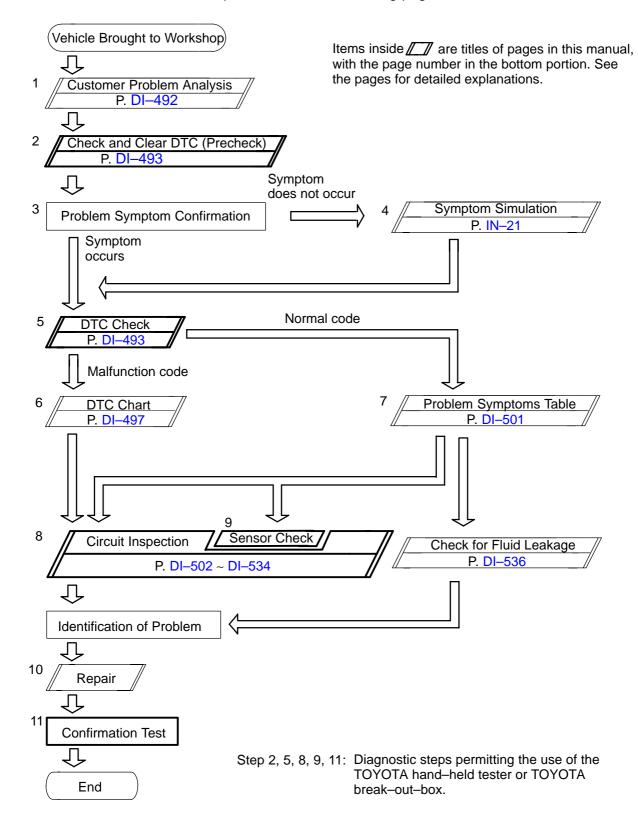
Q07595


O/D main switch	Resistance
ON	$\infty \Omega$ (open)
OFF	0Ω (continuity)

NG


 \rangle Replace the O/D main switch.

O/D main switch condition	OVRDRIVE CUT SW2 signal
Pushed in	OFF
Pushed out	ON


O/D OFF indicator light remains on

Check and replace the ECM.

ANTI-LOCK BRAKE SYSTEM (DENSO Made) HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following pages.

DI03A-02

Author :

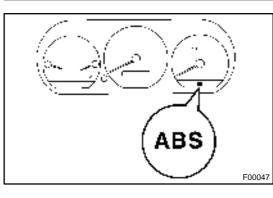
CUSTOMER PROBLEM ANALYSIS CHECK

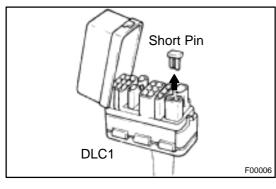
ABS Check Sheet

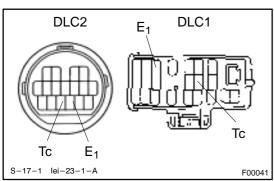
Inspector's . Name

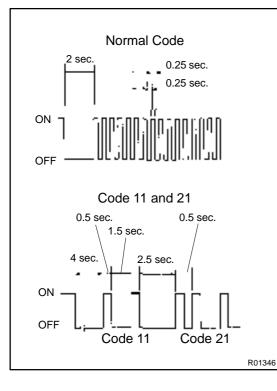
			Registration No.			
Customer's Name			Registration Year	1	1	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

Date Problem First Occurred		1		1
Frequency Problem Occurs	Continuous	□ Inter	mittent (times a day)


	□ ABS does not operate.
Symptoms	ABS does not operate efficiently.
	ABS Warning Light Abnormal


DTC Check	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)


727


DI03B-02

DI03C-03

PRE-CHECK

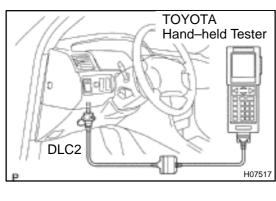
1. DIAGNOSIS SYSTEM

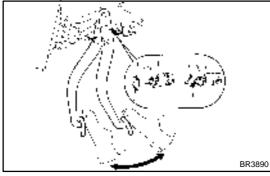
(a) Check the indicator.

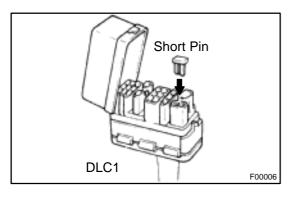
When the ignition switch is turned ON, check that the ABS warning light goes on for 3 seconds.

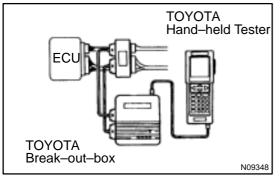
HINT:

If the indicator check result is not normal, proceed to troubleshooting for the ABS warning light circuit (See page DI–529).


- (b) Check the DTC.
 - (1) Disconnect the short pin from DLC1.


- (2) Using SST, connect terminals Tc and E_1 of DLC2 or DLC1.
- SST 09843 18020
- (3) Turn the ignition switch ON.
- (4) Read the DTC from the ABS warning light on the combination meter.

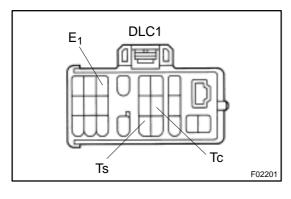

HINT:


- If no code appears, inspect the diagnostic circuit or ABS warning light circuit (See page DI–532 or DI–529).
- As an example, the blinking patterns for normal code and codes 11 and 21 are shown on the left.
 - (5) Codes are explained in the code table on page DI-497.
 - (6) After completing the check, disconnect terminals Tc and E_1 , and turn off the display.

If 2 or more malfunctions are indicated at the same time the lowest numbered DTC will be displayed 1st.

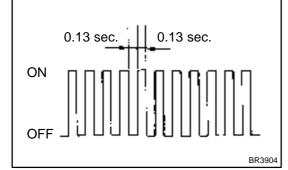
- (c) Using TOYOTA hand-held tester, check the DTC.
 - (1) Hook up the TOYOTA hand-held tester to the DLC2.
 - (2) Read the DTC by following the prompts on the tester screen.

Please refer to the TOYOTA hand-held tester operator's manual for further details.


- (d) Clear the DTC.
 - (1) Using SST, connect terminals Tc and E_1 of DLC2 or DLC1 and remove the short pin from DLC1.
 - SST 09843 18020
 - (2) Turn the ignition switch ON.
 - (3) Clear the DTC stored in ECU by depressing the brake pedal 8 or more times within 5 seconds.
 - (4) Check that the warning light shows the normal code.
 - (5) Remove the SST from the terminals of DLC2 or DLC1.
 - SST 09843 18020
 - (6) Connect the short pin to DLC1.
- (e) Using TOYOTA break–out–box and TOYOTA hand–held tester, measure the ECU terminal values.
 - (1) Hook up the TOYOTA hand-held tester and TOYOTA break-out-box to the vehicle.
 - (2) Read the ECU input/output values by following the prompts on the tester screen.

HINT:

TOYOTA hand-held tester has a "Snapshot" function. This records the measured values and is effective in the diagnosis of intermittent problems.


Please refer to the TOYOTA hand-held tester/TOYOTA breakout-box operator's manual for further details.

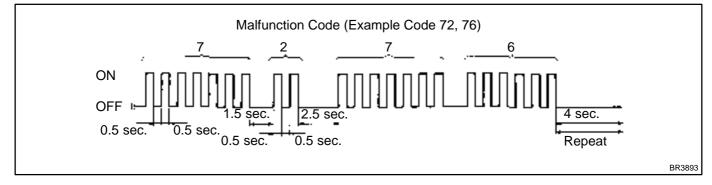
DIAGNOSTICS - ANTI-LOCK BRAKE SYSTEM (DENSO Made)

- (a) Check the speed sensor signal.
 - (1) Turn the ignition switch OFF.
 - (2) Using SST, connect terminals Ts and E_1 of DLC1.
 - SST 09843 18020
 - (3) Start the engine.

(4) Check that the ABS warning light blinks.

HINT:

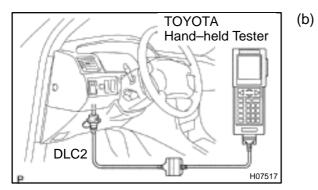
2.


If the ABS warning light does not blink, inspect the ABS warning light circuit (See page DI–529).

(5) Drive vehicle straight forward.

HINT:

Drive vehicle faster than 45 km/h (28 mph) for several seconds.


- (6) Stop the vehicle.
- (7) Using SST, connect terminals Tc and E_1 of DLC1.
- SST 09843 18020
- (8) Read the number of blinks of the ABS warning light. HINT:
- See the list of DTC shown on the next page.
- If every sensor is normal, a normal code is output (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated).
- If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.

(9) After doing the check, disconnect the SST from terminals Ts and E_1 , Tc and E_1 of DLC1, and turn ignition switch OFF.

SST 09843 - 18020

DIAGNOSTICS - ANTI-LOCK BRAKE SYSTEM (DENSO Made)

Using TOYOTA hand-held tester, check the DTC.

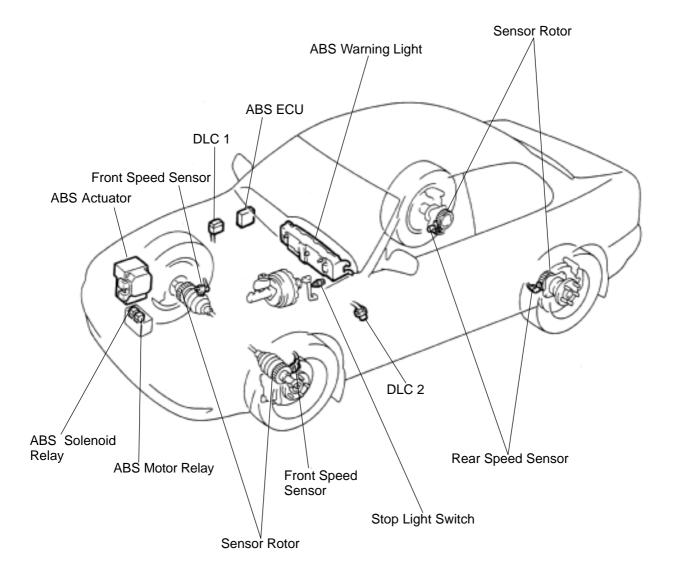
- (1) Do step $1. \sim 6$. on the previous page.
- (2) Hook up the TOYOTA hand-held tester to the DLC2.
- (3) Read the DTC by following the prompts on the tester screen.

Please refer to the TOYOTA hand-held tester operator's manual for further details.

DTC of speed sensor check function:

Code No.	Diagnosis	Trouble Area
71	Low output voltage of right front speed sensor	Right front speed sensorSensor installationRight front speed sensor rotor
72	Low output voltage of left front speed sensor	Left front speed sensorSensor installationLeft front speed sensor rotor
73	Low output voltage of right rear speed sensor	Right rear speed sensorSensor installationRight rear speed sensor rotor
74	Low output voltage of left rear speed sensor	 Left rear speed sensor Sensor installation Left rear speed sensor rotor
75	Abnormal change in output voltage of right front speed sen- sor	Right front speed sensor rotor
76	Abnormal change in output voltage of left front speed sensor	Left front speed sensor rotor
77	Abnormal change in output voltage of right rear speed sensor	•Right rear speed sensor rotor
78	Abnormal change in output voltage of left rear speed sensor	Left rear speed sensor rotor

DI03D-03

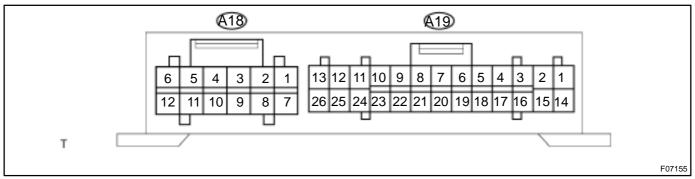

DIAGNOSTIC TROUBLE CODE CHART

HINT:

- Using SST 09843 –18020, connect the terminals Tc and E_1 , and remove the short pin.
- If any abnormality is not found when inspection parts, inspect the ECU.
- If a malfunction code is displayed during the DTC check, check the circuit listed for the code. For details of each code, turn to the page referred to under the "See page" for respective "DTC No." in the DTC chart.

DTC No. (See Page)	Detection Item	Trouble Area	
11 (DI–502)	Open circuit in ABS solenoid relay circuit	●ABS solenoid relay	
12 (DI–502)	Short circuit in ABS solenoid relay circuit	●ABS solenoid relay circuit	
13 (DI–507)	Open circuit in ABS motor relay circuit	•ABS motor relay	
14 (DI–507)	Short circuit in ABS motor relay circuit	●ABS motor relay circuit	
21 (DI–511)	Open or short circuit in 2-position solenoid circuit for right front wheel	ABS actuatorSFRR or SFRH circuit	
22 (DI–511)	Open or short circuit in 2–position solenoid circuit for left front wheel	ABS actuatorSFLR or SFLH circuit	
23 (DI–511)	Open or short circuit in 2–position solenoid circuit for right rear wheel	ABS actuatorSRRR or SRRH circuit	
24 (DI–511)	Open or short circuit in 2–position solenoid circuit for left rear wheel	ABS actuatorSRLR or SRLH circuit	
31 (DI–514)	Right front wheel speed sensor signal malfunction		
32 (DI–514)	Left front wheel speed sensor signal malfunction	 Right front, left front, right rear and left rear speed sensor Each speed sensor circuit 	
33 (DI–514)	Right rear wheel speed sensor signal malfunction	Speed sensor rotor	
34 (DI–514)	Left rear wheel speed sensor signal malfunction		
33, 34 (DI–519)	Rear speed sensor rotor faulty	Rear axle hubRight rear, left rear speed sensorRear speed sensor circuit	
41 (DI–520)	Power source voltage down	BatteryCharging systemPower source circuit	
49 (DI–523)	Open circuit in stop light switch circuit	Stop light switch Stop light switch circuit	
51 (DI–525)	Pump motor is locked	•ABS pump motor	
Always ON (DI–527)	Malfunction in ECU	•ECU •Battery	

PARTS LOCATION



F01172

DI03E-03

DI1JL-02

TERMINALS OF ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
IG1 (A19 – 13) – GND (A19 – 12, 25)	$BR\leftrightarrowWB$	IG switch ON	10 – 14
R+ (A19 – 26) – SR (A18 – 7)	$GR-R\leftrightarrowGR$	IG switch ON, ABS warning light OFF	9 – 14
R+ (A19 – 26) – MR (A18 – 1)	$GRR\leftrightarrowGRL$	IG switch ON	Below 1.0
SFRR (A19 – 1) – GND (A19 – 12, 25)	$W–R \leftrightarrow W–B$	IG switch ON, ABS warning light OFF	10 – 14
SFRH (A19 – 2) – GND (A19 – 12, 25)	$RB\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
SFLR (A18 – 6) – GND (A19 – 12, 25)	$W-L \leftrightarrow W-B$	IG switch ON, ABS warning light OFF	10 – 14
SFLH (A18 – 5) – GND (A19 – 12, 25)	$L–B \leftrightarrow W–B$	IG switch ON, ABS warning light OFF	10 – 14
SRRR (A18 – 12) – GND (A19 – 12, 25)	$RG\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
SRRH (A18 – 11) – GND (A19 – 12, 25)	$W-R \leftrightarrow W-B$	IG switch ON, ABS warning light OFF	10 – 14
SRLR (A19 – 14) – GND (A19 – 12, 25)	$LGB\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
SRLH (A19 – 15) – GND (A19 – 12, 25)	$GY\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
WA (A19 – 11) – GND (A19 –		IG switch ON, ABS warning light ON	Below 2.0
12, 25)	$G-B \leftrightarrow W-B$	IG switch ON, ABS warning light OFF	10 – 14
STP (A19 – 5) – GND (A19 –		Stop light switch OFF	Below 1.5
12, 25)	$G-W \leftrightarrow W-B$	Stop light switch ON	8 – 14
D/G (A19 – 24) – GND (A19 – 12, 25)	$RL\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
Tc (A19 – 8) – GND (A19 – 12, 25)	$LGR\leftrightarrowWB$	IG switch ON	8 – 14
Ts (A19 – 21) – GND (A19 – 12, 25)	$RY\leftrightarrowWB$	IG switch ON	8 – 14
FR+ (A18 – 3) – FR– (A18 – 9)	$W \leftrightarrow B$	IG switch ON, slowly turn right front wheel	AC generation
FL+ (A18 – 8) – FL– (A18 – 2)	$R \leftrightarrow G$	IG switch ON, slowly turn left front wheel	AC generation
RR+ (A19 – 10) – RR– (A19 – 23)	$W \mathop{\leftrightarrow} B$	IG switch ON, slowly turn right rear wheel	AC generation

Date :

734

DIAGNOSTICS – ANTI-LOCK BRAKE SYSTEM (DENSO Made)

RL+ (A19 – 22) – RL– (A19 – 9)	$R \leftrightarrow G$	IG switch ON, slowly turn left rear wheel	AC generation
MT (A18 – 10) – GND (A18 – 12, 25)	$RW\leftrightarrowWB$	IG switch ON	Below 1.5

PROBLEM SYMPTOMS TABLE

If a normal code is displayed during the DTC check but the problem still occurs, check the circuits for each problem symptom in the order given in the table below and proceed to the relevant troubleshooting page.

Symptom	Suspect Area	See page
ABS does not operate	 Only when 1. to 4. are all normal and the problem is still occurring, replace the ABS ECU. 13.Check the DTC reconfirming that the normal code is output. 14.IG power source circuit. 15.Speed sensor circuit. 16.Check the ABS actuator with a checker. If abnormal, check the hydraulic circuit for leakage (See page DI–536). 	DI-493 DI-520 DI-514 BR-50
ABS does not operate efficiently	 Only when 1. to 4. are all normal and the problem is still occurring, replace the ABS ECU. 1. Check the DTC reconfirming that the normal code is output. 2. Speed sensor circuit 3. Stop light switch circuit 4. Check the ABS actuator with a checker. If abnormal, check the hydraulic circuit for leakage (See page DI-536). 	DI-493 DI-514 DI-523 BR-50
ABS warning light abnormal	 ABS warning light circuit ABS ECU 	DI–529 DI–527
DTC check cannot be done	Only when 1. and 2. are all normal and the problem is still occurring, replace the ABS ECU. 1. ABS warning light circuit 2. Tc terminal circuit 1. Ts terminal circuit	DI529 DI532 DI534
Speed sensor signal check cannot be done	2. ABS ECU	DI-534 DI-527

DI03G-04

DI-501

CIRCUIT INSPECTION

DTC	11, 12	ABS Solenoid Relay Circuit
-----	--------	----------------------------

CIRCUIT DESCRIPTION

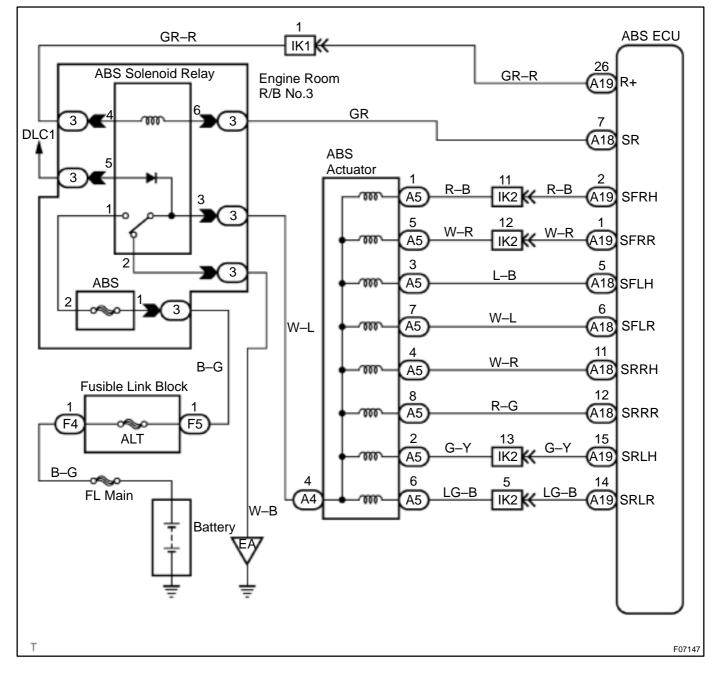
This relay supplies power to each ABS solenoid. After the ignition switch is turned ON, if the initial check is OK, the relay goes on.

DTC No.	DTC Detecting Condition	Trouble Area
11	 Condition 1. or 2. continues for 0.2 sec. or more: 1. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, and when the solenoid relay is ON.*1 2. With solenoid relay ON driving, when IG1 terminal of ABS ECU is less than 9.5 V.*1 	 ABS solenoid relay ABS solenoid relay circuit ECU
12	Immediately after IG switch has been turned ON, when the solenoid relay is OFF.*2	

*1 Solenoid relay contact OFF condition:

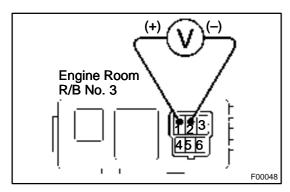
All of solenoid terminal voltage is half of IG1 terminal voltage or less than.

*² Solenoid relay contact ON condition:


All of solenoid terminal voltage is half of IG 1 terminal voltage or more.

Fail safe function:

If trouble occurs in the ABS solenoid relay circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.


DI03H-03

WIRING DIAGRAM

INSPECTION PROCEDURE

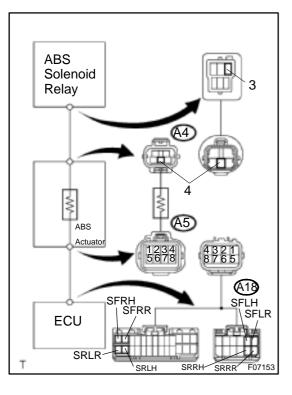
1 Check voltage between terminals 1 and 2 of Engine Room R/B No. 3 (for ABS solenoid relay).

PREPARATION:

Remove ABS solenoid relay from Engine Room R/B No. 3. CHECK:

Measure the voltage between terminals 1 and 2 of Engine Room R/B No. 3 (for ABS solenoid relay).

<u>OK:</u>


Voltage: 10 – 14 V

Check and repair harness or connector.

OK

2

Check continuity between terminal 3 of ABS solenoid relay and terminal SRLR, SRLH, SRRR, SRRH, SFLR, SFLH, SFRR or SFRH of ABS ECU.

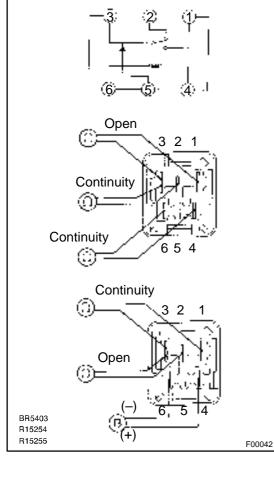
CHECK:

Check continuity between terminal 3 of Engine Room R/B No.3 (for ABS solenoid relay) and terminal SRLR, SRLH, SRRR, SRRH, SFLR, SRLH, SFRR or SFRH of ABS ECU. **OK:**

Continuity

HINT:

Resistance of each solenoid coil SRLR, SRRR, SFLR, SFRR: 4.3 Ω SRLH, SRRH, SFLH, SFRH: 8.8 Ω


NG

Repair or replace harness or ABS actuator.

OK	
----	--

3

Check ABS solenoid relay.

CHECK:

Check continuity between each terminal of ABS solenoid relay. **OK:**

Terminals 4 and 6	Continuity (Reference value 80 Ω)
Terminals 2 and 3	Continuity
Terminals 1 and 3	Open

CHECK:

- (a) Apply battery positive voltage between terminals 4 and 6.
- (b) Check continuity between each terminal of ABS solenoid relay.

OK:

Terminals 2 and 3	Open
Terminals 1 and 3	Continuity

NG

Replace ABS solenoid relay.

OK

4	Check for open and short circuit in harness and connector between ABS sole- noid relay and ABS ECU (See page IN-31).	
	NG Repair or replace harness or connector.	
ОК		

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

	^	
•	\mathbf{U}	

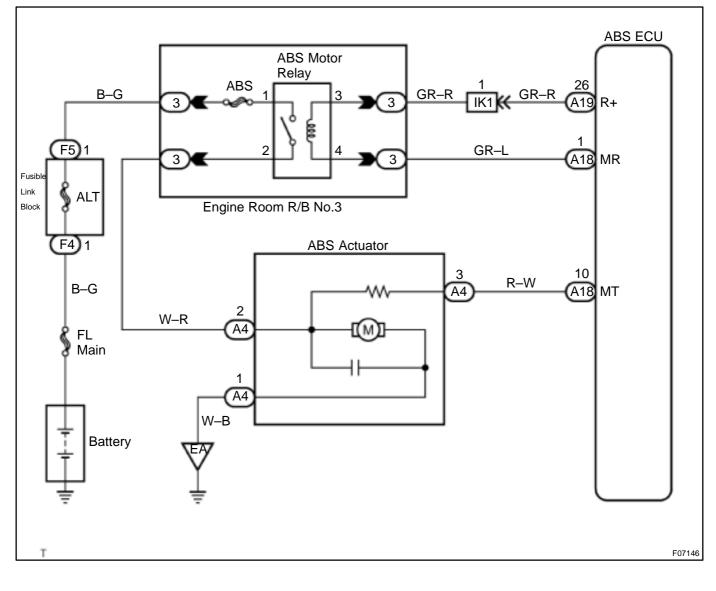
13, 14

CIRCUIT DESCRIPTION

The ABS motor relay supplies power to the ABS pump motor. While the ABS is activated, the ECU switches the ABS motor relay ON and operates the ABS pump motor.

DTC No.	DTC Detecting Condition Trouble Area	
13	 Condition 1. or 2. continues for 0.2 sec. or more: 1. ABS ECU terminal IG1 voltage is 9.5 V to 18.5 V, and when motor relay is ON in the midst of initial check or in operation of ABS control.*1 2. Motor relay is ON driving in the midst of initial check or in operation of ABS control, ABS ECU terminal IG1 voltage becomes 9.5 V or less.*2 	•ABS motor relay •ABS motor relay circuit •ECU
14	Condition below continues for 4 sec. or more: When the motor relay is OFF, there is open circuit in MT terminal of ABS ECU.	

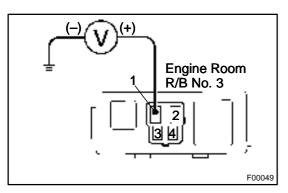
*1 Relay contact OFF condition: MT terminal voltage is below 3.6 V.


*² Relay contact ON condition: MT terminal voltage is 3.6 V or above.

Fail safe function:

If trouble occurs in the ABS motor relay circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.

DI03I-03


WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check voltage between terminal 1 of Engine Room R/B No. 3 (for ABS motor relay) and body ground.

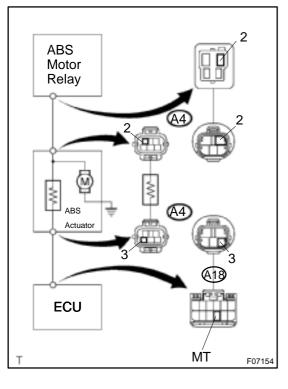
PREPARATION:

Remove ABS motor relay from Engine Room R/B No. 3. CHECK:

Measure voltage between terminal 1 of Engine Room R/B No. 3 (for ABS motor relay) and body ground.

<u>OK:</u> Voltage: 10 – 14 V

NG


_ _

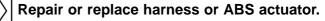
 \rangle Check and repair harness or connector.

OK

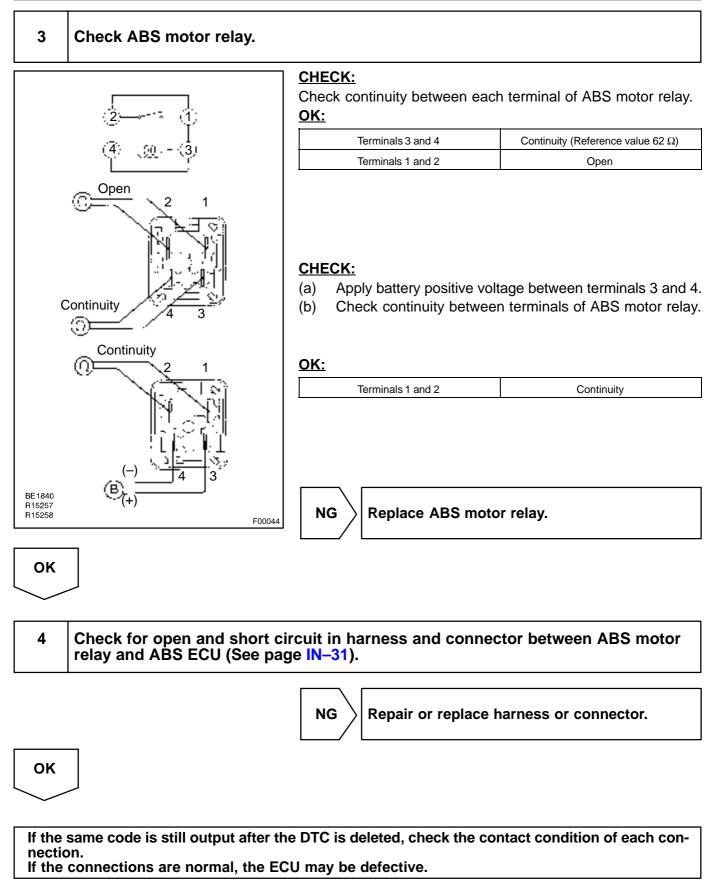
OK

2 Check continuity between terminal 2 of ABS motor relay and terminal MT of ABS ECU.

CHECK:


Check continuity between terminal 2 of Engine Room R/B No.3 (for ABS motor relay) and terminal MT of ABS ECU.

<u>OK:</u>


Continuity

There is a resistance of 4 \sim 6 Ω between terminals A4 – 2 and A4 – 3 of ABS actuator.

NG

DI-509

DI03J-03

DTC

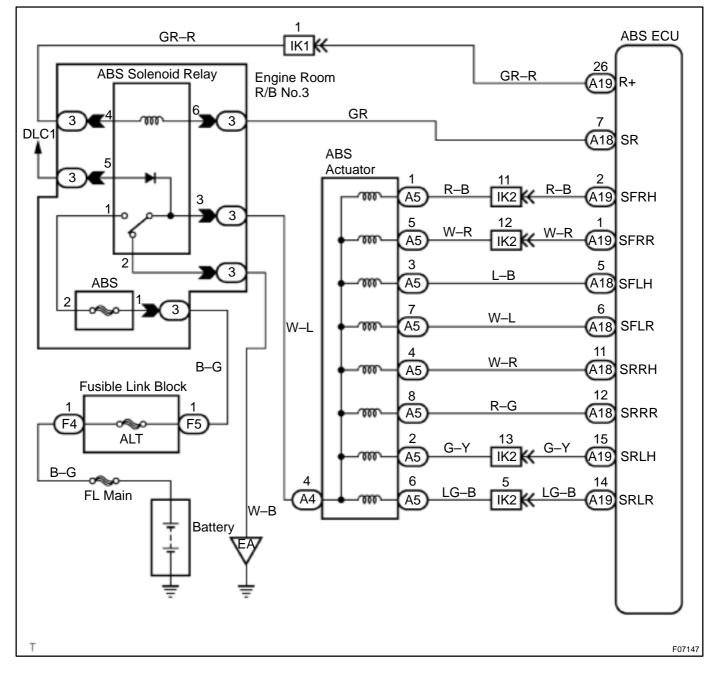
21, 22, 23, 24

ABS Actuator Solenoid Circuit

CIRCUIT DESCRIPTION

This solenoid goes on when signals are received from the ECU and controls the pressure acting on the wheel cylinders thus controlling the braking force.

DTC No.	DTC Detecting Condition	Trouble Area
21	 Condition 1. or 2. continues for 0.05 sec. or more: IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, there is open or short circuit in actuator solenoid SFRR or SFRH. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, and while ABS is control in operation.*1 	•ABS actuator •SFRR or SFRH circuit
22	 Condition 1. or 2. continues for 0.05 sec. or more: 1. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, there is open or short circuit in actuator solenoid SFLR or SFLH. 2. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, and while ABS is control in operation.*1 	•ABS actuator •SFLR or SFLH circuit
23	 Condition 1. or 2. continues for 0.05 sec. or more: 1. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, there is open or short circuit in actuator solenoid SRRR or SRRH. 2. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, and while ABS is control in operation.*1 	•ABS actuator •SRRR or SRRH circuit
24	 Condition 1. or 2. continues for 0.05 sec. or more: 1. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, there is open or short circuit in actuator solenoid SRLR or SRLH. 2. IG1 terminal voltage of ABS ECU is 9.5 – 18.5 V, and while ABS is control in operation.*1 	•ABS actuator •SRLR or SRLH circuit


*1 Solenoid relay contact ON condition:

All of solenoid terminal voltage is half of IG1 terminal voltage or less than.

Fail safe function:

If trouble occurs in the actuator solenoid circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.

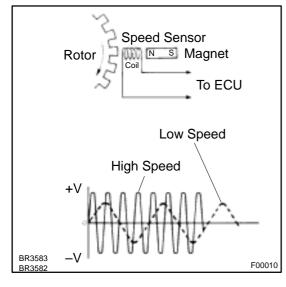
WIRING DIAGRAM

INSPECTION PROCEDURE

1 Check ABS actuator solenoid. **PREPARATION:** Disconnect the 2 connectors from ABS actuator. CHECK: Check continuity between terminals A4 - 4 and A5 - 1, 2, 3, 4, 5, 6, 7, 8 of ABS actuator connector. <u>OK:</u> Continuity HINT: Resistance of each solenoid coil is 1.2Ω . W00714 **Replace ABS actuator.** NG ΟΚ 2 Check for open and short circuit in harness and connector between ABS ECU and actuator (See page IN-31). NG Repair or replace harness or connector.

OK If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

748


Date :

DI1JM-02

31, 32, 33, 34

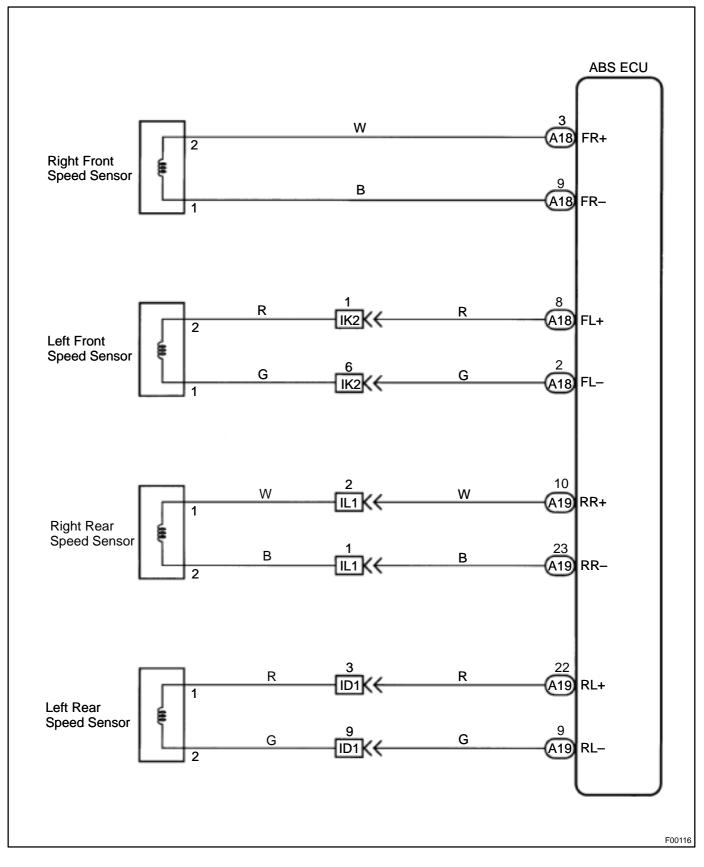
Speed Sensor Circuit

CIRCUIT DESCRIPTION

The speed sensor detects wheel speed and sends the appropriate signals to the ECU. These signals are used to control the ABS system. The front and rear rotors each have 48 serrations.

When the rotors rotate, the magnetic field emitted by the permanent magnet in the speed sensor generates an AC voltage. Since the frequency of this AC voltage changes in direct proportion to the speed of the rotor, the frequency is used by the ECU to detect the speed of each wheel.

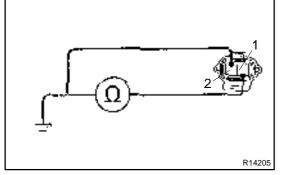
DTC No.	DTC Detecting Condition	Trouble Area	
31, 32, 33, 34	 Detection of any of conditions from 1. through 4.: Vehicle speed is at 10 km/h (6 mph) or more and the speed sensor signal circuit is open or short circuit continues for 15 sec. or more. Momentary interruption of the speed sensor signal occurs 7 times or more. Vehicle speed is at 20 km/h (12mph) or more and interference on the speed sensor signal continues for 5 sec. or more. Open circuit condition of the speed sensor signal circuit continues for 0.5 sec. or more. 	 Right front, left front, right rear, left rear speed sensor Each speed sensor circuit Speed sensor rotor 	


HINT:

- DTC No. 31 is for the right front speed sensor.
- DTC No. 32 is for the left front speed sensor.
- DTC No. 33 is for the right rear speed sensor.
- DTC No. 34 is for the left rear speed sensor.

Fail safe function:

If trouble occurs in the speed sensor circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.


WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check speed sensor.

Front:

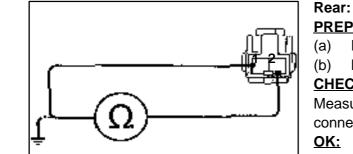
PREPARATION:

- (a) Remove the front fender liner.
- (b) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

OK:


Resistance: 0.6 – 2.5 k Ω

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

<u>OK:</u>

Resistance: 1 M Ω or higher

PREPARATION:

Remove the seat cushion and side seatback.

Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

OK:

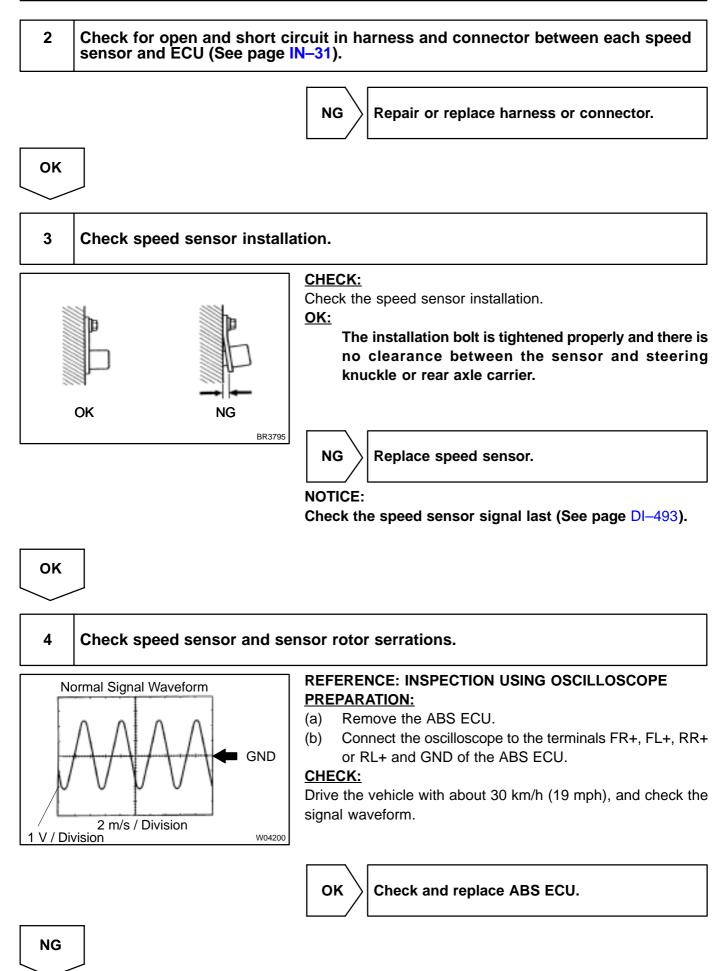
R14213

Resistance: 1.2 – 2.3 k Ω

CHECK:

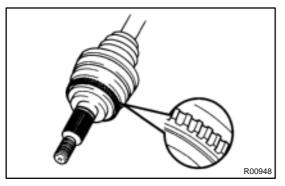
Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

OK:


Resistance: 1 M Ω or higher

NOTICE:

Check the speed sensor signal last (See page DI-493).


OK

752

DI-517

5 Check sensor rotor and sensor tip.

Front:

PREPARATION:

Remove the front drive shaft (See page SA-17 or SA-26). CHECK:

Check the sensor rotor serrations.

OK:

No scratches or missing teeth or foreign objects. **PREPARATION:**

Remove the front speed sensor (See page BR-68).

CHECK:

Check the sensor tip.

OK:

R00947

No scratches or foreign objects on the sensor tip.

Rear: **PREPARATION:**

Remove the axle hub (See page SA-52).

CHECK:

Check the sensor rotor serrations.

OK:

No scratches or missing teeth or foreign objects. PREPARATION:

Remove the rear speed sensor (See page BR-71).

CHECK:

Check the sensor tip.

OK:

No scratches or foreign objects on the sensor tip.

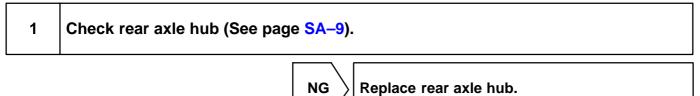
Replace sensor rotor or speed sensor.

NOTICE:

Check the speed sensor signal last (See page DI-493).

OK

Check and replace ABS ECU.


DI03L-03

DTC 33, 34 Rear Speed Sensor Rotor Faulty

CIRCUIT DESCRIPTION

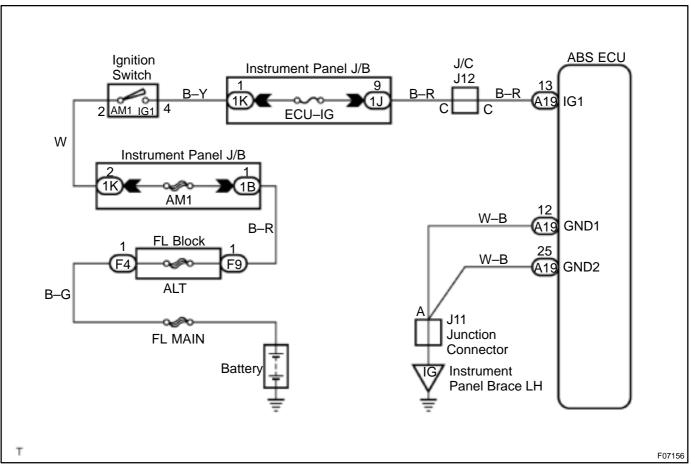
DTC No.	DTC Detecting Condition	Trouble Area
33, 34	The condition that the both rear side wheels' speed is lower than the front wheels' speed at 20 km/h (12 mph) or more for 20 sec. or more when the IG switch turns ON and OFF, which is repeated in a sequence more than 8 times.	 Rear axle hub Right rear, left rear speed sensor Rear speed sensor circuit

INSPECTION PROCEDURE

ок	
2	Check rear speed sensor (See page DI–514).
	NG Replace rear speed sensor.
ОК	
3	Check for open and short circuit in harness and connector between rear speed sensor and ECU (See page IN-31).
	NG Repair or replace harness and connector.
ОК	
Check	and replace ABS ECU.

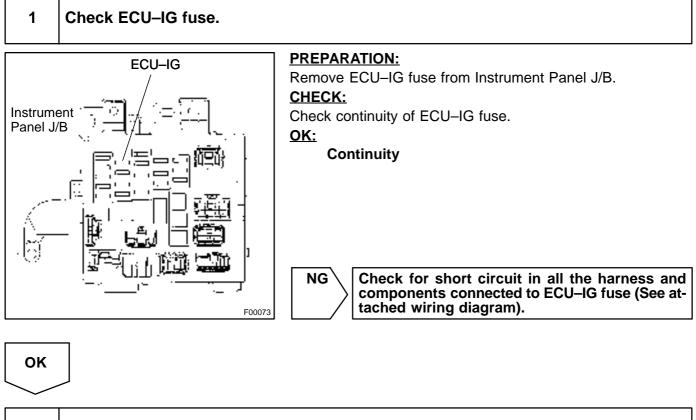
DTC	41	IG Power Source Circuit
-----	----	-------------------------

CIRCUIT DESCRIPTION


This is the power source for the ECU, hence the actuators.

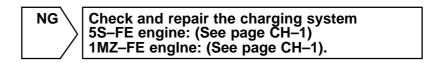
DTC No.	DTC Detecting Condition	Trouble Area	
41	 Condition 1. or 2. is detected: 1. Vehicle speed is at 3 km/h (1.9 mph) or more and ECU terminal IG1 voltage is 9.5 V or less , which continues for 10 sec. or more. 2. When IG1 terminal voltage is less than 9.5 V, there is open circuit in the motor relay or in the solenoid relay, or the solenoid circuit malfunction. 	BatteryCharging systemPower source circuit	

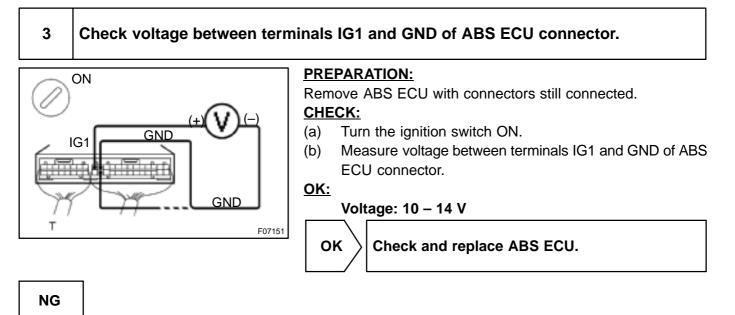
Fail safe function:


If trouble occurs in the power source circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.

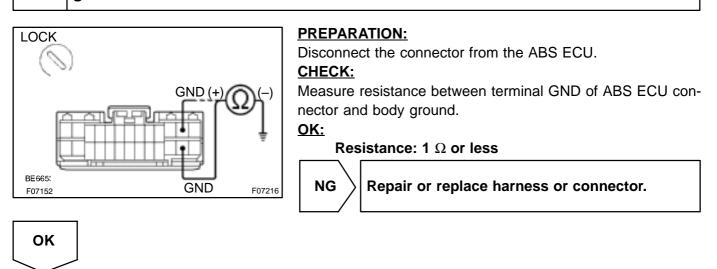
WIRING DIAGRAM

DI03M-03


INSPECTION PROCEDURE

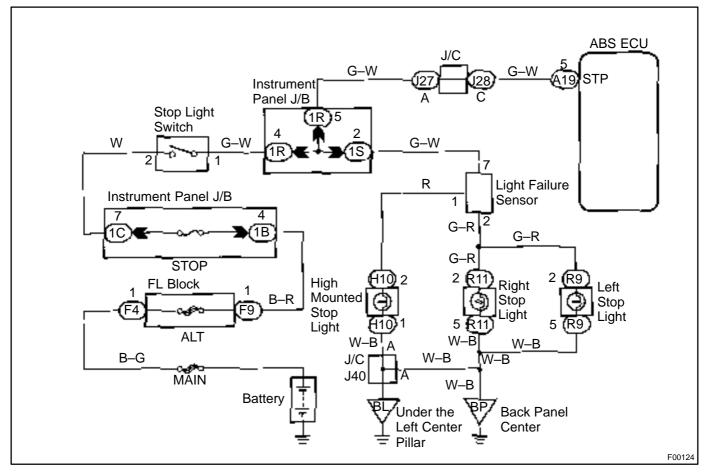


<u>OK:</u>


Voltage: 10 - 14 V

ок

4 Check continuity between terminals GND of ABS ECU connector and body ground.


Check for open circuit in harness and connector between ABS ECU and ECU–IG fuse (See page IN–31).

DTC 49 Stop Light Switch Circu

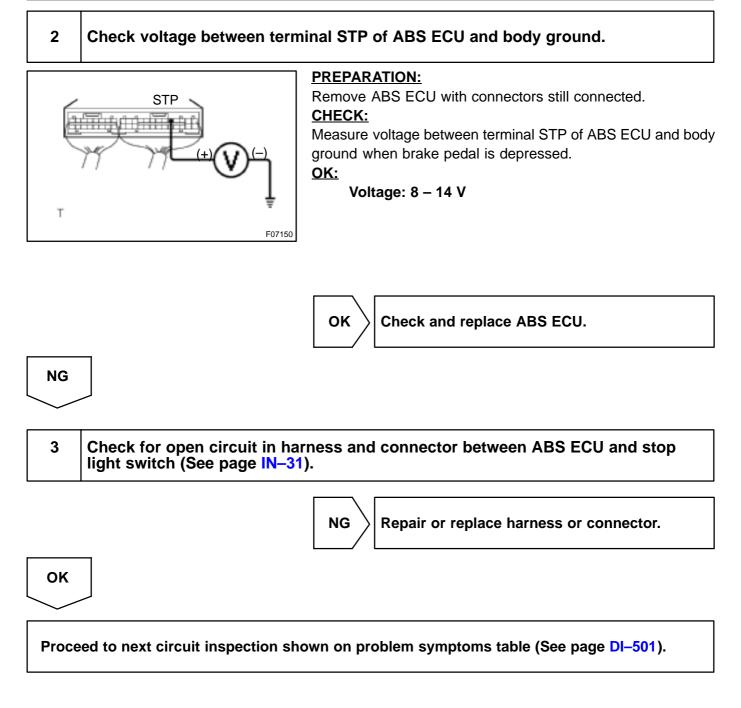
CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
49	is in non-operation, the open circuit of the stop light switch	Stop light switchStop light switch circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

	1	Check operation of stop light.	
--	---	--------------------------------	--

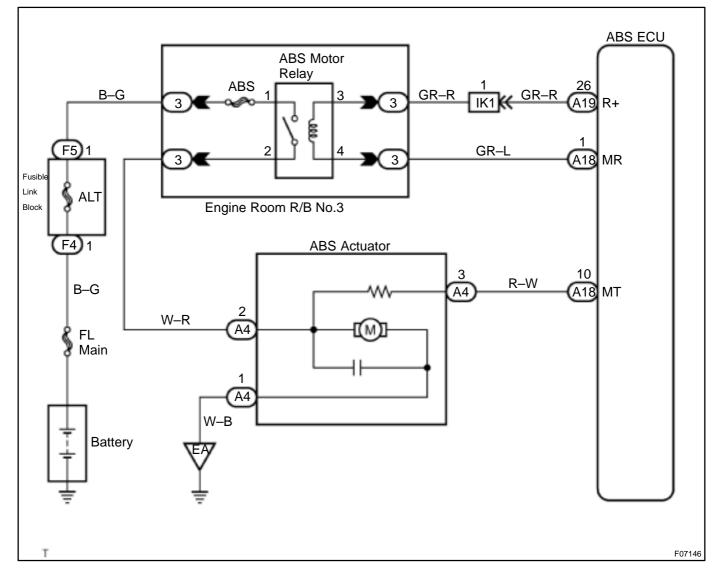

CHECK:

Check that stop light lights up when brake pedal is depressed and turns off when brake pedal is released.

	NG	Repair stop light circuit (See page BE–37).
--	----	---

ок

DI03N-03

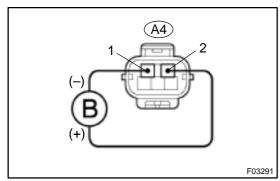

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area		
51	ABS actuator pump motor is not operating normally.	●ABS pump motor		

Fail safe function:

If trouble occurs in the ABS pump motor, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.

WIRING DIAGRAM



DI4KW-01

INSPECTION PROCEDURE

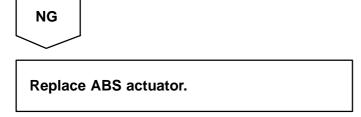
1

Check operation of ABS & TRAC pump motor.

PREPARATION:

Disconnect the ABS actuator connector.

<u>CHECK:</u>


Connect positive \sim lead to terminal A4–2 and negative > lead to terminal A4 – 1 of the ABS actuator connector, check that the pump motor is operates.

<u>OK:</u>

The running sound of the pump motor should be heard.

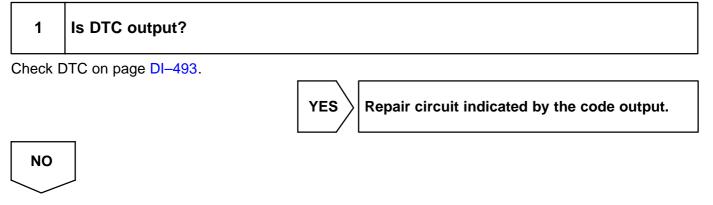
Check for open circuit in harness and connector between ABS motor relay, ABS actuator and ABS ECU (See page IN–31).

DI03P-04

DTC

Always ON

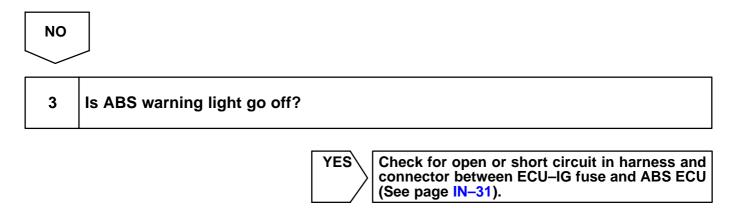
ABS ECU Malfunction

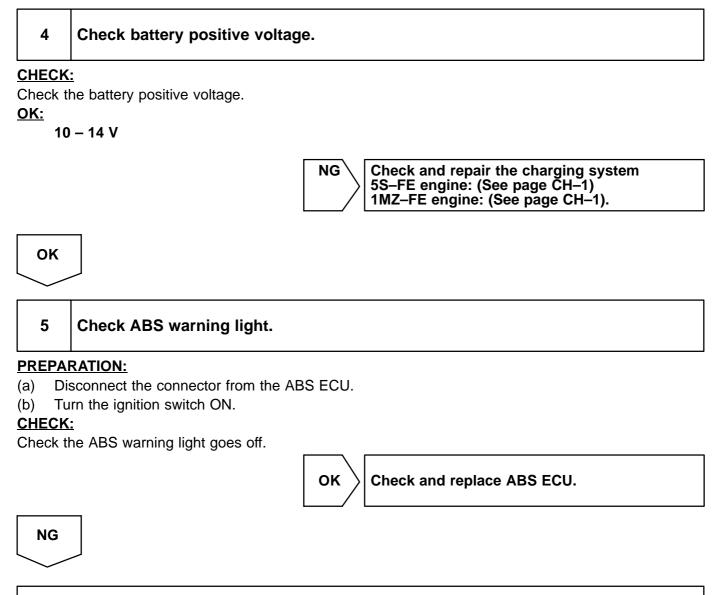

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area			
Always ON	ABS FOLL internal molfunction is detected	•ECU			
	ABS ECU internal malfunction is detected.	•Battery			

Fail safe function:

If trouble occurs in the power source circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.

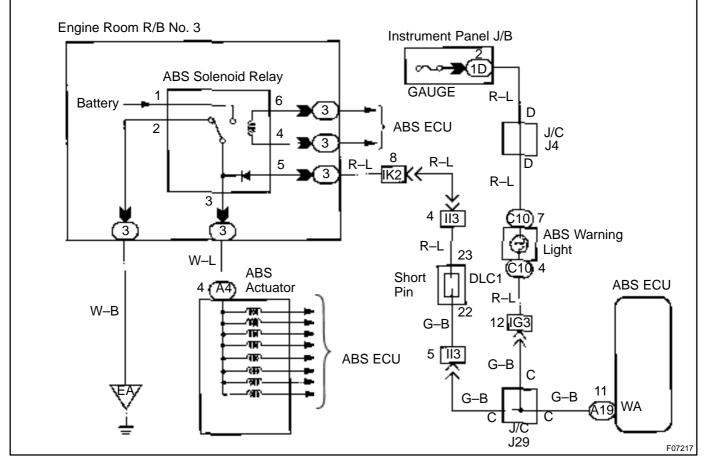

INSPECTION PROCEDURE


2 Is normal code displayed?

Check ABS solenoid relay. Check for short circuit in harness and connector between ABS solenoid relay and DLC1 (See page IN–31).

NO

Check for short circuit in harness and connector between ABS warning light, DLC1, DLC2, and ABS ECU (See page IN-31).


ABS Warning Light Circuit

CIRCUIT DESCRIPTION

If the ECU detects trouble, it lights the ABS warning light while at the same time prohibiting ABS control. At this time, the ECU records a DTC in memory.

After removing the short pin of the DLC1, connect terminals Tc and E_1 of the DLC1 or DLC2 to make the ABS warning light blink and output the DTC.

WIRING DIAGRAM

INSPECTION PROCEDURE

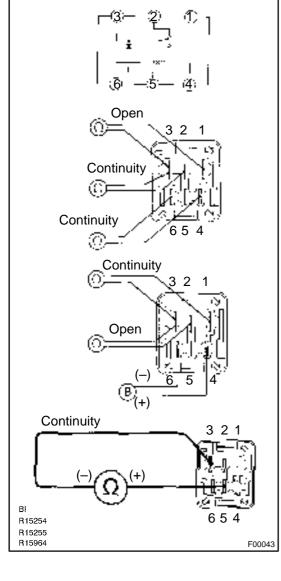
Troubleshooting in accordance with the chart below for each trouble symptom.

ABS warning light does not light up	Go to step 1
ABS warning light remains on	Go to step 3

Check ABS warning light.

See combination meter troubleshooting on page BE-2.

NG


angle Repair bulb or combination meter assembly.

OK

1

DI-529

2 Check ABS solenoid relay.

PREPARATION:

Remove ABS solenoid relay from Engine Room R/B No. 3. CHECK:

Check continuity between each terminal of ABS solenoid relay. OK:

Terminals 4 and 6	Continuity (Reference value 80 Ω)			
Terminals 2 and 3	Continuity			
Terminals 1 and 3	Open			

CHECK:

- (a) Apply battery positive voltage between terminals 4 and 6.
- (b) Check continuity between each terminal of ABS solenoid relay.

<u>OK:</u>

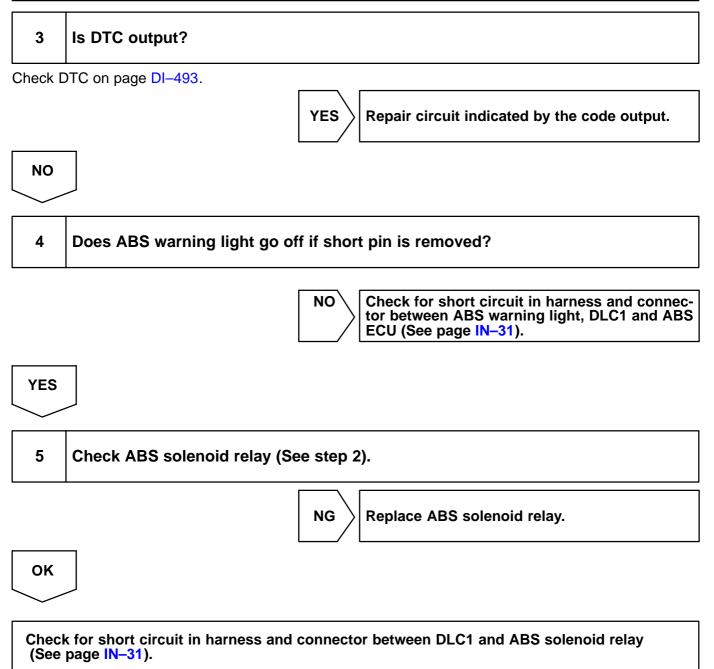
Terminals 2 and 3	Open
Terminals 1 and 3	Continuity

CHECK:

NG

<u>OK:</u>

Connect the \sim test lead to terminal 5 and the > lead to terminal 3. Check continuity between the terminals.

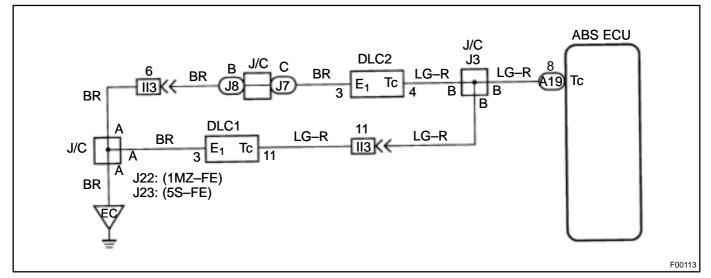

Continuity

If there is no continuity, connect the > test lead to terminal 5 and the \sim lead to terminal 3. Recheck continuity between terminals.

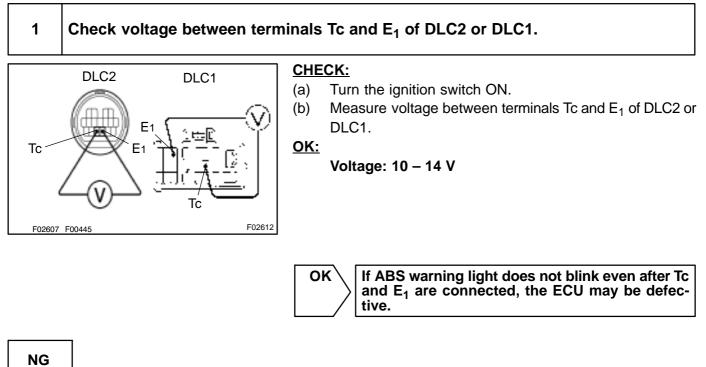
 \rangle Replace ABS solenoid relay.

ΟΚ

Check for open circuit in harness and connector between DLC1, ABS solenoid relay and body ground (See page IN-31).

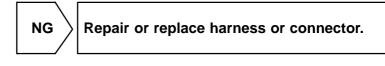


Tc Terminal Circuit


CIRCUIT DESCRIPTION

Connecting between terminals Tc and E_1 of the DLC1 or the DLC2 causes the ECU to display the DTC by flashing the ABS warning light.

WIRING DIAGRAM


INSPECTION PROCEDURE

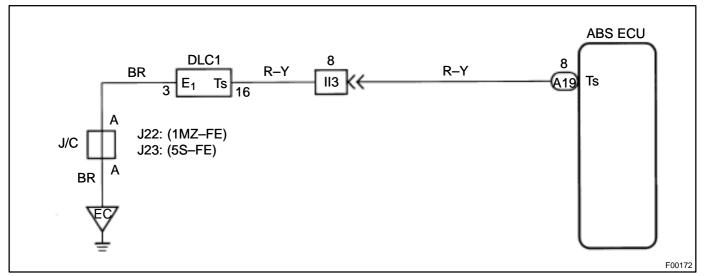
767

DI03R-03

2 Check for open and short circuit in harness and connector between ABS ECU and DLC2 or DLC1, DLC2 or DLC1 and body ground (See page IN–31).

ОК

Check and replace ABS ECU.

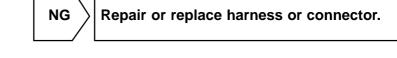

Ts Terminal Circuit

CIRCUIT DESCRIPTION

The sensor check circuit detects abnormalities in the speed sensor signal which cannot be detected with the DTC check.

Connecting terminals Ts and E_1 of the DLC1 in the engine compartment starts the check.

WIRING DIAGRAM

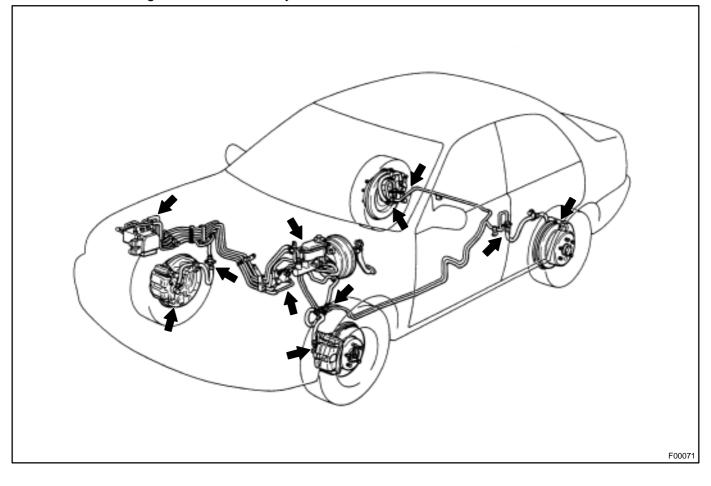


INSPECTION PROCEDURE

1	Check voltage between tern	ninals Ts and E ₁ of DLC1.
AB0119 S08096		CHECK:(a) Turn the ignition switch ON.(b) Measure voltage between terminals Ts and E1 of DLC1.OK:Voltage: 10 – 14 V
		$\begin{tabular}{ c c c c c } \hline OK & If ABS warning light does not blink even after Ts and E_1 are connected, the ECU may be defective. \end{tabular}$
NG		

DI03S-03

2 Check for open and short circuit in harness and connector between ABS ECU and DLC1, DLC1 and body ground (See page IN–31).

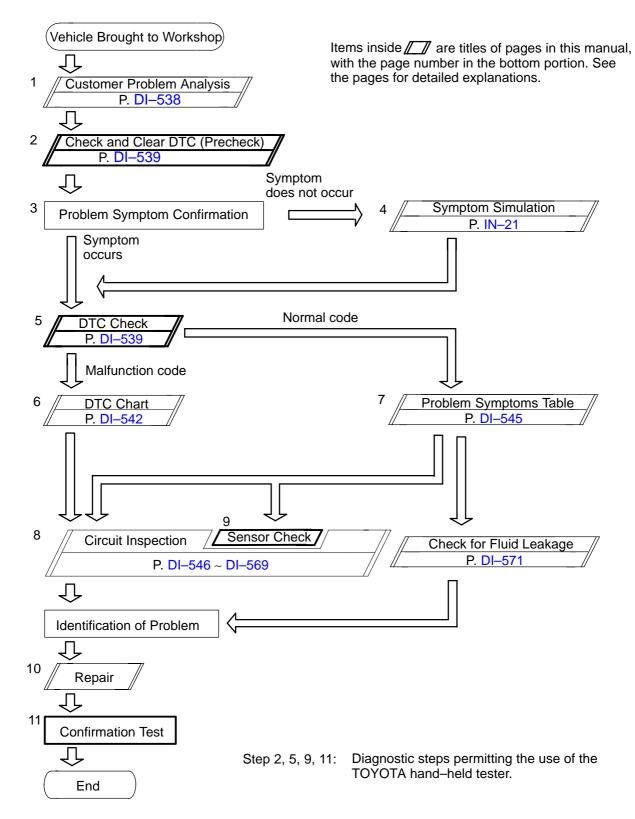


OK

Check and replace ABS ECU.

Check for Fluid Leakage

Check for fluid leakage from actuator or hydraulic lines.



DI051-04

ANTI-LOCK BRAKE SYSTEM (BOSCH Made)

HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following pages.

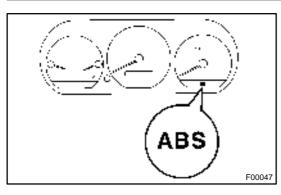
CUSTOMER PROBLEM ANALYSIS CHECK

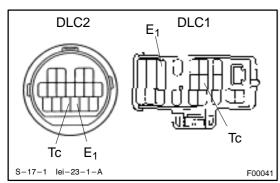
ABS Check Sheet

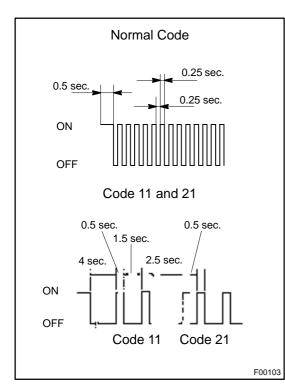
Inspector's . Name

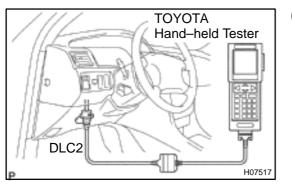
			Registration No.			
Customer's Name			Registration Year	1	/	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

Date Problem First Occurred		1		1
Frequency Problem Occurs	Continuous		Intermittent (times a day)


Symptoms	□ ABS does not operate.				
	ABS does not operate intermittently.				
	ABS Warning Light Abnormal				


DTC Check	1st Time	Normal Code	Malfunction Code (Code)
	2nd Time	Normal Code	Malfunction Code (Code)


773


DI03U-04

DI03V-04

PRE-CHECK

1. DIAGNOSIS SYSTEM

(a) Check the indicator.

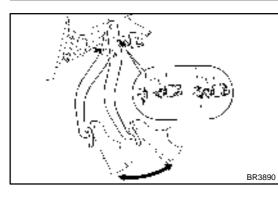
When the ignition switch is turned ON, check that the ABS warning light goes on for 2 seconds.

HINT:

If the indicator check result is not normal, proceed to troubleshooting for the ABS warning light circuit (See page DI–565).

- (b) Check the DTC.
 - (1) Using SST, connect terminals Tc and E_1 of DLC2 or DLC1.
 - SST 09843 18020
 - (2) Turn the ignition switch ON.
 - (3) Read the DTC from the ABS warning light on the combination meter.

HINT:

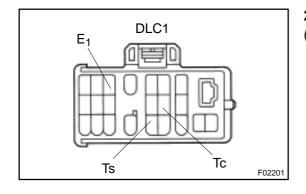

- If no code appears, inspect the diagnostic circuit or ABS warning light circuit (See page DI–567 or DI–565).
- As an example, the blinking patterns for normal code and codes 11 and 21 are shown on the left.
 - (4) Codes are explained in the code table on page DI-542.
 - (5) After completing the check, disconnect terminals Tc and E_1 , and turn off the display.

If 2 or more malfunctions are indicated at the same time the lowest numbered DTC will be displayed 1st.

- (c) Using TOYOTA hand-held tester, check the DTC.
 - (1) Hook up the TOYOTA hand-held tester to the DLC2.
 - (2) Read the DTC by following the prompts on the tester screen.

Please refer to the TOYOTA hand-held tester operator's manual for further details.

DIAGNOSTICS - ANTI-LOCK BRAKE SYSTEM (BOSCH Made)



(d) Clear the DTC.

- (1) Using SST, connect terminals Tc and E_1 of DLC2 or DLC1.
- SST 09843 18020
- (2) Turn the ignition switch ON.
- (3) Clear the DTC stored in ECU by depressing the brake pedal 8 or more times within 3 seconds.
- (4) Check that the warning light shows the normal code.
- (5) Remove the SST from the terminals of DLC2 or DLC1.
- SST 09843 18020

HINT:

Cancellation cannot be done by removing the battery cable or ECU–B fuse.

0.12 sec.

0.13 sec.

ON

OFF

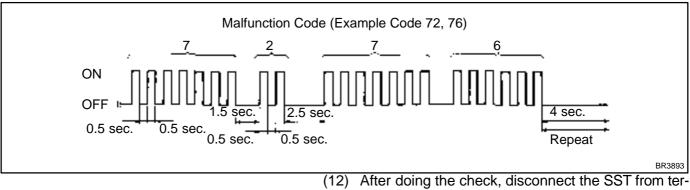
- (a) Check the speed sensor signal.
 - (1) When the ignition switch is turned ON, check that the ABS warning light goes on for 2 seconds.
 - (2) Turn the ignition switch OFF.
 - (3) Using SST, connect terminals Ts and E_1 of DLC1.
 - SST 09843 18020
 - (4) Start the engine.

(5) Check that the ABS warning light blinks.

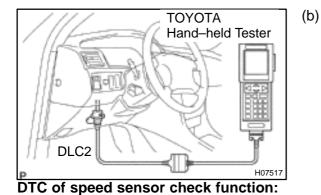
HINT:

BR3904

If the ABS warning light does not blink, inspect the ABS warning light circuit (See page DI–565).


(6) Drive vehicle straight forward. HINT:

Drive vehicle at 45 - 55 km/h (28 - 34 mph) for several seconds. If the brake is applied during the check, the check routine must be started again.


- (7) Stop the vehicle.
- (8) Turn the ignition switch OFF.
- (9) Disconnect the SST from terminals Ts and E_1 and, connect the SST to terminals Tc and E_1 of DLC1.
- SST 09843 18020
- (10) Turn the ignition switch ON.
- (11) Read the number of blinks of the ABS warning light.

HINT:

- See the list of DTC shown at the bottom of this page.
- If every sensor is normal, a normal code is output (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated).
- If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.

- (12) After doing the check, disconnect the SST from terminals Tc and E_1 of DLC1, and turn ignition switch OFF.
- SST 09843 18020

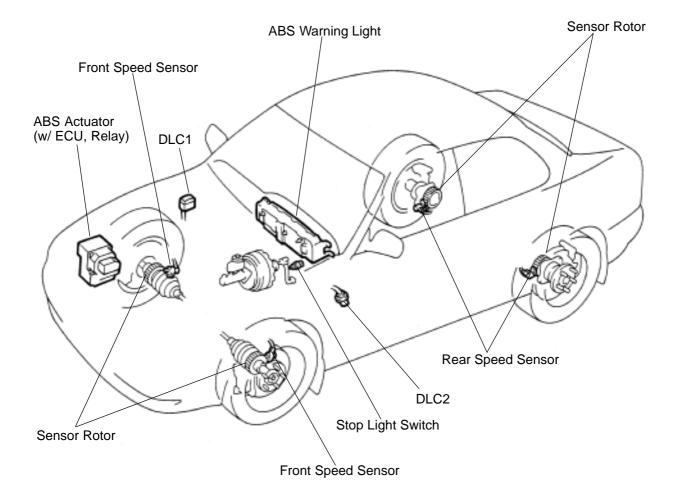
- Using TOYOTA hand-held tester, check the DTC.
 - (1) Do step $1. \sim 6$. on the previous page.
 - (2) Hook up the TOYOTA hand-held tester to the DLC2.
 - (3) Read the DTC by following the prompts on the tester screen.

Please refer to the TOYOTA hand-held tester operator's manual for further details.

Code No.	Diagnosis	Trouble Area
71	Low output voltage of right front speed sensor	Right front speed sensorSensor installationRight front speed sensor rotor
72	Low output voltage of left front speed sensor	 Left front speed sensor Sensor installation Left front speed sensor rotor
73	Low output voltage of right rear speed sensor	Right rear speed sensor Sensor installation Right rear speed sensor rotor
74	Low output voltage of left rear speed sensor	Left rear speed sensorSensor installationLeft rear speed sensor rotor
75	Abnormal change in output voltage of right front speed sensor	 Right front speed sensor rotor
76	Abnormal change in output voltage of left front speed sensor	•Left front speed sensor rotor
77	Abnormal change in output voltage of right rear speed sensor	 Right rear speed sensor rotor
78	Abnormal change in output voltage of left rear speed sensor	●Left rear speed sensor rotor

DIAGNOSTIC TROUBLE CODE CHART

HINT:


- Using SST 09843 –18020, connect the terminals Tc and E₁.
- If a malfunction code is displayed during the DTC check, check the circuit listed for the code. For details of each code, turn to the page referred to under the "See page" for respective "DTC No." in the DTC chart.

DTC No. (See Page)	Detection Item	Trouble Area
11 (DI–546)	ABS solenoid valve relay faulty	•ABS solenoid valve relay •Valve supply voltage •ECU
13 (DI–548)	ABS pump motor faulty	•ABS motor relay •Pump motor voltage •Pump motor lead disconnected •ECU
21 (DI–550)	Right front solenoid valves faulty	•ABS actuator (right front inlet or outlet solenoid valve)
22 (DI–550)	Left front solenoid valves faulty	•ABS actuator (left front inlet or outlet solenoid valve)
23 (DI–550)	Right rear solenoid valves faulty	•ABS actuator (right rear inlet or outlet solenoid valve)
24 (DI–550)	Left rear solenoid valves faulty	•ABS actuator (left rear inlet or outlet solenoid valve)
31 (DI–552)	Right front wheel speed sensor signal malfunction	
32 (DI–552)	Left front wheel speed sensor signal malfunction	 Right front, left front, right rear and left rear speed sensor Each speed sensor circuit
33 (DI–552)	Right rear wheel speed sensor signal malfunction	•Sensor installation •ECU
34 (DI–552)	Left rear wheel speed sensor signal malfunction	_
35 (DI–552)	Open circuit in right front wheel speed sensor circuit	•Right front, left front speed sensor
36 (DI–552)	Open circuit in left front wheel speed sensor circuit	•Each speed sensor circuit •ECU
37 (DI–557)	Speed sensor rotor is wrong number of teeth on one of the 4 wheels	Speed sensor Sensor rotor ECU
38 (DI–552)	Open circuit in right rear wheel speed sensor circuit	•Right rear, left rear speed sensor
39 (DI–552)	Open circuit in left rear wheel speed sensor circuit	•Each speed sensor circuit •ECU
41 (DI–558)	Low battery positive voltage	Battery Charging system regulator Power source circuit ECU
58 (DI–561)	Open circuit in stop light switch circuit	Stop light switch Stop light switch circuit ECU
62 (DI–563)	Malfunction in ECU	●ECU

DI03W-11

DI03X-05

PARTS LOCATION

F01175

TERMINALS OF ECU

						(A6)										_	
1	2	3	4	5	6	7	8	9	1	0	11	12	1:	3 1	4	15		
10		47		10		19	2	0	21	2	2 2	3	24	25	2	6		
16	0	17		18		19												
									_									F0005

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
+B (A6 – 17, 18) – GND (A6 – 16, 19)	$L \leftrightarrow W – B$	Always	10 – 14
IG1 (A6 – 15) – GND (A6 – 16, 19)	$BR\leftrightarrowWB$	IG switch ON	10 – 14
WA (A6 – 21) – GND (A6 – 16,		IG switch ON, ABS warning light ON	Below 2.6
26)	$RL\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
STP (A6 – 14) – GND (A6 – 16,		Stop light switch OFF	Below 1.5
19)	$G\text{-}W\leftrightarrowW\text{-}B$	Stop light switch ON	5 – 14
Tc (A6 – 12) – GND (A6 – 16, 19)	$LGR\leftrightarrowWB$	IG switch ON	5.7 – 8.1
Ts (A6 – 11) – GND (A6 – 16, 19)	$RY\leftrightarrowWB$	IG switch ON	5.7 – 8.1
FR+ (A6 – 5) – FR– (A6 – 4)	$W \leftrightarrow B$	IG switch ON, slowly turn right front wheel	AC generation
FL+ (A6 – 7) – FL– (A6 – 6)	$R \leftrightarrow G$	IG switch ON, slowly turn left front wheel	AC generation
RR+ (A6 – 3) – RR– (A6 – 1)	$P \leftrightarrow L$	IG switch ON, slowly turn right rear wheel	AC generation
RL+ (A6 – 9) RL– (A6 – 8)	$Y \leftrightarrow BR$	IG switch ON, slowly turn left rear wheel	AC generation

DI1JN-03

PROBLEM SYMPTOMS TABLE

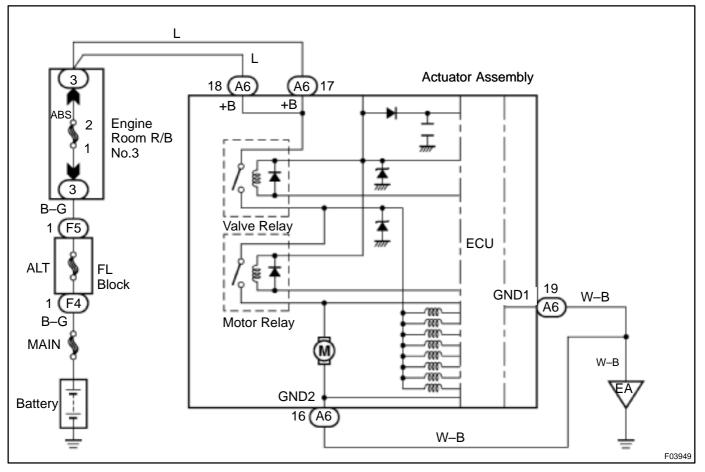
If a normal code is displayed during the DTC check but the problem still occurs, check the circuits for each problem symptom in the order given in the table below and proceed to the relevant troubleshooting page.

Symptom	Suspect Area	See page
	Only when 1. to 4. are all normal and the problem is still occurring, replace the ABS ECU.	
ABS does not operate	 Check the DTC reconfirming that the normal code is output. 	DI-539
	2. Power source circuit	DI-558
	3. Speed sensor circuit	DI-552
	4. Check the hydraulic circuit for leakage.	DI-571
	Only when 1. το 4. are all normal and the problem is still occurring, replace the ABS ECU.	
ABS does not operate intermittently	 Check the DTC reconfirming that the normal code is output. 	DI-539
	2. Speed sensor circuit	DI-552
	3. Stop light switch circuit	DI-561
	4. Check the hydraulic circuit for leakage.	DI-571
	1. ABS warning light circuit	DI-565
ABS warning light abnormal	2. ABS ECU	DI-563
	Only when 1. and 2. are all normal and the problem is still occurring, replace the ABS ECU.	
DTC check cannot be done	1. ABS warning light circuit	DI-565
	2. Tc terminal circuit	DI-567
	1. Ts terminal circuit	DI-569
Speed sensor signal check cannot be done	2. ABS ECU	DI-563

CIRCUIT INSPECTION

DTC	11	ABS Solenoid Valve Relay Circuit
-----	----	----------------------------------

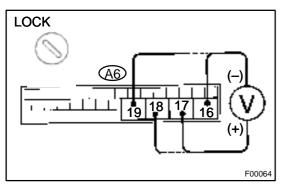
CIRCUIT DESCRIPTION


This relay supplies power to each ABS solenoid. After the ignition switch is turned ON, if the initial check is OK, the relay goes on.

DTC No.	DTC Detecting Condition	Trouble Area
11	 Detection of any conditions from 1. through 3.: 1. 3 or more solenoid valves are shown faulty in response and simultaneously valve supply voltage is detected faulty. 2. Solenoid valve relay will not be switched OFF. 3. Valve relay is frozen in spite of its high valve relay sup- ply voltage. 	 ABS solenoid valve relay Valve supply voltage ECU

Fail safe function:

If trouble occurs in the ABS solenoid valve relay circuit, the ECU cuts off current to the ABS solenoid valve relay and prohibits ABS control.


WIRING DIAGRAM

DI040-08

INSPECTION PROCEDURE

1 Check voltage between terminals A6 – 17, 18 and A6 – 16, 19 of ABS actuator connector.

ΟΚ

PREPARATION:

Disconnect the ABS actuator connector.

CHECK:

Measure the voltage between terminals A6 - 17, 18 and A6 - 16, 19 of ABS actuator harness side connector.

<u>OK:</u>

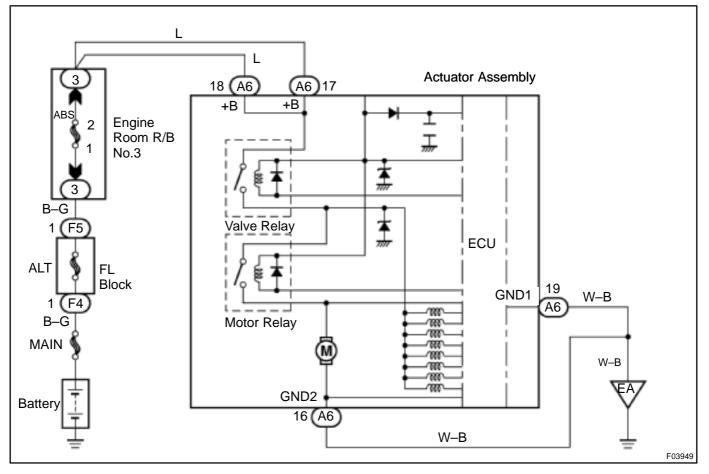
Voltage: 10 – 14 V

Check and replace fuses. Check and repair harness or connector.

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

	DTC	13	Pump Motor Circuit	
--	-----	----	--------------------	--

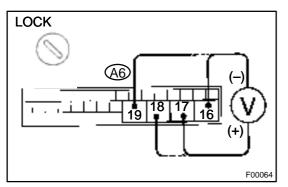
CIRCUIT DESCRIPTION


The ABS motor relay supplies power to the ABS pump motor. While the ABS is activated, the ECU switches the ABS motor relay ON and operates the ABS pump motor.

DTC No.	DTC Detecting Condition	Trouble Area
13	 Detection of any conditions from (1) through (3): After actuation of the motor relay, pump motor voltage will not be supplied within 0.4 sec. Pump motor voltage is at a high level, motor relay will not actuate for 2.5 sec. or more. Pump motor voltage keeps low level for longer than 0.4 sec. and the pump repeats activating for 7 sec. 3 times maximally. since the last activation, the pump motor has been gone dead because of short circuit. 	 ABS motor relay Pump motor voltage Pump motor lead disconnected ECU

Fail safe function:

If trouble occurs in the ABS motor relay circuit, the ECU cuts off current to the ABS solenoid relay and prohibits ABS control.


WIRING DIAGRAM

DI041-08

INSPECTION PROCEDURE

1 Check voltage between terminals A6 – 17, 18 and A6 – 16, 19 of ABS actuator connector.

ΟΚ

PREPARATION:

Disconnect the ABS actuator connector.

CHECK:

Measure the voltage between terminals A6 - 17, 18 and A6 - 16, 19 of ABS actuator harness side connector.

<u>OK:</u>

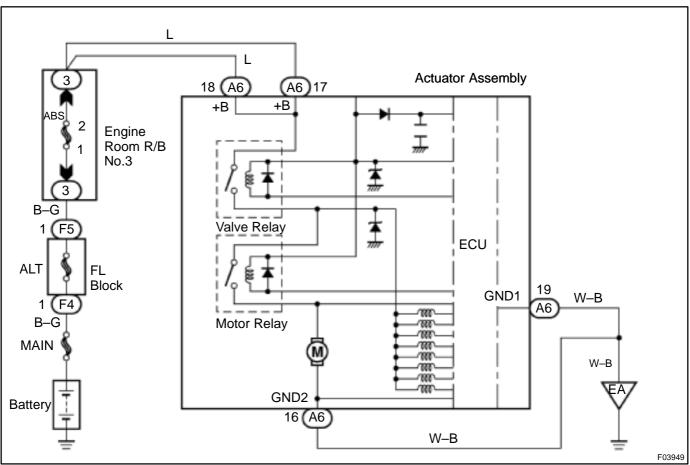
Voltage: 10 – 14 V

Check and replace fuses. Check and repair harness or connector.

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

DTC	21, 22, 23, 24

CIRCUIT DESCRIPTION


This solenoid goes on when signals are received from the ECU and controls the pressure acting on the wheel cylinders thus controlling the braking force.

DTC No.	DTC Detecting Condition	Trouble Area
21, 22, 23, 24	Solenoid valve signal does not match to the check result.	•Each solenoid valve

Fail safe function:

If trouble occurs in the actuator solenoid valve circuit, the ECU cuts off current to the ABS solenoid valve relay and prohibits ABS control.

WIRING DIAGRAM

Date :

DI042-08

INSPECTION PROCEDURE

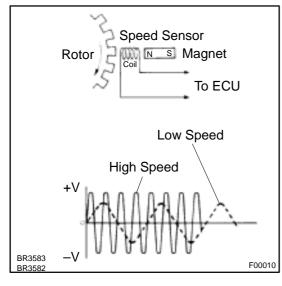
Check the DTC once more.

PREPARATION:

- (a) Clear the DTC (See page DI-539).
- (b) Turn the ignition switch OFF.

CHECK:

Turn the ignition switch ON, and check if the same DTC is stored in the memory.


YES

Replace ABS ECU.

31, 32, 33, 34, 35, 36, 38, 39

Speed Sensor Circuit

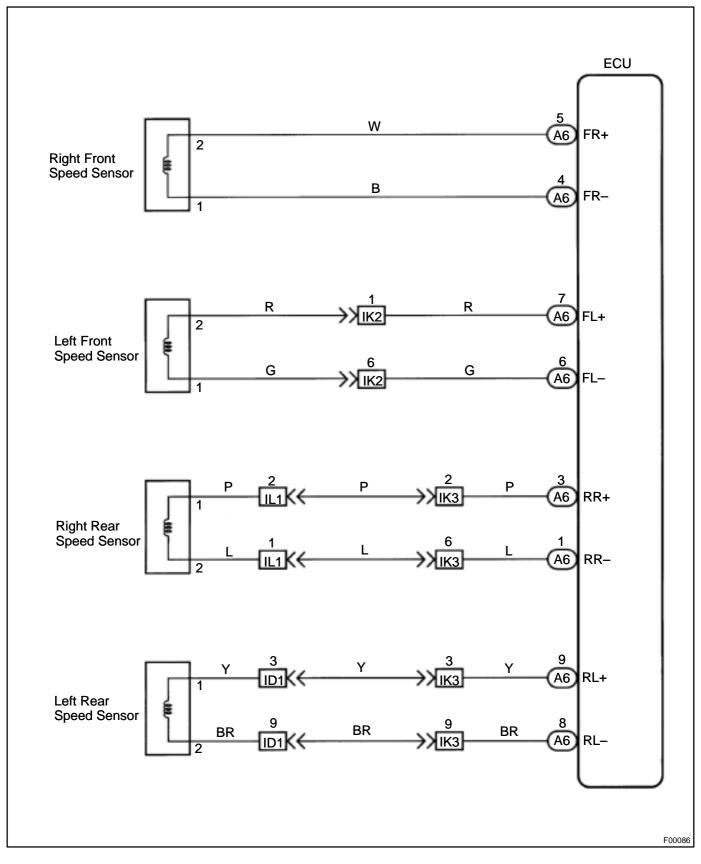
CIRCUIT DESCRIPTION

The speed sensor detects wheel speed and sends the appropriate signals to the ECU. These signals are used to control the ABS system. The front and rear rotors each have 48 serrations.

DI043-04

When the rotors rotate, the magnetic field emitted by the permanent magnet in the speed sensor generates an AC voltage. Since the frequency of this AC voltage changes in direct proportion to the speed of the rotor, the frequency is used by the ECU to detect the speed of each wheel.

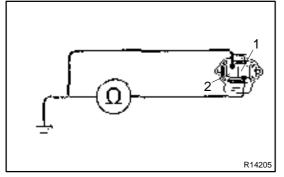
DTC No.	DTC Detecting Condition	Trouble Area
31, 32, 33, 34	 Detection of any of conditions from 1. through 3.: Vehicle speed is more than 40 km/h (25 mph), pulses are not input for 0.01 sec. After the initial start or restart and when the vehicle speed has reached 12 km/h (7 mph), the wheel with 0 km/h (0 mph) of wheel speed is detected. After the initial start or restart and when the vehicle speed has reached 70 km/h (44 mph), front wheel with 0 km/h (0 mph) of wheel speed is detected. 	 Right front, left front, right rear, left rear speed sensor Each speed sensor circuit Sensor installation ECU
35, 36, 38, 39	Detecting abnormality in the resistance value of each speed sensor.	 Right front, left front, right rear, left rear speed sensor Each speed sensor circuit ECU


HINT:

- DTC No. 31 and 35 are for the right front speed sensor.
- DTC No. 32 and 36 are for the left front speed sensor.
- DTC No. 33 and 38 are for the right rear speed sensor.
- DTC No. 34 and 39 are for the left rear speed sensor.

Fail safe function:

If trouble occurs in the speed sensor circuit, the ECU cuts off current to the ABS solenoid valve relay and prohibits ABS control.


WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check speed sensor.

Front:

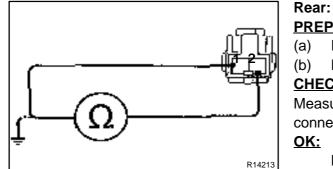
PREPARATION:

- (a) Remove the front fender liner.
- (b) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

OK:


Resistance: 0.6 – 2.5 k Ω

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

<u>OK:</u>

Resistance: 1 M Ω or higher

PREPARATION:

Remove the seat cushion and side seatback. (a)

(b) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

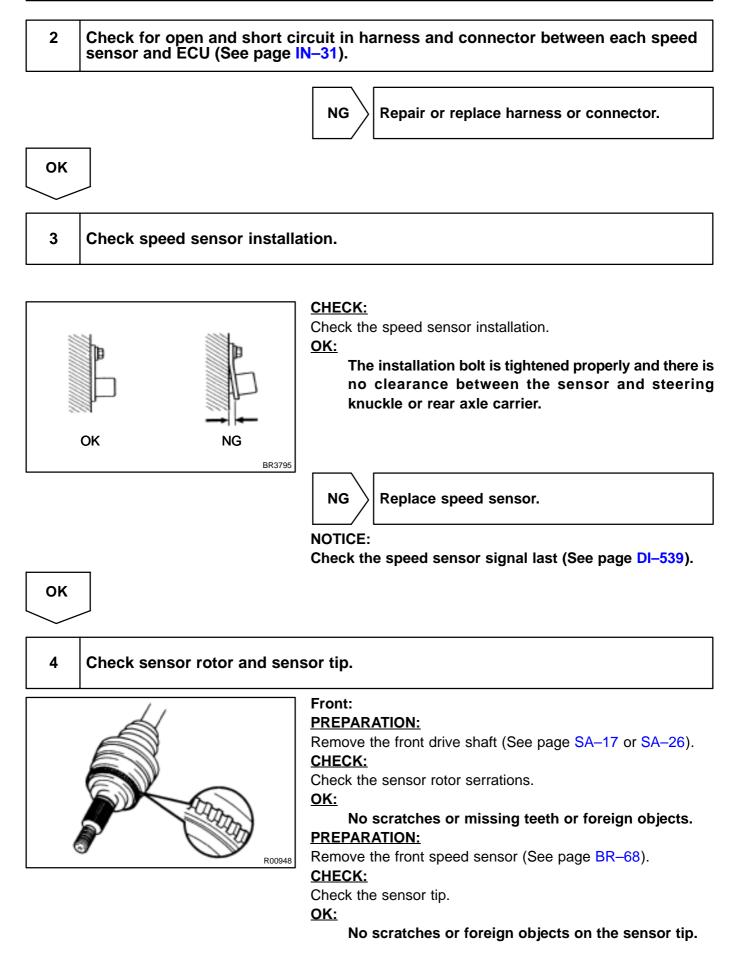
OK:

Resistance: 1.2 – 2.3 k Ω

CHECK:

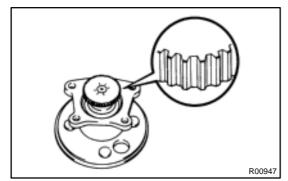
Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

OK:


Resistance: 1 M Ω or higher

NOTICE:

Check the speed sensor signal last (See page DI-539).



Date :

790

DI-555

Rear:

PREPARATION:

Remove the axle hub (See page SA–52).

CHECK:

Check the sensor rotor serrations.

<u> 0K:</u>

No scratches or missing teeth or foreign objects. <u>PREPARATION:</u>

Remove the rear speed sensor (See page BR-70).

CHECK:

Check the sensor tip.

<u>OK:</u>

No scratches or foreign objects on the sensor tip.

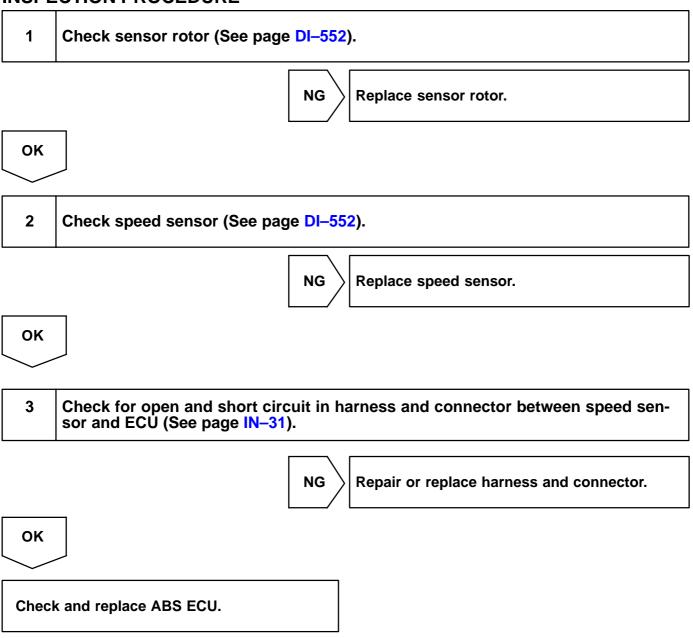
Replace sensor rotor or speed sensor.

NOTICE:

Check the speed sensor signal last (See page DI-539).

OK Check and replace ABS ECU.

D '	TO
	1 (.


37

Speed Sensor Rotor Faulty

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
37	 Detection of any of conditions from 1. through 3.: 1. Occurrence of differential to some degree in the wheel speed between the front and rear wheels of either left or right side of the vehicle and the front left and right wheels. (Detection of differential in mini tire size, spin- ning wheel and decelerating wheel.) 2. Continuous ABS control for 60 sec. or more. 3. Interference on 1 or more wheels for 20 sec. with the brake pedal depressed, or for 5 sec. when the brake pedal is not depressed. 	Speed sensorSensor rotorECU

INSPECTION PROCEDURE

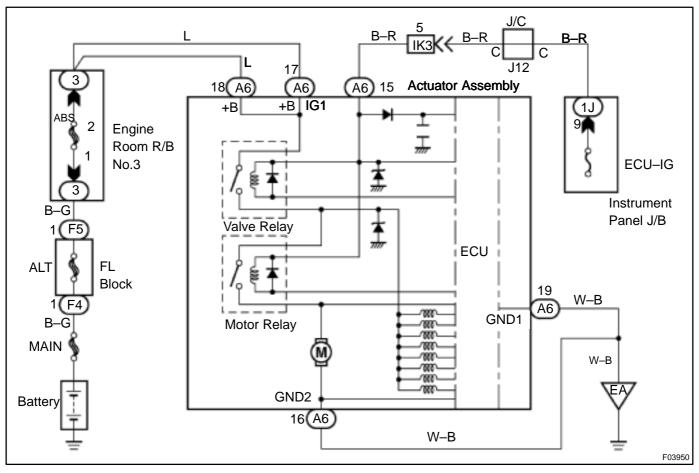
DI044-04

Date :

Author :

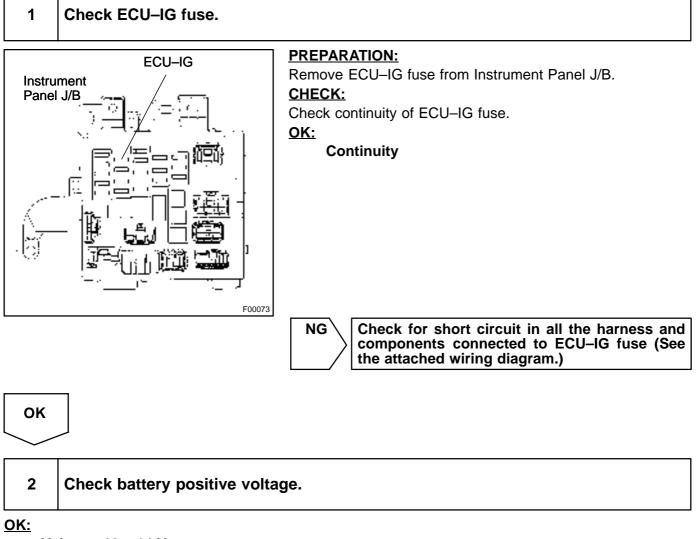
DTC	41	Power Source Circuit
-----	----	----------------------

CIRCUIT DESCRIPTION

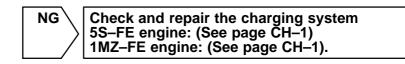

This is the power source for the ECU, hence the actuators.

DTC No.	DTC Detecting Condition	Trouble Area
	Vehicle speed at about 6 km/h (4 mph), low battery voltage	●Battery
41	is less than 9.4 V at the time of non-operation of ABS	 Charging system
41	control or less than 8.8 V at the time of operation of ABS	Power source circuit
	control, and high battery voltage is more than 17.4 V.	•ECU

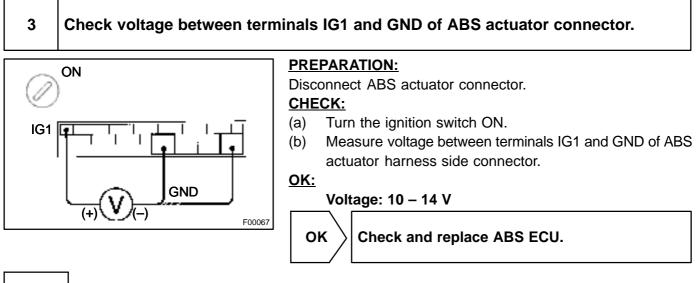
Fail safe function:


If trouble occurs in the power source circuit, the ECU cuts off current to the ABS solenoid valve relay and prohibits ABS control.

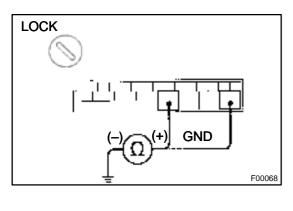
WIRING DIAGRAM



DI045-08


INSPECTION PROCEDURE

Voltage: 10 - 14 V



ОК

NG

	Check continuity between terminals GND of ABS actuator connector and body ground.
--	---

CHECK:

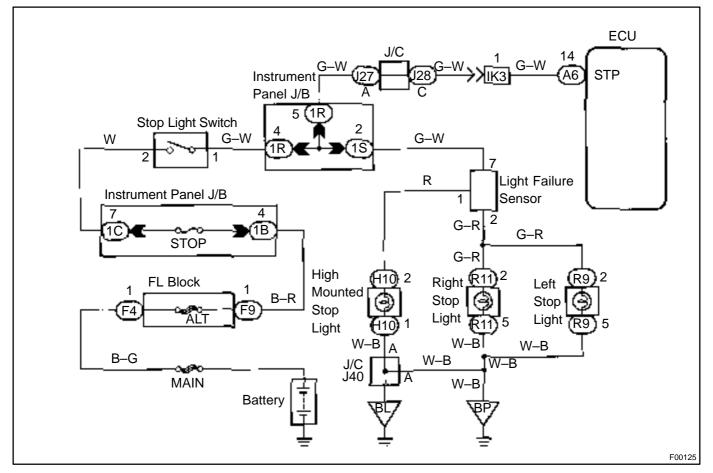
Measure resistance between terminal GND of ABS actuator harness side connector and body ground. **OK:**

Resistance: 1 Ω or less

ОК

Check for open circuit in harness and connector between ABS ECU and ECU–IG (See page IN–31).

D.	T	C	
	•		


58

Stop Light Switch Circuit

CIRCUIT DESCRIPTION

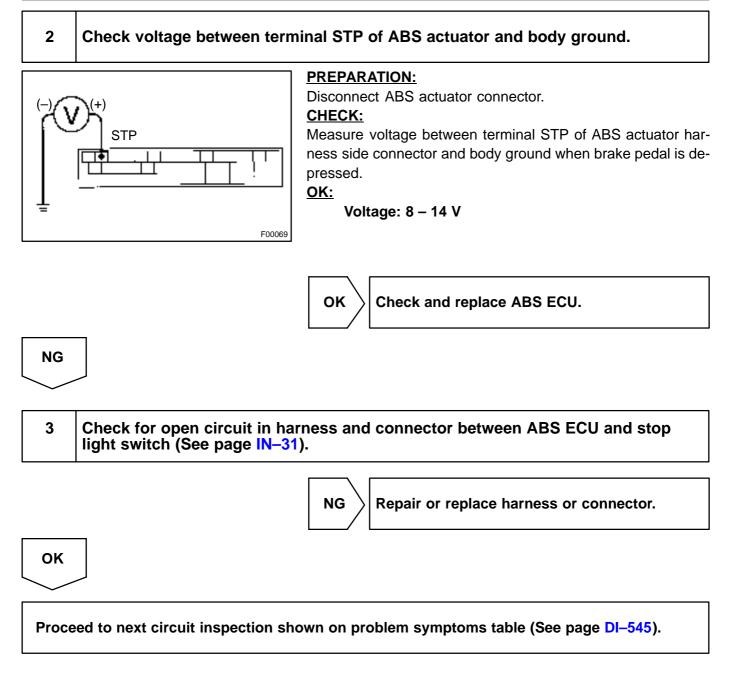
DTC No.	DTC Detecting Condition	Trouble Area
49		Stop light switchStop light switch circuit
	than 93 % of the battery voltage.	•ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

1	Check operation of stop light.

CHECK:


Check that stop light lights up when brake pedal is depressed and turns off when brake pedal is released.

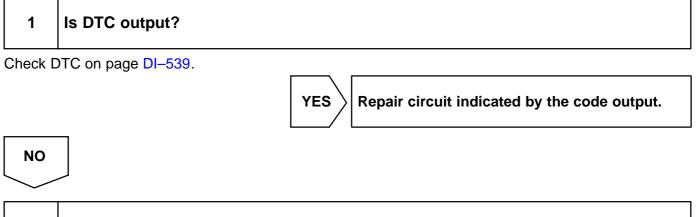
NG

ок	

Repair stop light circuit (See page **BE-36**).

DI-561

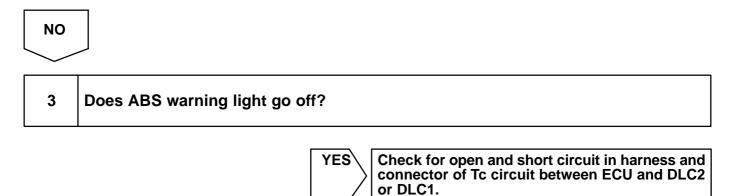
D.	ТГ	
$\boldsymbol{\nu}$	IU	,


CIRCUIT DESCRIPTION

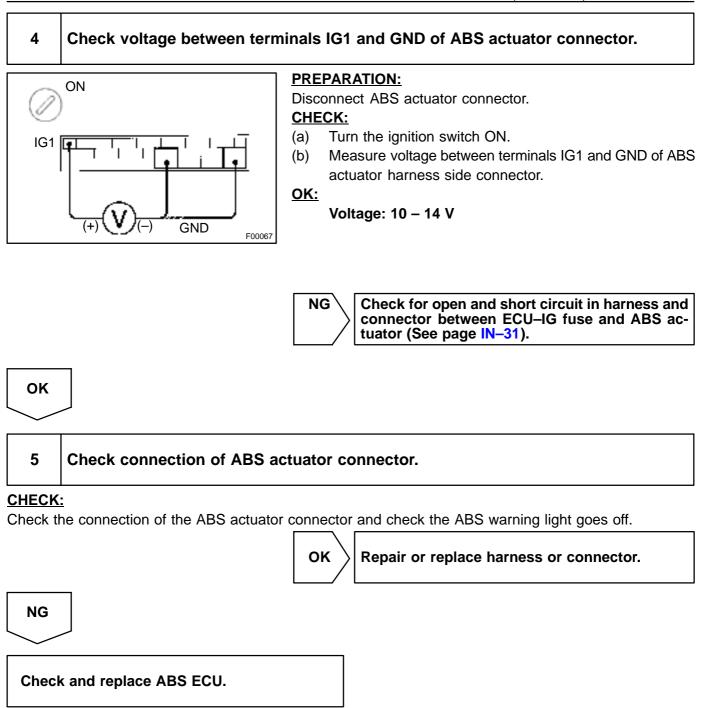
DTC No.	DTC Detecting Condition	Trouble Area
62	ABS ECU continuously detects the proper operation of	•Battery
62	ABS.	●ECU

Fail safe function:

If trouble occurs in the power source circuit, the ECU cuts off current to the ABS solenoid valve relay and prohibits ABS control.


INSPECTION PROCEDURE

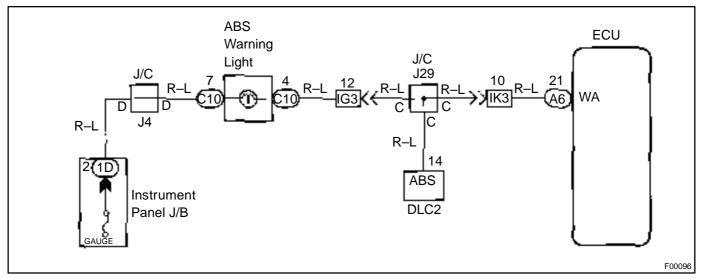
2 Is normal code displayed?


Check for short circuit in harness and connector between DLC1 or DLC2 and ABS ECU (See page IN-31).

NO

DI047-06

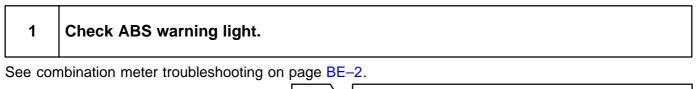
DI-564


ABS Warning Light Circuit

CIRCUIT DESCRIPTION

If the ECU detects any trouble, it lights the ABS warning light while at the same time prohibiting ABS control. At this time, the ECU records a DTC in memory.

Connect terminals Tc and E₁ of the DLC1 or DLC2 to make the ABS warning light blink and output the DTC.

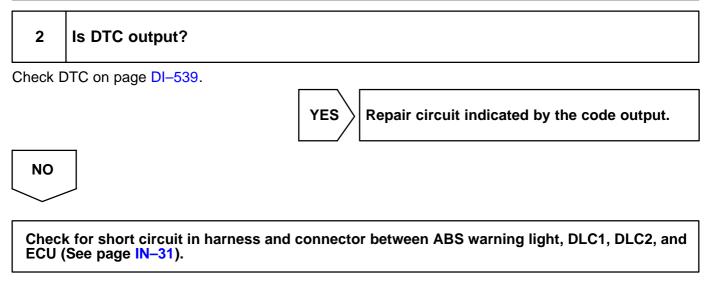

WIRING DIAGRAM

INSPECTION PROCEDURE

Troubleshoot in accordance with the chart below for each trouble symptom

ABS warning light does not light up	Go to step 1
ABS warning light remains on	Go to step 2

NG Repair

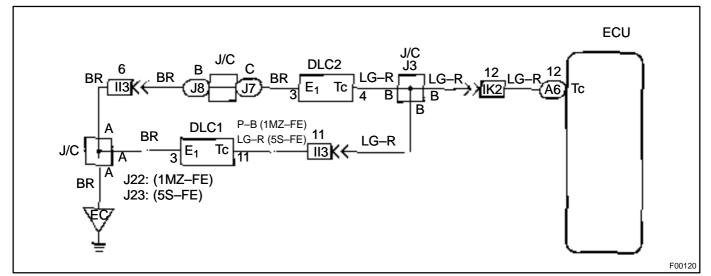

Repair bulb or combination meter assembly.

OK

Check for open circuit in harness and connector between GAUGE fuse, DLC2 and ABS ECU (See page IN-31).

DI048-08

800


DI049-08

Tc Terminal Circuit

CIRCUIT DESCRIPTION

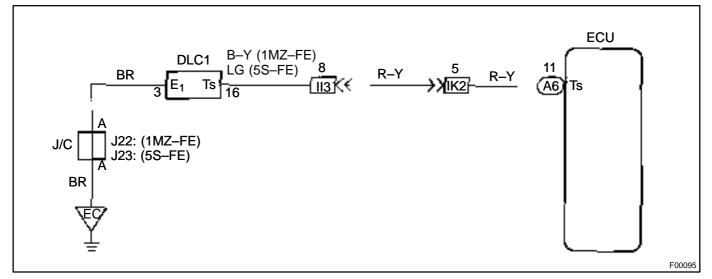
Connecting between terminals Tc and E_1 of the DLC1 or the DLC2 causes the ECU to display the DTC by flashing the ABS warning light.

WIRING DIAGRAM

INSPECTION PROCEDURE

1	Check voltage between tern	ninals Tc and E ₁ of DLC2 or DLC1.
Tc F02607	DLC2 DLC1 E1 Tc F00445 DLC1 F02612	CHECK: (a) Turn the ignition switch ON. (b) Measure voltage between terminals Tc and E ₁ of DLC2 or DLC1. OK: Voltage: 10 – 14 V
NG		$\begin{tabular}{ c c c c c } \hline OK & \end{tabular} If ABS warning light does not blink even after Tc and E_1 are connected, the ECU may be defective. \\ \hline tive. \\ \hline \end{tabular}$

2	Check for open and short circuit in harness and connector between ABS ECU and DLC2 or DLC1, DLC2 or DLC1 and body ground (See page IN–31).					
	NG Repair or replace harness or connector.					
ОК						
Chec	k and replace ABS ECU.					


Ts Terminal Circuit

CIRCUIT DESCRIPTION

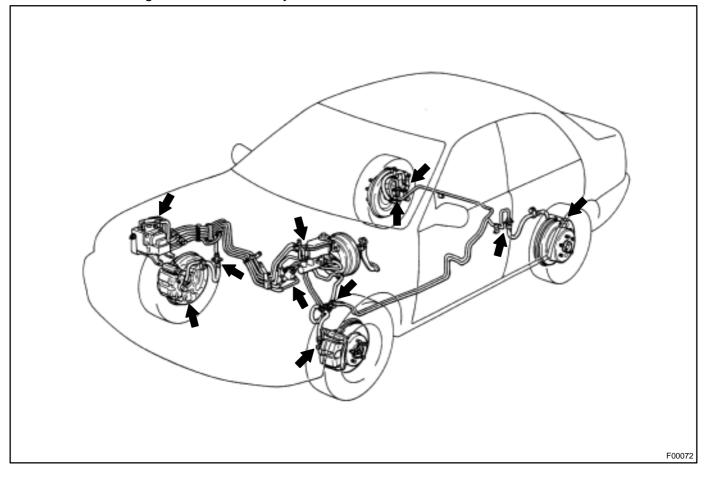
The sensor check circuit detects abnormalities in the speed sensor signal which cannot be detected with the DTC check.

Connecting terminals Ts and E_1 of the DLC1 in the engine compartment starts the check.

WIRING DIAGRAM

INSPECTION PROCEDURE

1 Check voltage between ter	minals Ts and E ₁ of DLC1.
ON E1 AB0119 S08096 DLC1 F00446	CHECK: (a) Turn the ignition switch ON. (b) Measure voltage between terminals Ts and E ₁ of DLC1. OK: Voltage: 10 – 14 V
	$\begin{tabular}{ c c c c c } \hline OK & \mbox{ If ABS warning light does not blink even after Ts and E_1 are connected, the ECU may be defective. \end{tabular}$
NG	

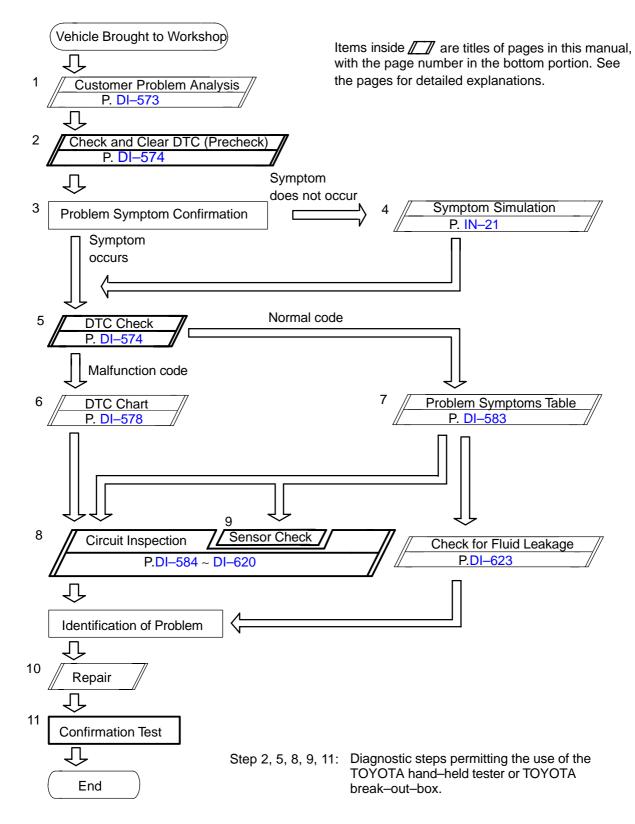

DI04A-08

804

2	Check for open and short circuit in harness and connector between ABS ECU and DLC1, DLC1 and body ground (See page IN–31).						
	NG Repair or replace harness or connector.						
ОК							
Chec	k and replace ABS ECU.						

Check for Fluid Leakage

Check for fluid leakage from actuator or hydraulic lines.



DI04B-10

ABS & TRACTION CONTROL SYSTEM

HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshoot in accordance with the procedure on the following pages.

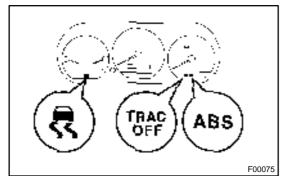
DI04C-02

Inspector's . Name

CUSTOMER PROBLEM ANALYSIS CHECK

ABS & TRAC Check Sheet

DI04D-02


			Registration No.			
Customer's Name			Registration Year	1	/	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

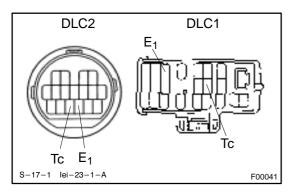
Date Problem First Occurred		1	1
Frequency Problem Occurs	Continuous	□ Intermittent (times a day)

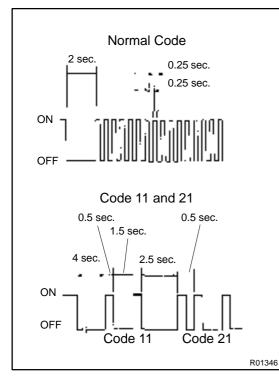
	□ ABS does not operate.						
	ABS does not operate efficiently.						
Symptoms	□ TRAC does not operate. (Wheels spin when starting rapidly.)						
Symptoms	ABS Warning Light Abnormal	t □ Remains ON □ Does not Light Up					
	TRAC OFF Indicator Light Abnormal	Pr □ Remains ON □ Blinks □ Does not Light Up					
	SLIP Indicator Light Abnormal	Remains ON Does not Light Up					

Check Item Malfunction Indicator Light	Normal	Malfunction Code (Code)
---	--------	--------------------------

	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)

PRE-CHECK


1. DIAGNOSIS SYSTEM


(a) Check the indicator. When the ignition switch is turned ON, check that the ABS warning light, TRAC OFF indicator light and SLIP indicator light go on for 3 seconds.

DI04E-04

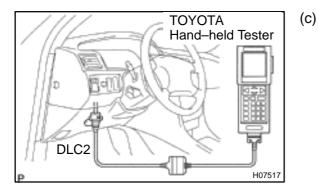
HINT:

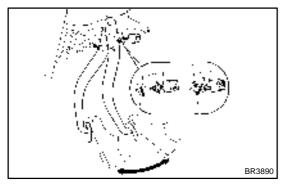
If the indicator check result is not normal, proceed to troubleshooting for the ABS warning light circuit, TRAC OFF indicator light circuit and SLIP indicator light circuit (See page DI–612, DI–617, DI–620).

(b) Check the DTC.

- (1) Using SST, connect terminals Tc and E_1 of DLC2 or DLC1.
- SST 09843 18020
- (2) Turn the ignition switch ON.
- Read the DTC from the ABS warning light and TRAC OFF indicator light on the combination meter.

HINT:

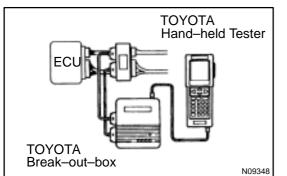

If no code appears, inspect the diagnostic circuit or ABS warning light circuit, TRAC OFF indicator light circuit


(See page DI-621 or DI-612, DI-617).

As an example, the blinking patterns for normal code and codes 11 and 21 are shown on the left.

- (4) Codes are explained in the code table on page DI–578.
- (5) After completing the check, disconnect terminals Tc and E_1 , and turn off the display.

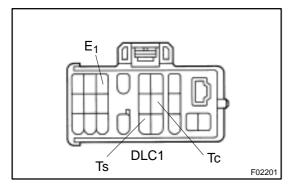
If 2 or more malfunctions are indicated at the same time the lowest numbered DTC will be displayed 1st.



- Using TOYOTA hand-held tester, check the DTC.
 - (1) Hook up the TOYOTA hand-held tester to the DLC2.
 - (2) Read the DTC by following the prompts on the tester screen.

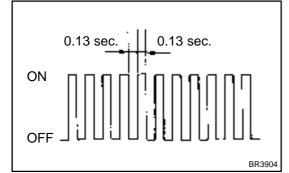
Please refer to the TOYOTA hand-held tester operator's manual for further details.

- (d) Clear the DTC.
 - (1) Using SST, connect terminals Tc and E_1 of DLC2 or DLC1.
 - SST 09843 18020
 - (2) Turn the ignition switch ON.
 - (3) Clear the DTC stored in ECU by depressing the brake pedal 8 or more times within 5 seconds.
 - (4) Check that the warning light shows the normal code.
 - (5) Remove the SST from the terminals of DLC2 or DLC1.
 - SST 09843 18020


- (e) Using TOYOTA break–out–box and TOYOTA hand–held tester, measure the ECU terminal values.
 - (1) Hook up the TOYOTA hand-held tester and TOYOTA break-out-box to the vehicle.
 - (2) Read the ECU input/output values by following the prompts on the tester screen.

HINT:

TOYOTA hand-held tester has a "Snapshot" function. This records the measured values and is effective in the diagnosis of intermittent problems.


Please refer to the TOYOTA hand-held tester/TOYOTA breakout-box operator's manual for further details.

DIAGNOSTICS - ABS & TRACTION CONTROL SYSTEM

- (a) Check the speed sensor signal.
 - (1) Turn the ignition switch OFF.
 - (2) Using SST, connect terminals Ts and E_1 of DLC1.
 - SST 09843 18020
 - (3) Start the engine.

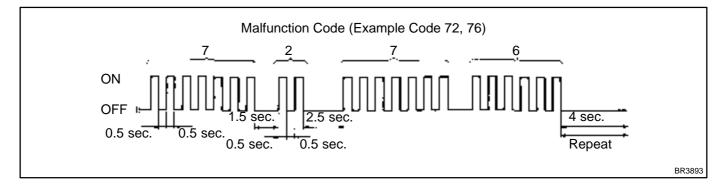
(4) Check that the ABS warning light blinks.

HINT:

2.

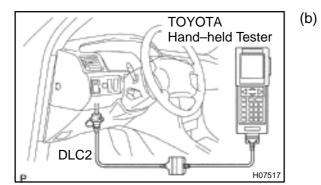
If the ABS warning light does not blink, inspect the ABS warning light circuit (See page DI–612).

(5) Drive vehicle straight forward.


HINT:

Drive vehicle faster than 45 km/h (28 mph) for several seconds.

- (6) Stop the vehicle.
- (7) Using SST, connect terminals Tc and E_1 of DLC1.
- SST 09843 18020


(8) Read the number of blinks of the ABS warning light. HINT:

- See the list of DTC shown on the next page.
- If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.
- If every sensor is normal, a normal code is output (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated).

(9) After doing the check, disconnect the SST from terminals Ts and E₁, Tc and E₁ of DLC1, and turn ignition switch OFF.

SST 09843 - 18020

Using TOYOTA hand-held tester, check the DTC.

- (1) Do step $1. \sim 6$. on the previous page.
- (2) Hook up the TOYOTA hand-held tester to the DLC2.
- (3) Read the DTC by following the prompts on the tester screen.

Please refer to the TOYOTA hand-held tester operator's manual for further details.

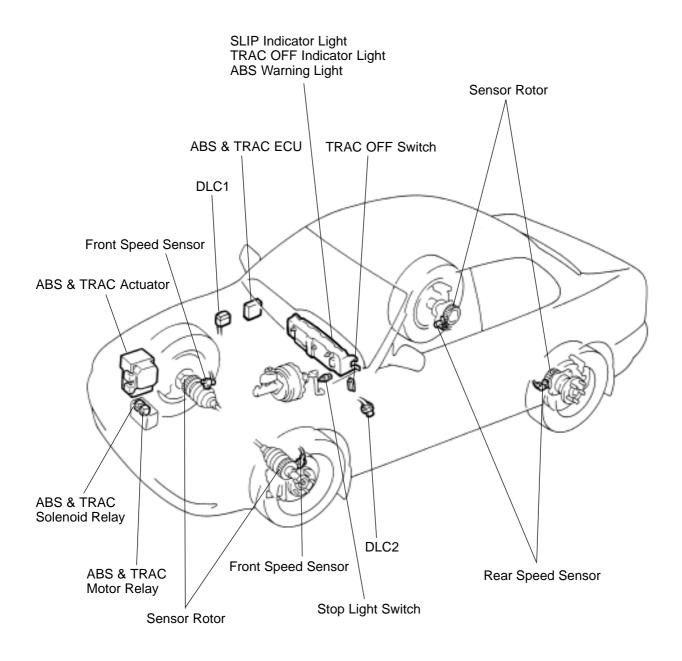
DTC of speed sensor check function:

Code No.	Diagnosis	Trouble Area
71	Low output voltage of right front speed sensor	Right front speed sensorSensor installationRight front speed sensor rotor
72	Low output voltage of left front speed sensor	 Left front speed sensor Sensor installation Left front speed sensor rotor
73	Low output voltage of right rear speed sensor	 Right rear speed sensor Sensor installation Right rear speed sensor rotor
74	Low output voltage of left rear speed sensor	 Left rear speed sensor Sensor installation Left rear speed sensor rotor
75	Abnormal change in output voltage of right front speed sensor	 Right front speed sensor rotor
76	Abnormal change in output voltage of left front speed sensor	Left front speed sensor rotor
77	Abnormal change in output voltage of right rear speed sensor	•Right rear speed sensor rotor
78	Abnormal change in output voltage of left rear speed sensor	●Left rear speed sensor rotor

DI04F-04

DIAGNOSTIC TROUBLE CODE CHART

HINT:


- Using SST 09843 –18020, connect the terminals Tc and E_1 .
- If a malfunction code is displayed during the DTC check, check the circuit listed for the code. For details of each code, turn to the page referred to under the "See page" for respective "DTC No." in the DTC chart.

DTC No. (See Page)	Detection Item	Trouble Area
11 (DI–584)	Open circuit in ABS & TRAC solenoid relay circuit	ABS & TRAC solenoid relay ABS & TRAC solenoid relay circuit
12 (DI–584)	Short circuit in ABS & TRAC solenoid relay circuit	•ECU
13 (DI–587)	Open circuit in ABS & TRAC motor relay circuit	•ABS & TRAC motor relay •ABS & TRAC motor relay circuit
14 (DI–587)	Short circuit in ABS & TRAC motor relay circuit	•ECU
21 (DI–590)	Open or short circuit in right front solenoid circuit	•ABS & TRAC actuator •SFRR or SFRH circuit •ECU
22 (DI–590)	Open or short circuit in left front solenoid circuit	•ABS & TRAC actuator •SFLR or SFLH circuit •ECU
23 (DI–590)	Open or short circuit in right rear solenoid circuit	•ABS & TRAC actuator •SRRR or SRRH circuit •ECU
24 (DI–590)	Open or short circuit in left rear solenoid circuit	•ABS & TRAC actuator •SRLR or SRLH circuit •ECU
25 (DI–590)	Open or short circuit in SMC1 circuit	•ABS & TRAC actuator •SMC1 circuit •ECU
26 (DI–590)	Open or short circuit in SMC2 circuit	•ABS & TRAC actuator •SMC2 circuit •ECU
27 (DI–590)	Open or short circuit in SRC1 circuit	•ABS & TRAC actuator •SRC1 circuit •ECU
28 (DI–590)	Open or short circuit in SRC2 circuit	•ABS & TRAC actuator •SRC2 circuit •ECU
31 (DI–593)	Right front wheel speed sensor signal malfunction	
32 (DI–593)	Left front wheel speed sensor signal malfunction	 Right front, left front, right rear and left rear speed sensor Each speed sensor circuit
33 (DI–593)	Right rear wheel speed sensor signal malfunction	●Speed sensor rotor ●ECU
34 (DI–593)	Left rear wheel speed sensor signal malfunction	
41 (DI–598)	Low battery positive voltage or abnormally high battery positive voltage	•Battery •Charging system •Power source circuit •ECU

43* (DI–601)	Malfunction in ABS control system	•ABS control system
44* (DI–602)	Open or short circuit in NE signal circuit	NEO circuitECMECU
49 (DI–604)	Open circuit in stop light switch circuit	Stop light switch Stop light switch circuit ECU
51 (DI–606)	Pump motor is locked	•ABS pump motor
53* (DI–608)	Malfunction in ECM communication circuit	•TRC+ or TRC – circuit •EFI+ or EFI– circuit •ECM •ECU
61* (DI–609)	Malfunction in engine control system	•Engine control system
Always ON (DI–610)	Malfunction in ECU	●ECU

*: TRAC OFF indicator light blinking

PARTS LOCATION

F01177

DI04G-04

815

TERMINALS OF ECU

						A1:	5										A	16							(1	D			
			1		ſE		3			П		п	_		1	٢	E		ח					Г			ק]
13	12	11	10	9	8	7	6	5	4	3	2	1		8	7	6	5	4	3	2	1	[[6	5	4	3	2	1	
26	25	24	23	22	21	20	19	18	17	16	15	14	11	16	15	14	13	12	11	10	9		12	11	10	9	8	7	
_		Ц			_		_						_				_			τ		_				_			
																												F	R0569

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
IG1 (A16 – 8) – GND (A15 – 15, A17 – 9, 10)	$BR\leftrightarrowWB$	IG switch ON	10 – 14
R+ (A15 – 1) – SR (A15 – 11)	$GR-R\leftrightarrowGR$	IG switch ON, ABS warning light OFF	9 – 14
R+ (A15 – 1) – MR (A15 – 24)	$GRR\leftrightarrowGRL$	IG switch ON	Below 1.0
SFRR (A15 – 26) – GND (A15 – 15, A17 – 9, 10)	$W – R \leftrightarrow W – B$	IG switch ON, ABS warning light OFF	10 – 14
SFRH (A15 – 13) – GND (A15 – 15, A17 – 9, 10)	$RB\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
SFLR (A17 – 1) – GND (A15 – 15, A17 – 9, 10)	$W – L \leftrightarrow W – B$	IG switch ON, ABS warning light OFF	10 – 14
SFLH (A17 – 2) – GND (A15 – 15, A17 – 9, 10)	$L – B \leftrightarrow W – B$	IG switch ON, ABS warning light OFF	10 – 14
SRRR (A17 – 7) – GND (A15 – 15, A17 – 9, 10)	$RG\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
SRRH (A17 – 8) – GND (A15 – 15, A17 – 9, 10)	$W–R\leftrightarrow W–B$	IG switch ON, ABS warning light OFF	10 – 14
SRLR (A15 – 12) – GND (A15 – 15, A17 – 9, 10)	$LGB\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
SRLH (A15 – 25) – GND (A15 – 15, A17 – 9, 10)	$GY\leftrightarrowWB$	IG switch ON, ABS warning light OFF	10 – 14
AST (A15 – 10) – GND (A15 – 15, A17 – 9, 10)	$R \leftrightarrow WB$	IG switch ON, ABS warning light OFF	10 – 14
WA (A16 – 4) – GND (A15 – 15,		IG switch ON, ABS warning light ON	Below 2.0
A17 – 9, 10)	$G-B \leftrightarrow W-B$	IG switch ON, ABS warning light OFF	10 – 14
STP (A16 – 16) – GND (A15 –	$G-W \leftrightarrow W-B$	Stop light switch OFF	Below 1.5
15, A17 – 9, 10)		Stop light switch ON	8 – 14
D/G (A15 – 22) – GND (A15 – 15, A17 – 9, 10)	$R-L\leftrightarrowW-B$	IG switch ON, ABS warning light ON	10 – 14
Tc (A15 – 9) – GND (A15 – 15, A17 – 9, 10)	$LGR\leftrightarrowWB$	IG switch ON	8 – 14
Ts (A15 – 23) – GND (A15 – 15, A17 – 9, 10)	$RY\leftrightarrowWB$	IG switch ON	8 – 14
FR+ (A15 – 17) – FR– (A15 – 18)	$W \leftrightarrow B$	IG switch ON, slowly turn right front wheel	AC generation
FL+ (A15 – 5) – FL– (A15 – 4)	$R \leftrightarrow G$	IG switch ON, slowly turn left front wheel	AC generation
RR+ (A16 – 9) – RR– (A16 – 10)	$W \leftrightarrow B$	IG switch ON, slowly turn right rear wheel	AC generation
RL+ (A16 – 2) – RL– (A16 – 1)	$R \leftrightarrow G$	IG switch ON, slowly turn left rear wheel	AC generation

Date :

DI1JO-03

DI-582

DIAGNOSTICS - ABS & TRACTION CONTROL SYSTEM

MT (A15 – 14) – GND (A15 – 15, A17 – 9, 10)	$R\text{-}W\leftrightarrowW\text{-}B$	IG switch ON	Below 1.5
SRC1 (A17 – 5) – GND (A15 – 15, A17 – 9, 10)	$BR\leftrightarrowWB$	IG switch ON, TRAC OFF indicator light OFF	10 – 14
SRC2 (A17 – 6) – GND (A15 – 15, A17 – 9, 10)	$BY\leftrightarrowWB$	IG switch ON, TRAC OFF indicator light OFF	10 – 14
SMC1 (A17 – 12) – GND (A15 – 15, A17 – 9, 10)	$Y – R \leftrightarrow W – B$	IG switch ON, TRAC OFF indicator light OFF	10 – 14
SMC2 (A17 – 6) – GND (A15 – 15, A17 – 9, 10)	$Y – B \leftrightarrow W – B$	IG switch ON, TRAC OFF indicator light OFF	10 – 14
NEO (A16 – 15) – GND (A15 – 15, A17 – 9, 10)	$BR\text{-}W\leftrightarrowW\text{-}B$	Idling	Pulse generation
EFI+ (A16 – 6) – GND (A15 – 15, A17 – 9, 10)	$W \leftrightarrow WB$	IG switch ON	Pulse generation
EFI- (A16 - 14) - GND (A15 - 15, A17 - 9, 10)	$B \leftrightarrow W\text{-}B$	IG switch ON	Pulse generation
TRC+ (A16 – 13) – GND (A15 – 15, A17 – 9, 10)	$G \leftrightarrow WB$	TRAC control active	Pulse generation
TRC- (A16 - 5) - GND (A15 - 15, A17 - 9, 10)	$L \leftrightarrow WB$	TRAC control active	Pulse generation
IND (A16 – 3) – GND (A15 –		IG switch ON, SLIP indicator light ON	Below 2.0
15, A17 – 9, 10)	$LG \leftrightarrow WB$	IG switch ON, SLIP indicator light OFF	10 – 14
WT (A16 – 12) – GND (A15 –		IG switch ON, TRAC OFF indicator light ON	Below 2.0
15, A17 – 9, 10)	$L \leftrightarrow WB$	IG switch ON, TRAC OFF indicator light OFF	10 – 14
CSW (A16 – 11) – GND (A15 –	$LG \leftrightarrow WB$	IG switch ON, TRAC cut switch pushed in	Below 2.0
15, A17 – 9, 10)	$LG\leftrightarrowVV-B$	IG switch ON, TRAC cut switch released	8 – 14

DI04I-04

PROBLEM SYMPTOMS TABLE

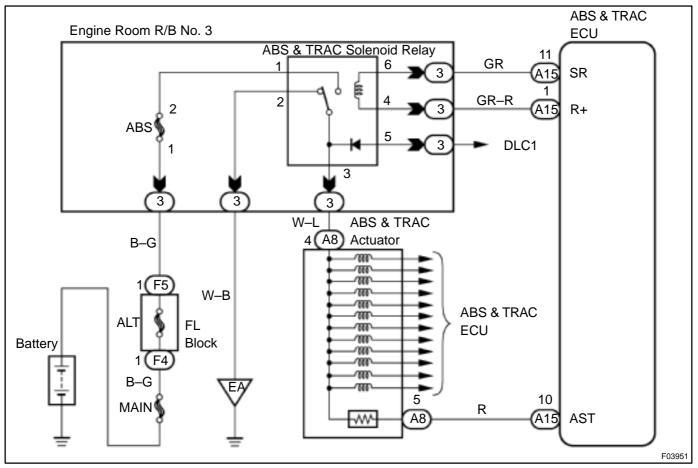
If a normal code is displayed during the DTC check but the problem still occurs, check the circuits for each problem symptom in the order given in the table below and proceed to the relevant troubleshooting page.

Symptom	Suspect Area	See page
	Only when 1. to 4. are all normal and the problem is still occurring, replace the ABS & TRAC ECU.	
	 Check the DTC reconfirming that the normal code is output. 	DI-574
ABS does not operate.	2. IG power source circuit	DI-598
	3. Speed sensor circuit	DI-593
	 Check the ABS & TRAC actuator with a checker. If abnormal, check the hydraulic circuit for leakage (See page DI–623). 	BR-61
	Only when 1. to 4. are all normal and the problem is still occurring, replace the ABS & TRAC ECU.	
ADC does not encrote officiantly	 Check the DTC reconfirming that the normal code is output. 	DI-574
ABS does not operate efficiently.	2. Speed sensor circuit.	DI-593
	3. Stop light switch circuit.	DI-604
	 Check the ABS & TRAC actuator with a checker. If abnormal, check the hydraulic circuit for leakage (See page DI–623). 	BR-61
ABS warning light abnormal.	 ABS warning light circuit ABS & TRAC ECU 	DI–612 DI–610
DTC check cannot be done.	Only when 1. and 2. are all normal and the problem is still occurring, replace the ABS & TRAC ECU. 1. ABS warning light circuit 2. TRAC OFF indicator light circuit 3. Tc terminal circuit	DI-612 DI-617 DI-621
Speed sensor signal check cannot be done.	 Ts terminal circuit ABS & TRAC ECU 	DI–615 DI–610
	Only when inspection circuits for each problem symptom are all normal and the problem is still occurring, replace the ABS & TRAC ECU.	
TRAC does not operate.	1. Check the DTC, reconfirming that the normal code is output.	DI-574
	2. IG power source circuit	DI-598
	 Check the hydraulic circuit for leakage Speed sensor circuit 	DI–623 DI–593
SLIP indicator light abnormal.	SLIP indicator light circuit	DI-620
TRAC OFF indicator light abnormal.	Only when inspection circuits for each problem symptom are all normal and the problem is still occurring, replace the ABS & TRAC ECU.	
	1. TRAC OFF indicator light circuit	DI-617
	2. TRAC cut switch circuit	DI-617

CIRCUIT INSPECTION

DTC	11, 12	ABS & TRAC Solenoid Relay Circuit
-----	--------	-----------------------------------

CIRCUIT DESCRIPTION

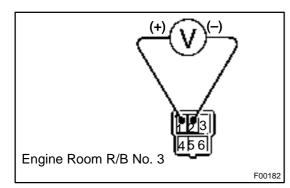

This relay supplies power to each ABS & TRAC solenoid. After the ignition switch is turned ON, if the initial check is OK, the relay goes on.

DTC No.	DTC Detecting Condition	Trouble Area
11	 Condition 1. to 3. are detected: Malfunction of solenoid relay monitor Battery voltage will not exceed more than 17.0 V within 2.16 sec. Battery voltage will not become less than 9.5 V within 2.16 sec., or after the solenoid relay is ON and AST voltage of ECU terminal does not become 8.0 V or more. 	 ABS & TRAC solenoid relay ABS & TRAC solenoid relay circuit ECU
12	Solenoid relay is OFF in the midst of premain routine, and AST voltage of ECU terminal is 8.0 V or more, which con- tinues for 2.04 sec. or more.	

Fail safe function:

If any trouble occurs in the ABS & TRAC solenoid relay circuit, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.

WIRING DIAGRAM


DI04J-04

INSPECTION PROCEDURE

1

Check voltage between terminals 1 and 2 of Engine Room R/B No. 3 (for ABS & TRAC solenoid relay).

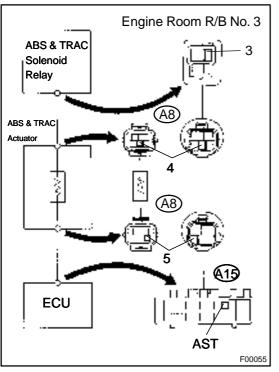
Voltage: 10 – 14 V

PREPARATION:

Remove ABS & TRAC solenoid relay from Engine Room R/B No. 3.

CHECK:

Measure the voltage between terminals 1 and 2 of Engine Room R/B No. 3 (for ABS & TRAC solenoid relay).



 \rangle Check and repair harness or connector.

OK

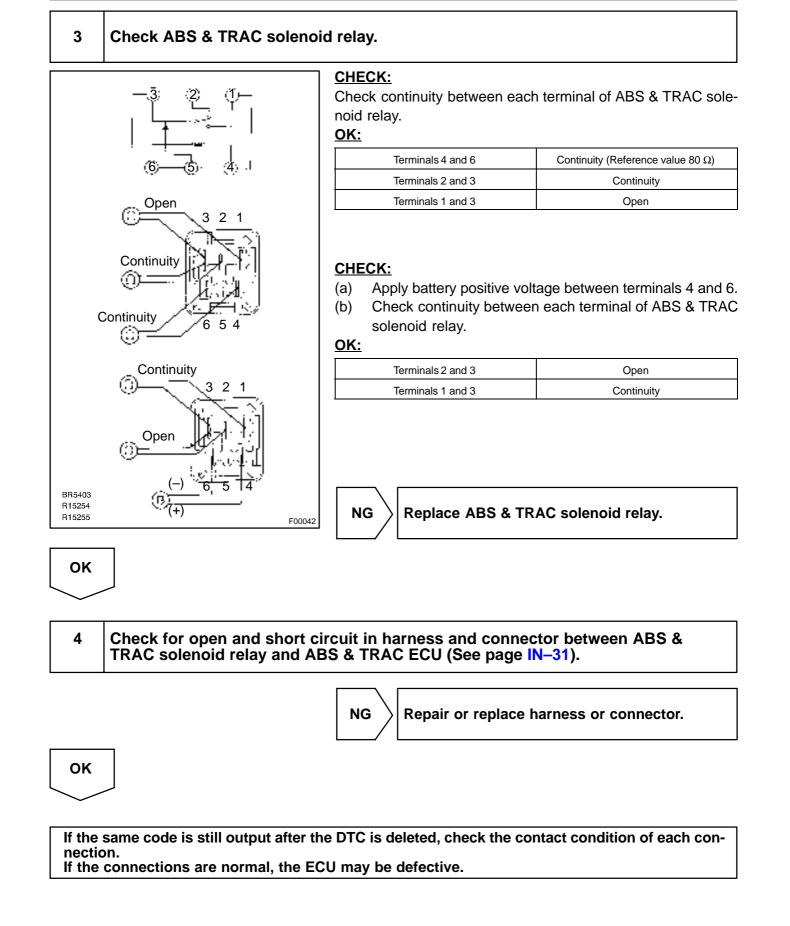
2

Check continuity between terminal 3 of ABS & TRAC solenoid relay and terminal AST of ABS & TRAC ECU.

CHECK:

Check continuity between terminal 3 of Engine Room R/B No. 3 (for ABS solenoid relay) and terminal AST of ABS & TRAC ECU.

<u> 0K:</u>


Continuity

HINT:

There is a resistance of 4 \sim 6 Ω between terminals A8 – 4 and A8 – 5 of ABS actuator.

NG

Repair or replace harness or ABS & TRAC actuator.

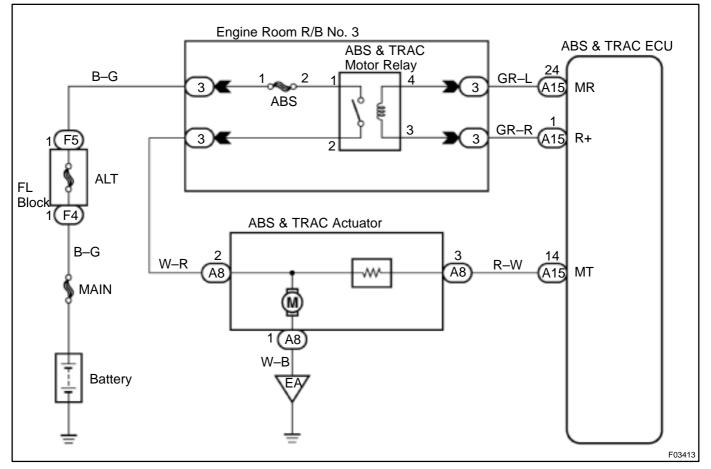
DI04K-04

וע	

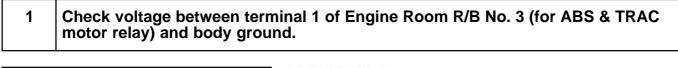
13, 14

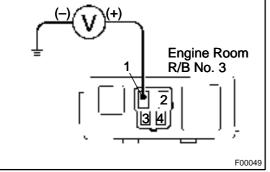
ABS & TRAC Motor Relay Circuit

CIRCUIT DESCRIPTION


The ABS & TRAC motor relay supplies power to the ABS & TRAC pump motor. While the ABS is activated, the ECU switches the ABS & TRAC motor relay ON and operates the ABS & TRAC pump motor.

DTC No.	DTC Detecting Condition	Trouble Area
13	 Conditions 1. to 3. are detected: Malfunction of motor relay monitor Battery voltage will not exceed more than 17.0 V within 2.16 sec. Battery voltage will not become less than 9.5 V within 2.16 sec., or after the motor relay is ON and motor relay monitor does not ON. 	 ABS & TRAC motor relay ABS & TRAC motor relay circuit ECU
14	Motor relay is OFF, and motor relay monitor is ON , which continues for 20.16 sec. or more.	


Fail safe function:


If any trouble occurs in the ABS & TRAC motor relay circuit, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.

WIRING DIAGRAM

INSPECTION PROCEDURE

PREPARATION:

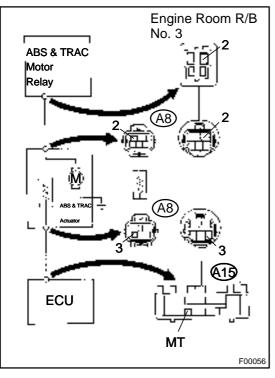
Remove ABS & TRAC motor relay from Engine Room R/B No. 3.

CHECK:

Measure voltage between terminal 1 of Engine Room R/B No. 3 (for ABS & TRAC motor relay) and body ground.

<u>OK:</u>

Voltage: 10 - 14 V



 \rangle Check and repair harness or connector.

OK

2

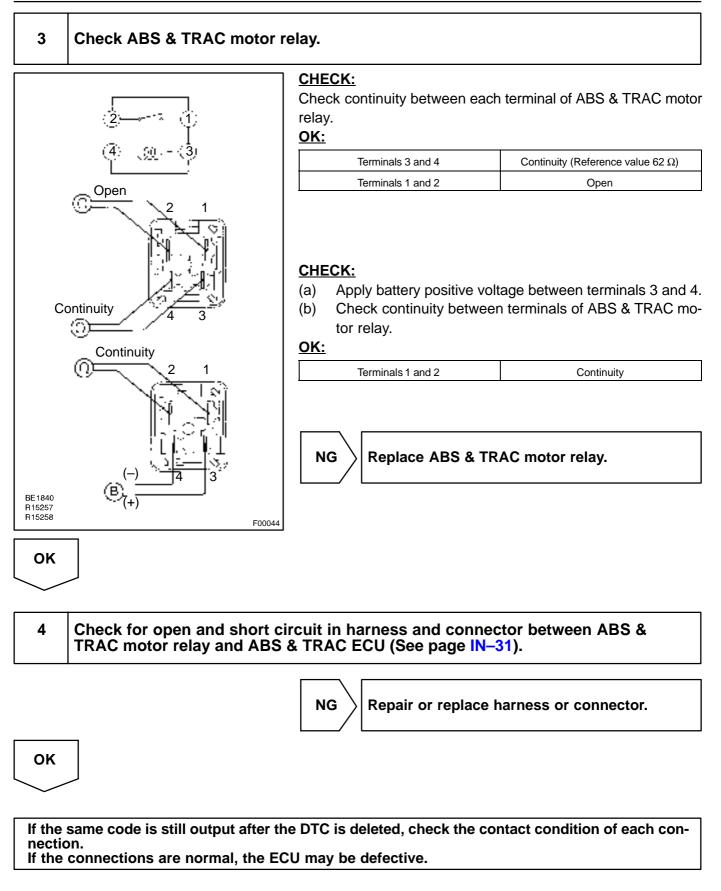
Check continuity between terminal 2 of ABS & TRAC motor relay and terminal MT of ABS & TRAC ECU.

CHECK:

Check continuity between terminal 2 of Engine Room R/B No. 3 (for ABS & TRAC motor relay) and terminal MT of ABS & TRAC ECU.

<u> 0K:</u>

Continuity


HINT:

There is a resistance of 4 \sim 6 Ω between terminals A8 – 2 and A8 – 3 of ABS & TRAC actuator.

NG

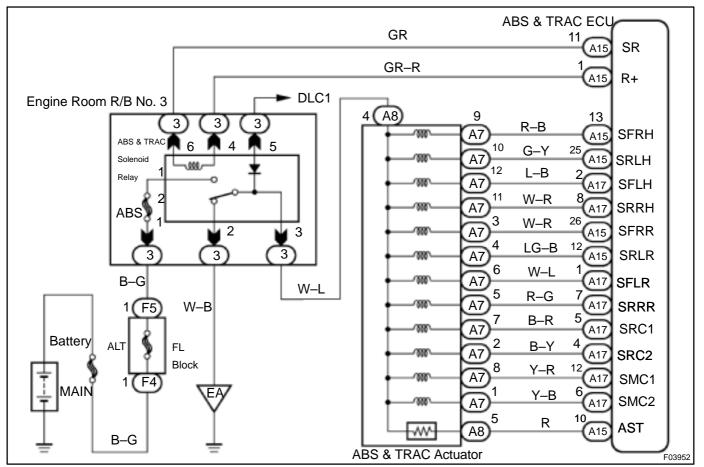
Repair or replace harness or ABS & TRAC actuator.

ΟΚ

DI04L-04

DTC	21 to 28	ABS & TRAC Actuator Solenoid Circuit

CIRCUIT DESCRIPTION


This solenoid goes on when signals are received from the ECU and controls the pressure acting on the wheel cylinders thus controlling the braking force.

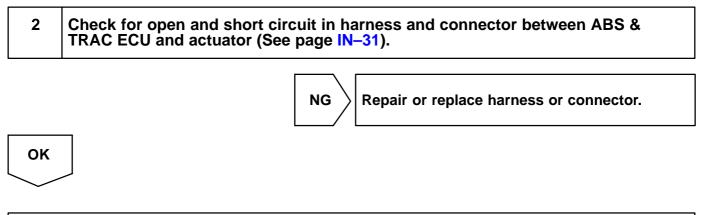
DTC No.	DTC Detecting Condition	Trouble Area
21		•ABS actuator •SFRR or SFRH circuit •ECU
22	 Conditions 1. and 2. or 3. continue for 0.48 sec. or more: 1. Recovery prohibit run pulse is not output, solenoid relay is ON, AST voltage of ECU terminal is 8.0 V or more, and solenoid output has no change between the last time and this time. 2. Solenoid output is ON, pressure holding solenoid monitor voltage is more than 1.0 V or pressure eduction solenoid monitor voltage is more than 1.5 V. 3. Solenoid output is OFF, solenoid monitor voltage is more than -1.0 V AST voltage of ECU. 	ABS actuator SFLR or SFLH circuit ECU
23		•ABS actuator •SRRR or SRRH circuit •ECU
24		•ABS actuator •SRLR or SRLH circuit •ECU
25		•ABS actuator •SMC1 circuit •ECU
26		•ABS actuator •SMC2 circuit •ECU
27		•ABS actuator •SRC1 circuit •ECU
28		•ABS actuator •SRC2 circuit •ECU

Fail safe function:

If any trouble occurs in the actuator solenoid circuit, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.

WIRING DIAGRAM

INSPECTION PROCEDURE


1	Check ABS & TRAC actuator solenoid.	
<u>_</u>	6 5 4 3 2 AD 12111098 7 4 F0005	PREPARATION:Disconnect the 2 connectors from ABS & TRAC actuator.CHECK:Check continuity between terminals A8 – 4 and A7 – 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12 of ABS & TRAC actuator connector.OK:ContinuityHINT:Resistance of each solenoid coil is 1.2 Ω.

NG

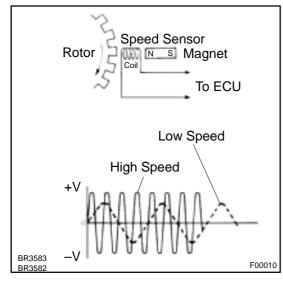
οκ

Replace ABS & TRAC actuator.

٦

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

DI-593


DI1JP-03

DTC

31, 32, 33, 34

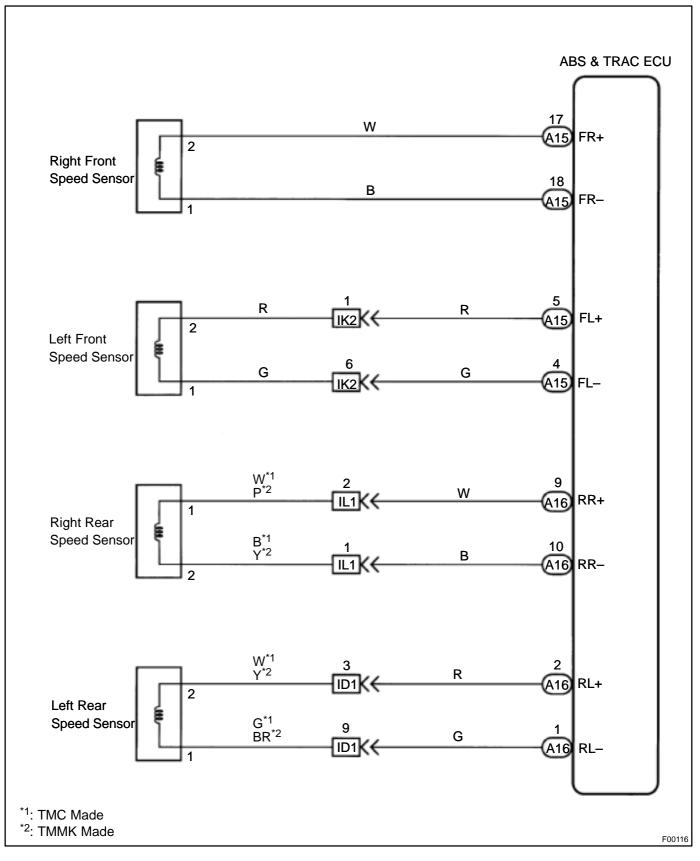
Speed Sensor Circuit

CIRCUIT DESCRIPTION

The speed sensor detects wheel speed and sends the appropriate signals to the ECU. These signals are used to control the ABS and TRAC system. The front and rear rotors each have 48 serrations.

When the rotors rotate, the magnetic field emitted by the permanent magnet in the speed sensor generates an AC voltage. Since the frequency of this AC voltage changes in direct proportion to the speed of the rotor, the frequency is used by the ECU to detect the speed of each wheel.

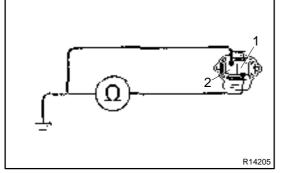
DTC No.	DTC Detecting Condition	Trouble Area
31, 32, 33, 34	 Detection of any of conditions from 1. through 3.: ABS is in non-operation, wheel speed is 10 km/h or more, one eighth of maximum wheel speed is greater than the minimum wheel speed, one eighth of maximum wheel speed is smaller than the rear maximum wheel speed or momentary interruption of both the rear wheels are shown in the 15 sec. or more continuously. ABS is in non-operation, momentary interruption of speed sensor occurs 7 times or more in the mean time of switching the ignition switch ON and OFF or vehicle speed is 20 km/h (12 mph) or more and the condition of noise interference or non-noise interference occurs 75 times or more within 5 sec. Vehicle is at a stop, malfunction signal of vehicle speed sensor hardware open circuit is ON for 1.02 sec. contin- uously since starting the checking of a certain vehicle. 	 Right front, left front, right rear, left rear speed sensor Each speed sensor circuit Speed sensor rotor ECU


HINT:

- DTC No. 31 is for the right front speed sensor.
- DTC No. 32 is for the left front speed sensor.
- DTC No. 33 is for the right rear speed sensor.
- DTC No. 34 is for the left rear speed sensor.

Fail safe function:

If any trouble occurs in the speed sensor circuit, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.


WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check speed sensor.

Front:

PREPARATION:

- (a) Remove the front fender liner.
- (b) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

<u>OK:</u>

Resistance: 0.6 – 2.5 k Ω

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

<u>OK:</u>

Resistance: 1 $\ensuremath{\text{M}\Omega}$ or higher

PREPARATION:

(a) Remove the seat cushion and side seatback.

(b) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of speed sensor connector.

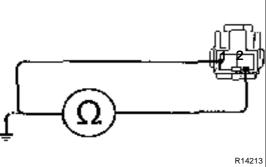
<u>OK:</u>

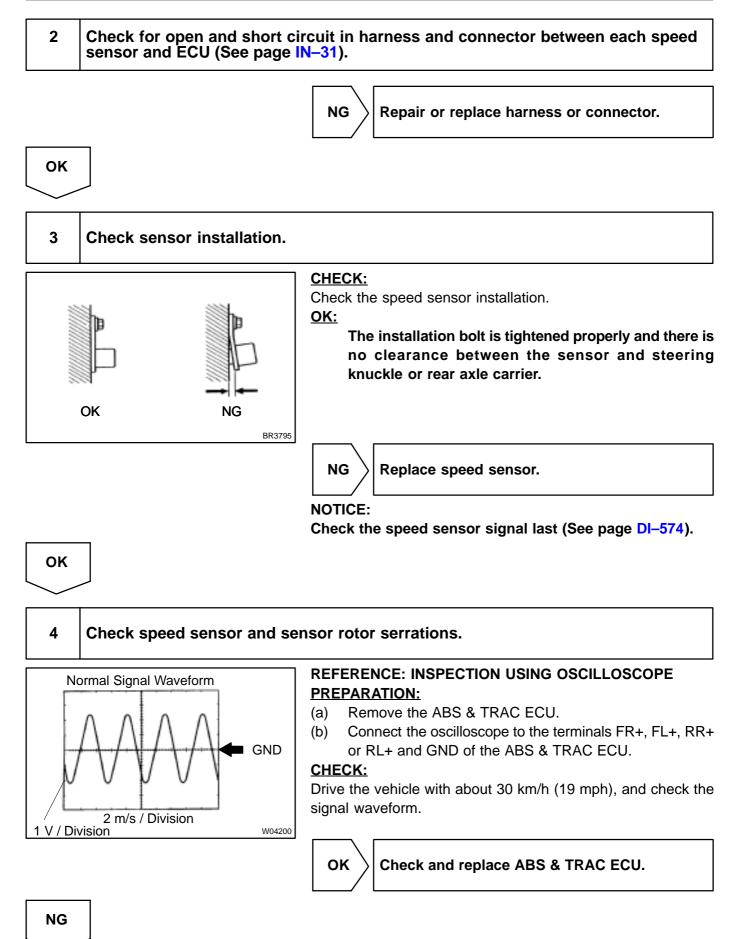
Resistance: 1.2 – 2.3 k Ω

CHECK:

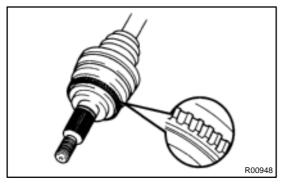
Measure resistance between terminals 1 and 2 of speed sensor connector and body ground.

<u>OK:</u>


Resistance: 1 M Ω or higher



NOTICE:


Check the speed sensor signal last (See page DI-574).

Check sensor rotor and sensor tip.

5

Front: <u>PREPARATION:</u>

Remove front drive shaft (See page SA-26).

CHECK:

Check sensor rotor serrations.

<u> 0K:</u>

No scratches , missing teeth or foreign objects. <u>PREPARATION:</u>

No scratches or foreign objects on the sensor tip.

Remove the front speed sensor (See page BR-68).

CHECK:

Check the sensor tip.

<u>OK:</u>

Rear:

R0947

PREPARATION:

Remove the axle hub (See page SA-52).

CHECK:

Check the sensor rotor serrations.

OK:

No scratches , missing teeth or foreign objects. <u>PREPARATION:</u>

Remove the rear speed sensor (See page BR-71).

CHECK:

Check the sensor tip.

<u>OK:</u>

No scratches or foreign objects on the sensor tip.

NG Replace sensor rotor or speed sensor.

NOTICE:

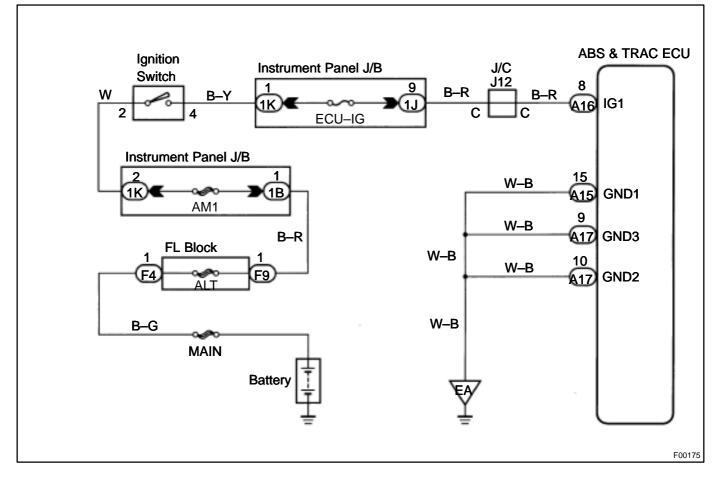
Check the speed sensor signal last. (See page DI-574).

ΟΚ

Check and replace ABS & TRAC ECU.

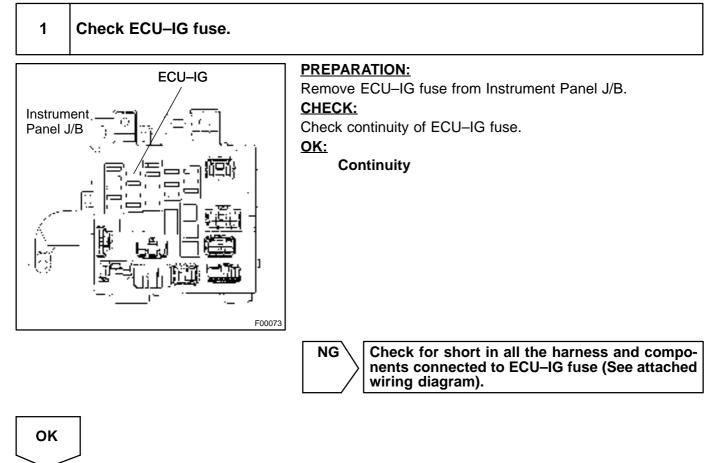
	DTC	41	IG Power Source Circuit
--	-----	----	-------------------------

CIRCUIT DESCRIPTION


This is the power source for the ECU, hence the actuators.

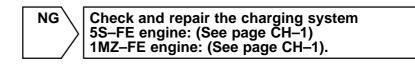
DTC No.	DTC Detecting Condition	Trouble Area
41	 Detection of any conditions from 1. through 3.: 1. Vehicle speed is 3 km/h (1.9 mph) or more and battery voltage is less than 9.5 V continues for 10 sec. or more. 2. Battery voltage has never exceeded more than 17.0 V and has become less than 9.5 V within 2.16 sec., under malfunction of solenoid relay monitor after the solenoid relay is ON, at ECU AST terminal voltage of ECU has become 8.0 V or more or under malfunction of motor relay monitor and after the motor relay is ON, motor relay monitor has become ON. 3. Battery voltage is more than 17.0 V , which continues for 1.2 sec. or more or battery voltage has become more than 17.0 V within 2.16 sec. and solenoid or motor relay monitor is under malfunction condition. 	 Battery Charging system Power source circuit ECU

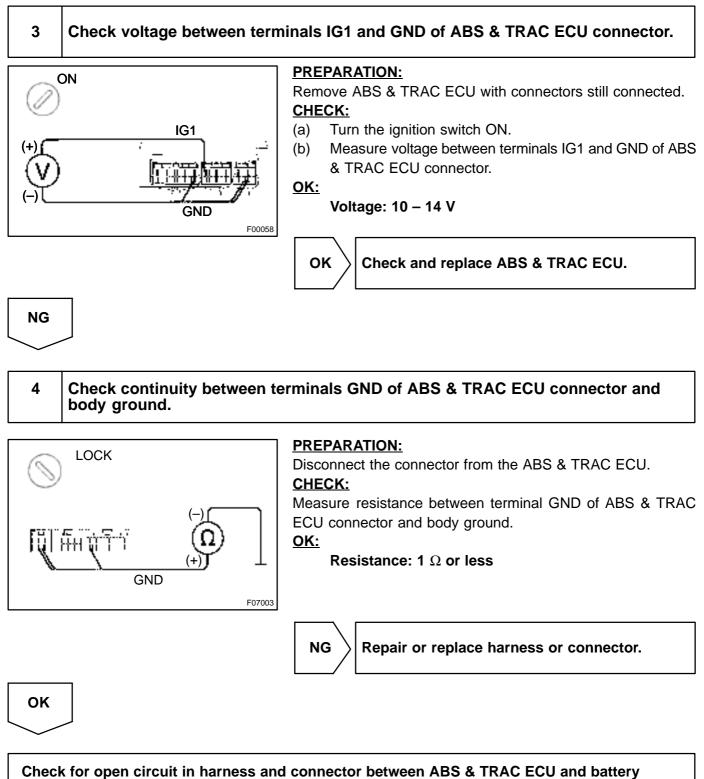
Fail safe function:


If any trouble occurs in the power source circuit, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.

WIRING DIAGRAM

DI04N-04


INSPECTION PROCEDURE


2 Check battery positive voltage.

<u>OK:</u>

Voltage: 10 - 14 V

ОК

(See page IN-31).

DI040-04

	-
υı	

43

ABS Control System Malfunction

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
43	 Detection of any conditions from 1. through 8.: 1. During TRAC is in non-operation and DTC of ABS is output, but TRAC is not during initial lamp checking, terminal WA of ECU is ON and engine speed is 500 rpm or more , which continues for 1 sec. or more. 2. Solenoid relay circuit is open or short. 3. Motor relay circuit is open or short. 4. ABS solenoid circuit is open or short. 5. TRAC solenoid circuit is open or short. 6. Speed sensor is under malfunction condition. 7. IG power source is down or raised. 8. Pump motor is locked. 	•ABS control system

INSPECTION PROCEDURE

1	Check the DTC for the ABS (See page DI–574).

*1 Rep code

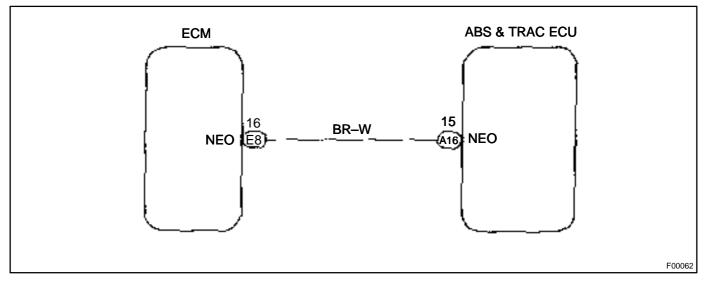
Repair ABS control system according to the code output.

*2

Check for ECU connected to malfunction indicator lamp.

*1: Output NG code

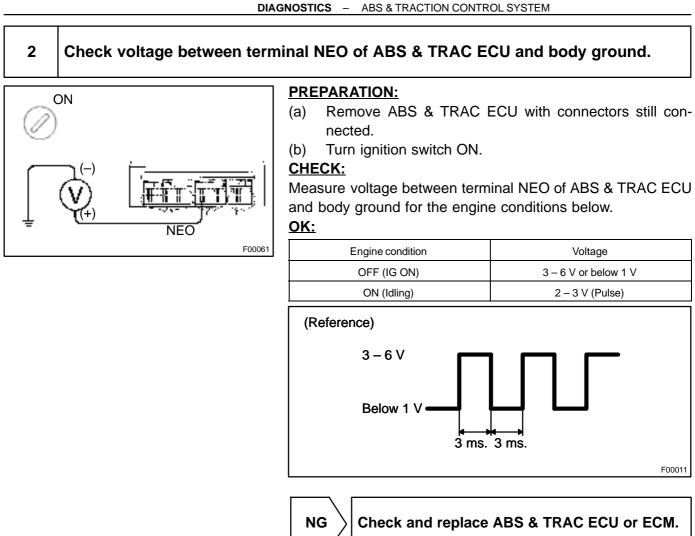
*2: Malfunction indicator lamp remains ON.


		Di04P-04
DTC	44	NE Signal Circuit

CIRCUIT DESCRIPTION

The ABS & TRAC ECU receives engine speed signals (NE signals) from the ECM.

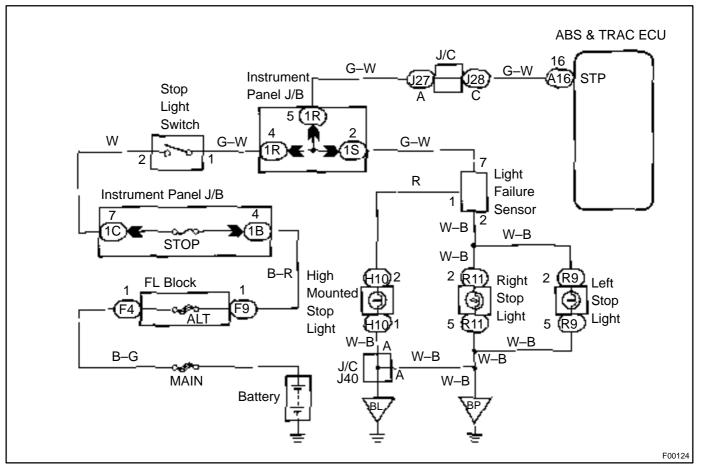
DTC No.	DTC Detecting Condition	Trouble Area
44	 Condition 1. or 2. is detected: 1. TRAC is in operation and engine speed is 0 rpm continues for 2.4 sec. or more. 2. TRAC is in non–operation, sift lever is not in P or N position, both the front right and left wheels' speed is 30 km/h (19 mph) or more, engine speed is 0 rpm and does not have communication malfunction, and malfunction information of engine system is OFF. 	NEO circuitECMECU


WIRING DIAGRAM

INSPECTION PROCEDURE

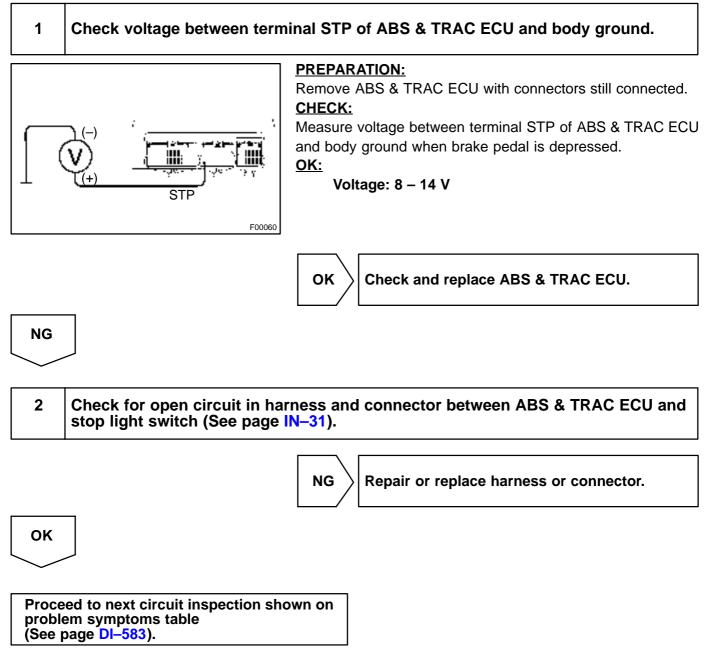
1	Check for open and short circuit in harness and connector between terminal NEO of ABS & TRAC ECU and terminal NEO of ECM (See page IN–31).
	NG Repair or replace harness or connector.
ОК	

F00011


OK If the same code is still output after the DTC is deleted, check the contact condition of each connection.

DTC	49	Stop Light Switch Circuit
-----	----	---------------------------

CIRCUIT DESCRIPTION

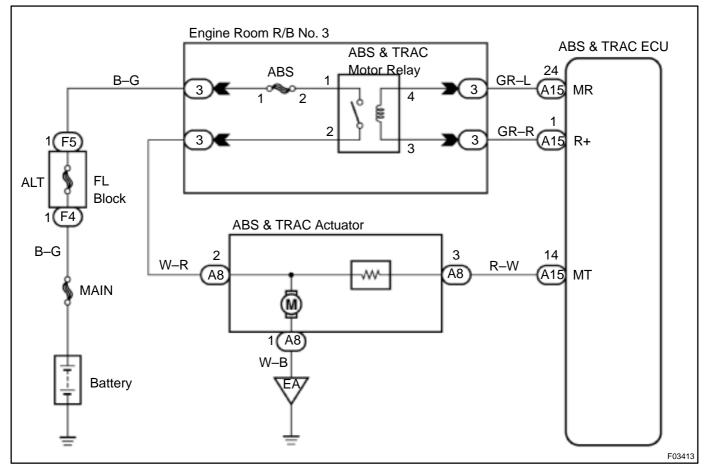

DTC No.	DTC Detecting Condition	Trouble Area
49	Battery voltage has never exceeded more than 17.0 V and become less than 9.5 V within 2.16 sec. and the STP terminal voltage of ECU is under open circuit detecting limits continues for 3 sec. or more.	 Stop light switch Stop light switch circuit ECU

WIRING DIAGRAM

DI04Q-04

INSPECTION PROCEDURE

ſ	DTC	51	ABS Pump Motor Lock
---	-----	----	---------------------

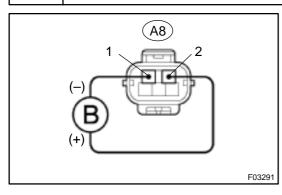

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
51	In the midst of initial check, after the current flows to the motor for 3 sec. and motor relay is turned OFF, then within 0.66 sec., the condition that the motor relay monitor is OFF continues for 0.24 sec. or more.	 ABS pump motor

Fail safe function:

If any trouble occurs in the ABS & TRAC pump motor, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.

WIRING DIAGRAM



DI4KX-01

INSPECTION PROCEDURE

1

Check operation of ABS & TRAC pump motor.

PREPARATION:

Disconnect the ABS & TRAC actuator connector.

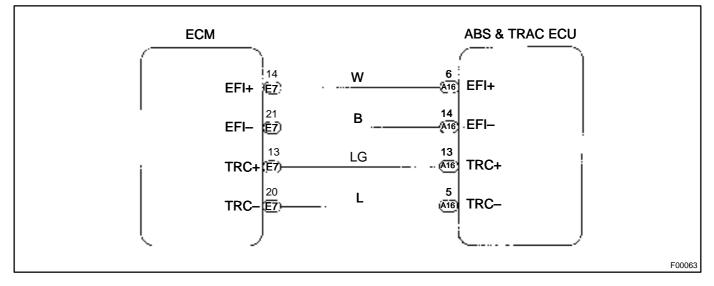
CHECK:

Connect positive \sim lead to terminal A8 – 2 and negative > lead to terminal A8 – 1 of the ABS & TRAC actuator connector, check that the pump motor is operates.

Check for open circuit in harness and connector between ABS & TRAC motor relay, ABS & TRAC actuator and ECU (See page IN-31).

NG

Replace ABS & TRAC actuator.


DTC	53	ECM Communication Circuit Malfunction
-----	----	---------------------------------------

CIRCUIT DESCRIPTION

This circuit is used to send TRAC control information from the ABS & TRAC ECU to the ECM (TRC+, TRC–), and engine control information from the ECM to the ABS & TRAC ECU (EFI+, EFI–).

DTC No.	DTC Detecting Condition	Trouble Area
	ECM communication data malfunction is detected.	•TRC+ or TRC- circuit
53		●EFI+ or EFI– circuit
		•ECM
		●ECU

WIRING DIAGRAM

INSPECTION PROCEDURE

 1
 Check for open and short circuit in harness and connector between terminals EFI+, EFI-, TRC+, TRC- of ABS & TRAC ECU and ECM (See page IN-31).

 NG
 Repair or replace harness or connector.

 OK
 Check and replace ECM or ABS & TRAC ECU.

DI04S-04

Engine Control System Malfunction

DI04T-04

CIRCUIT DESCRIPTION

61

DTC

If any trouble occurs in the engine control system, the ECU prohibits TRAC control.

DTC No.	DTC Detection Condition	Trouble Area
61	 Conditions 1. and 2. are detected: 1. ECM communication is normal, malfunction information of engine system is ON, and engine speed is 500 rpm or more , which continues for 0.48 sec. or more, and TRAC operation start condition is concluded. 2. ECM communication is normal, malfunction information of engine system is ON, engine speed is 500 rpm and more which continues for 1 sec. or more, and the engine system memorizes DTC. 	•Engine control system

INSPECTION PROCEDURE

	1	I	Check the DTC for the engine (See page DI–197).
--	---	---	---

*1

Repair engine control system according to the code output.

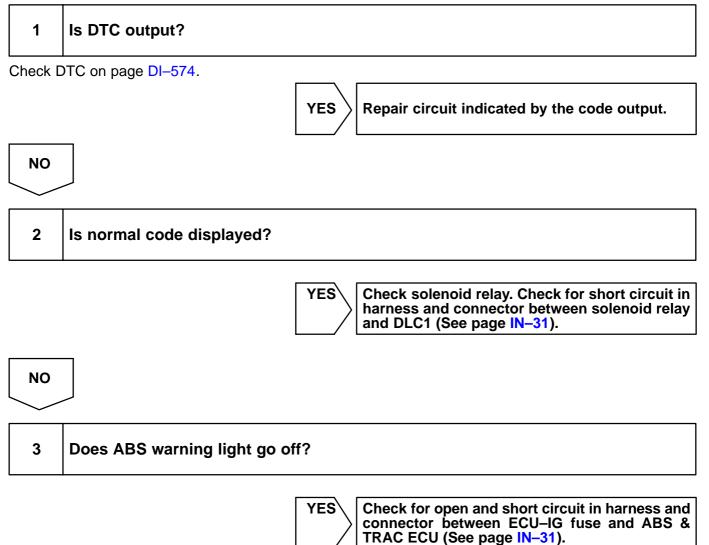
*2

Check for ECU connected to malfunction indicator light.

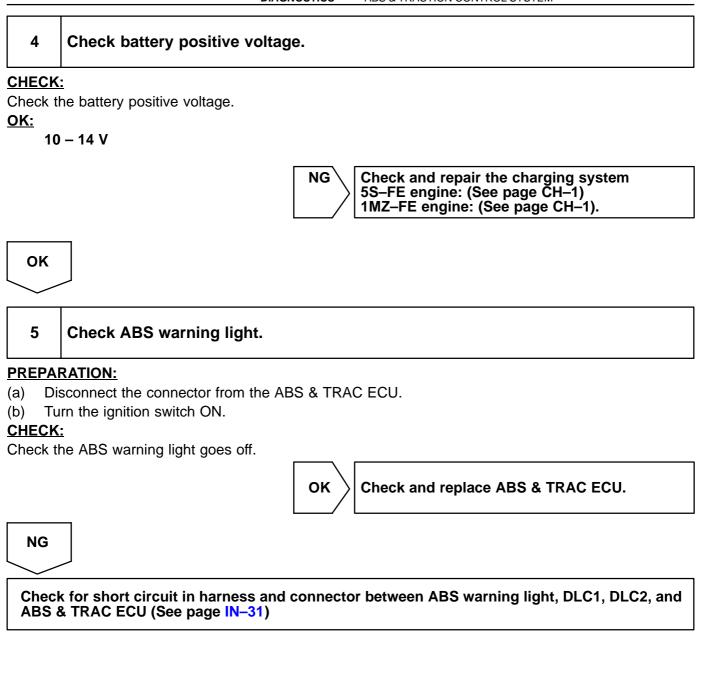
*1: Output NG code

*2: Malfunction indicator light remains ON.

DTC	Always ON	ABS & TRAC ECU Malfunction
-----	-----------	----------------------------


CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
Always ON	ABS & TRAC ECU internal malfunction is detected.	•ECU


Fail safe function:

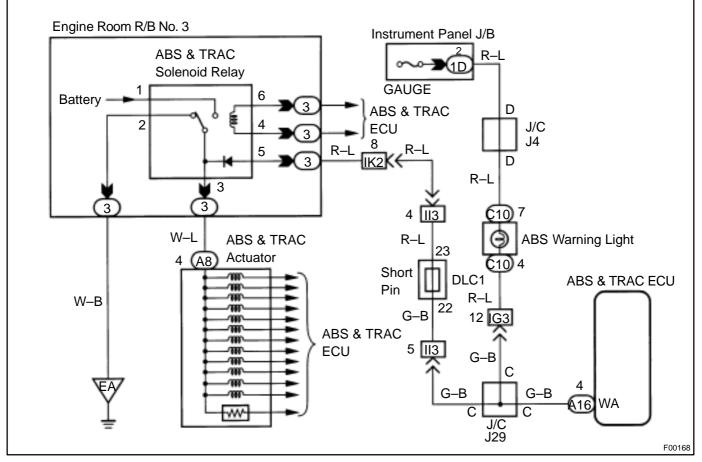
If any trouble occurs in the power source circuit, the ECU cuts off current to the ABS & TRAC solenoid relay and prohibits ABS control and TRAC control.

INSPECTION PROCEDURE

DI1JQ-03

846

Date :


ABS Warning Light Circuit

CIRCUIT DESCRIPTION

If the ECU detects a trouble, it lights the ABS warning light while at the same time prohibiting ABS control. At this time, the ECU records a DTC in memory.

Connect terminals Tc and E₁ of the DLC1 or DLC2 to make the ABS warning light blink and output the DTC.

WIRING DIAGRAM

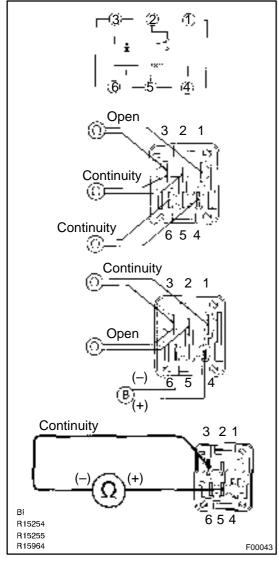
INSPECTION PROCEDURE

Troubleshoot in accordance with the chart below for each trouble symptom.

ABS warning light does not light up	Go to step 1
ABS warning light remains on	Go to step 3

See combination meter troubleshooting on page BE-2.

NG


Repair bulb or combination meter assembly.

ΟΚ

DI04V-04

2

Check ABS & TRAC solenoid relay.

PREPARATION:

Remove ABS & TRAC solenoid relay from Engine Room R/B No. 3.

CHECK:

Check continuity between each terminal of ABS & TRAC solenoid relay.

<u> 0K:</u>

Terminals 4 and 6	Continuity (Reference value 80 Ω)
Terminals 2 and 3	Continuity
Terminals 1 and 3	Open

CHECK:

- (a) Apply battery positive voltage between terminals 4 and 6.
- (b) Check continuity between each terminal of ABS & TRAC solenoid relay.

<u>OK:</u>

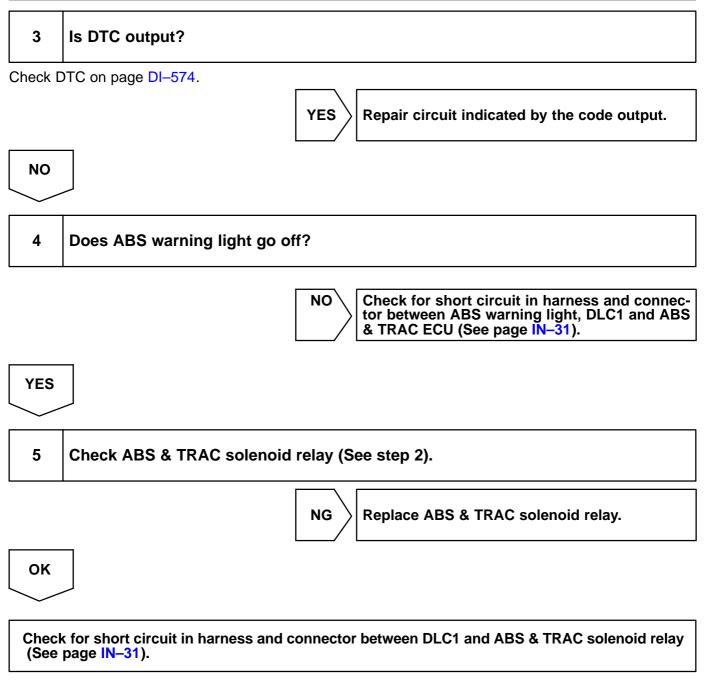
Terminals 2 and 3	Open
Terminals 1 and 3	Continuity

CHECK:

Connect the \sim test lead to terminal 5 and the > lead to terminal 3. Check continuity between the terminals.

<u> 0K:</u>

Continuity

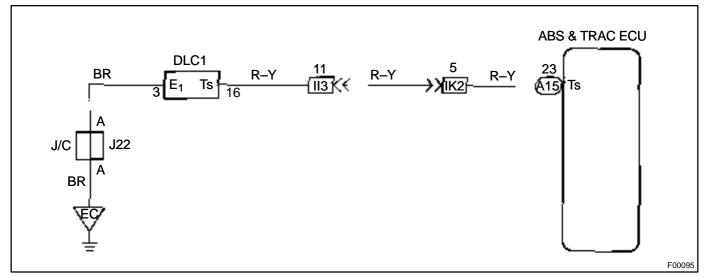

If there is no continuity, connect the > test lead to terminal 5 and the \sim lead to terminal 3. Recheck continuity between terminals.

NG

Replace ABS & TRAC solenoid relay.

ΟΚ

Check for open circuit in harness and connector between DLC1, ABS & TRAC solenoid relay and body ground (See page IN–31).

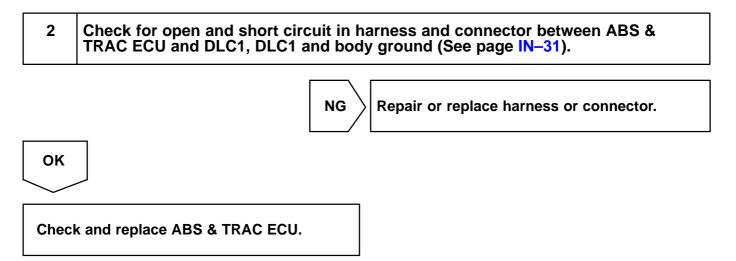

Ts Terminal Circuit

CIRCUIT DESCRIPTION

The sensor check circuit detects abnormalities in the speed sensor signal which cannot be detected with the DTC check.

Connecting terminals Ts and E_1 of the DLC1 in the engine compartment starts the check.

WIRING DIAGRAM

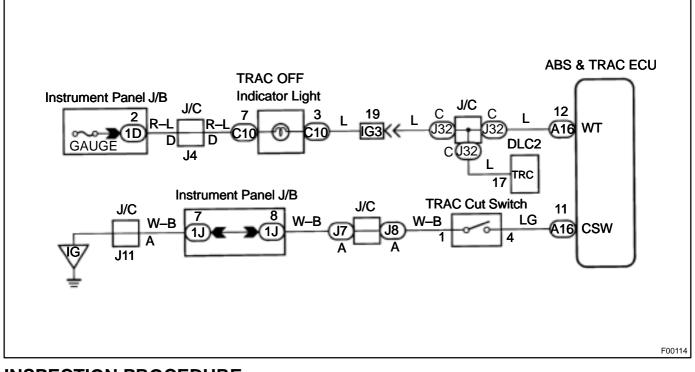

INSPECTION PROCEDURE

1	Check voltage between tern	ninals Ts and E ₁ of DLC1.
149		CHECK:(a)Turn the ignition switch ON.(b)Measure voltage between terminals Ts and E1 of DLC1.OK:Voltage: 10 - 14 V
		$\begin{tabular}{ c c c c } \hline OK & \end{tabular} If ABS warning light does not blink even after Ts and E_1 are connected, the ECU may be defective. \end{tabular}$
NG		

Author :

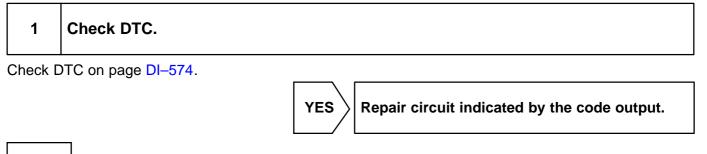
Date :

DI04X-04

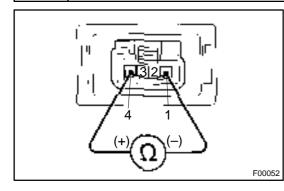

DI04Y-04

TRAC OFF Indicator, TRAC Cut Switch Circuit

CIRCUIT DESCRIPTION


This is the TRAC control main switch. When the TRAC cut switch is pushed on, TRAC control goes off and the TRAC OFF indicator lights up. This indicator blinks for warnings when the trouble occurs and for displaying DTC.

WIRING DIAGRAM



INSPECTION PROCEDURE

NO

2 Check TRAC cut switch.

PREPARATION:

(a) Remove TRAC cut switch.

(b) Disconnect TRAC cut switch connector.

CHECK:

Measure resistance between terminals 1 and 4 of TRAC cut switch when TRAC cut switch is ON and OFF.

OK:

TRAC cut switch	Resistance
Pushed in	Continuity
Released	1 M Ω or higher

NG

Replace TRAC cut switch.

OK

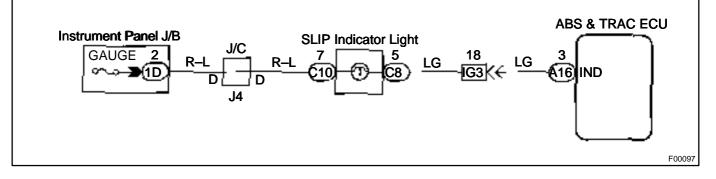
3 Check for open and short circuit in harness and connector between terminal CSW of ABS & TRAC ECU and TRAC cut switch and body ground (See page IN–29).

NG

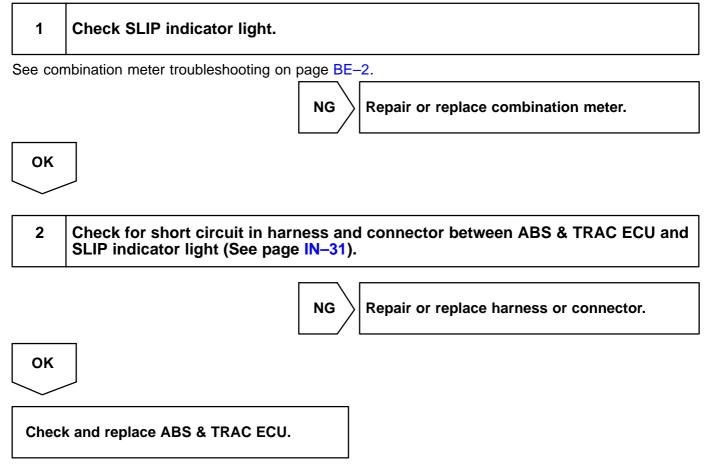
 \rangle Repair or replace harness or connector.

OK 4 Check TRAC OFF indicator light. See combination meter troubleshooting on page BE-2. NG Repair or replace combination meter.

OK


Check and replace ABS & TRAC ECU.

SLIP Indicator Light Circuit

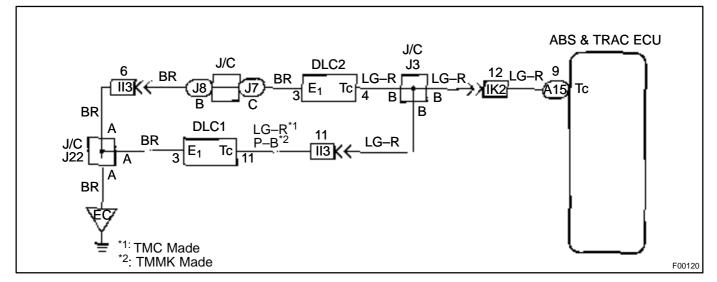

CIRCUIT DESCRIPTION

The SLIP indicator blinks during TRAC operation.

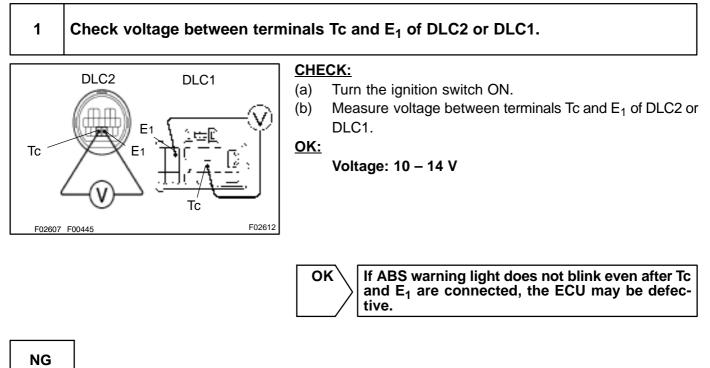
WIRING DIAGRAM

INSPECTION PROCEDURE

855


DI04Z-04

Tc Terminal Circuit


CIRCUIT DESCRIPTION

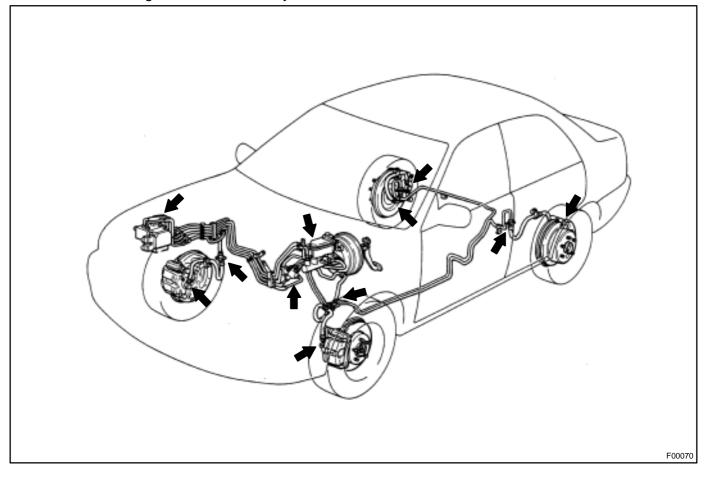
Connecting between terminals Tc and E₁ of the DLC1 or the DLC2 causes the ECU to display the DTC by blinking the ABS warning light and TRAC OFF indicator light.

WIRING DIAGRAM

INSPECTION PROCEDURE

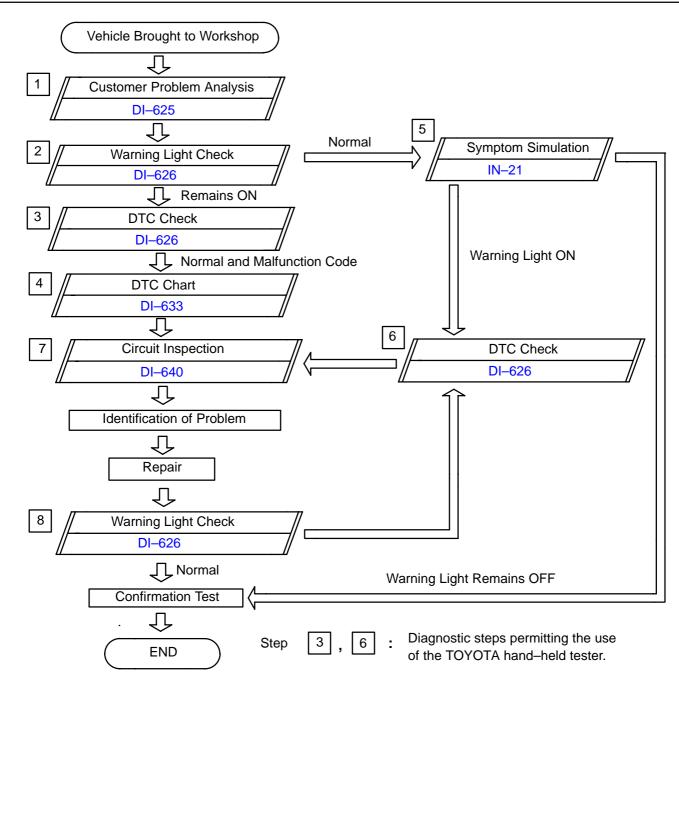
DI4KY-01

856


OK

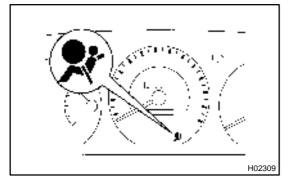
2 Check for open and short circuit in harness and connector between ABS & TRAC ECU and DLC2 or DLC1, DLC2 or DLC1 and body ground (See page IN-31).

Check and replace ABS & TRAC ECU.


Check for Fluid Leakage

Check for fluid leakage from actuator or hydraulic lines.

SUPPLEMENTAL RESTRAINT SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING



CUSTOMER PROBLEM ANALYSIS CHECK

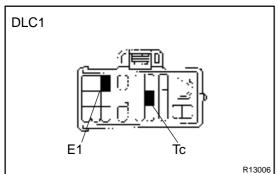
Supplemental Restraint System Check Sh				Inspector's Name			
			Re	gistration No.			
Customer's Name			Re	gistration Year		1	1
			Fra	ime No.			
Date Vehicle Brought In	1	1	Od	ometer Reading			km Miles
Date Problem Occuri	red					1	1
Weather		□ Fine □ C	loudy	□ Rainy □	Snowy	□ Oth	er
Temperature		Approx.					
Vehicle Operation		□ Driving [□	□ Idlir Consta Othe	ant speed □Ac	celeration	🗆 Dece	eleration]
Road Conditions							
Details Of Problem							

Diagnosis System Inspection

SRS Warning Light Inspection	1st Time	Remains ON	□ Sometimes Light Up □ Does Not Light Up
	2nd Time	Remains ON	□ Sometimes Light Up □ Does Not Light Up
DTC Inspection	1st Time	Normal Code	□ Malfunction Code [Code.]
	2nd Time	Normal Code	□ Malfunction Code [Code.]

PRE-CHECK

1. SRS WARNING LIGHT CHECK


(a) Turn the ignition switch to the ACC or ON position and check that the SRS warning light lights up.

DI4L1-01

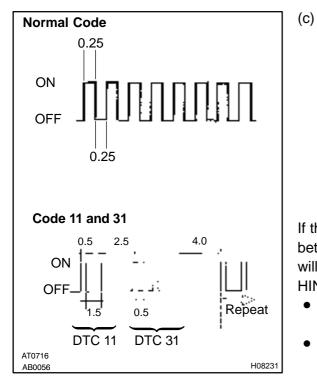
(b) Check that the SRS warning light goes out after approx.6 seconds.

HINT:

- When the ignition switch is at ACC or ON and the SRS warning light remains on or flashes, the airbag sensor assembly has detected a malfunction code.
- If, after approx. 6 seconds have elapsed, the SRS warning light sometimes lights up or the SRS warning light lights up even when the ignition switch is OFF, a short in the SRS warning light circuit can be considered likely. Proceed to "SRS warning light circuit malfunction" on page DI-790, DI-792.

2. DTC CHECK (Using diagnosis check wire)

- (a) Present troubles codes: Output the DTC.
 - (1) Turn the ignition switch to the ACC or ON position and wait for approx. 20 seconds.
 - (2) Using SST, connect terminals Tc and E1 of the DLC1.
 - SST 09843-18020

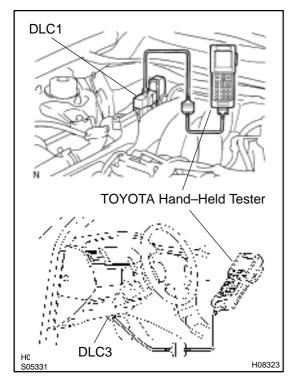

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.

- (b) Past troubles codes:
 - Output the DTC.
 - (1) Using service wire, connect Terminals Tc and E1 of the DLC1.
 - SST 09843-18020
 - (2) Turn the ignition switch to the ACC or ON position and wait for approx. 20 seconds.

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.


Read the DTC.

Read the 2–digit DTC as indicated by the number of times the SRS warning light blinks. As an example, the blinking patterns, normal, 11 and 31 are shown in the illustration.

- Normal code indication
 - The light will blink 2 times per second.
 - Malfunction code indication
 The first blinking output indicates the first digit of a 2–digit DTC. After a 1.5–second pause, the second blinking output will indicate the second digit.

If there are 2 or more codes, there will be a 2.5–second pause between each code. After all the codes have been output, there will be a 4.0–second pause and they will all be repeated. HINT:

- In the event of a number of trouble codes, indication will start from the smallest numbered code.
- If a DTC is not output or a DTC is output without terminal connection, proceed to the Tc terminal circuit inspection on page DI-796.

3. DTC CHECK (Using TOYOTA hand-held tester)

- (a) Hook up the TOYOTA hand-held tester to the DLC1 or the DLC3.
- (b) Read the DTCs by following the prompts on the tester screen.

HINT:

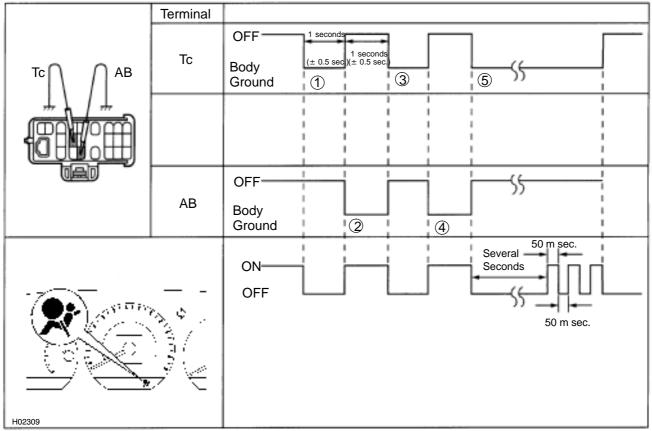
Please refer to the TOYOTA hand-held tester operator's manual for further details.

4. DTC CLEARANCE (Not using service wire)

When the ignition switch is turned off, the diagnostic trouble code is cleared.

HINT:

DTC might not be cleared by turning the ignition switch OFF. In this case, proceed to the next step.


- 5. DTC CLEARANCE (Using service wire)
- (a) Connect the 2 service wires to terminals Tc and AB of DLC1.
- (b) Turn the ignition switch to ACC or ON and wait for approx.6 seconds.

(c) Starting with the Tc terminal, ground alternately terminal Tc and terminal AB twice each in cycles of 1.0 seconds. Make sure that the terminals are grounded. Ensure the terminal Tc remain grounded.

HINT:

When alternately grounding terminals Tc and AB, release ground from one terminal and immediately ground the other terminal within an interval of 0.2 seconds.

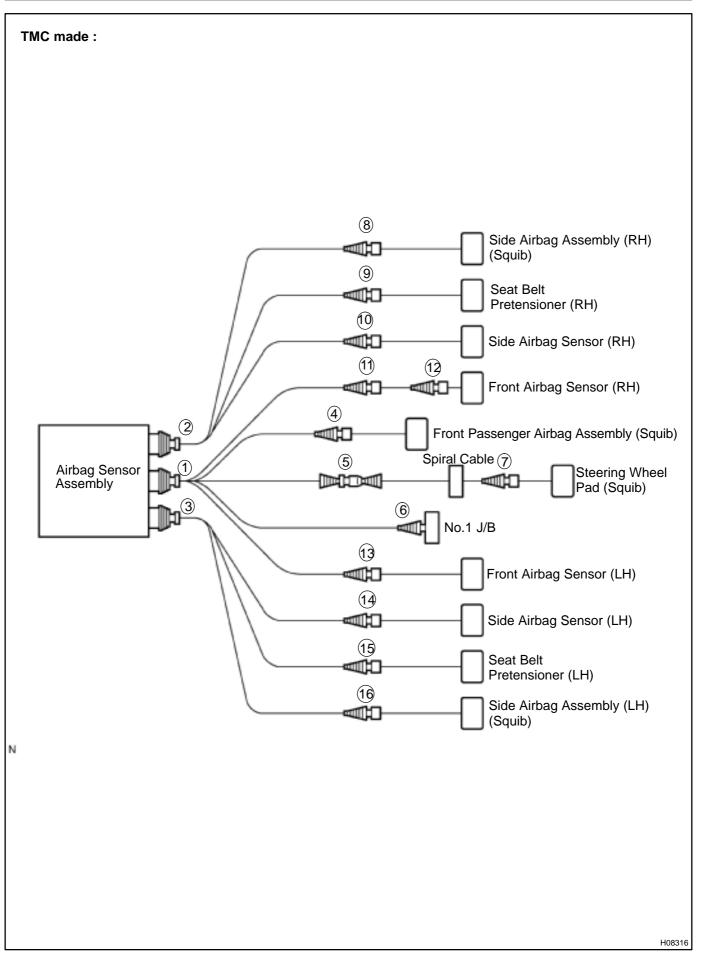
If DTCs are not cleared, repeat the above procedure until the codes are cleared.

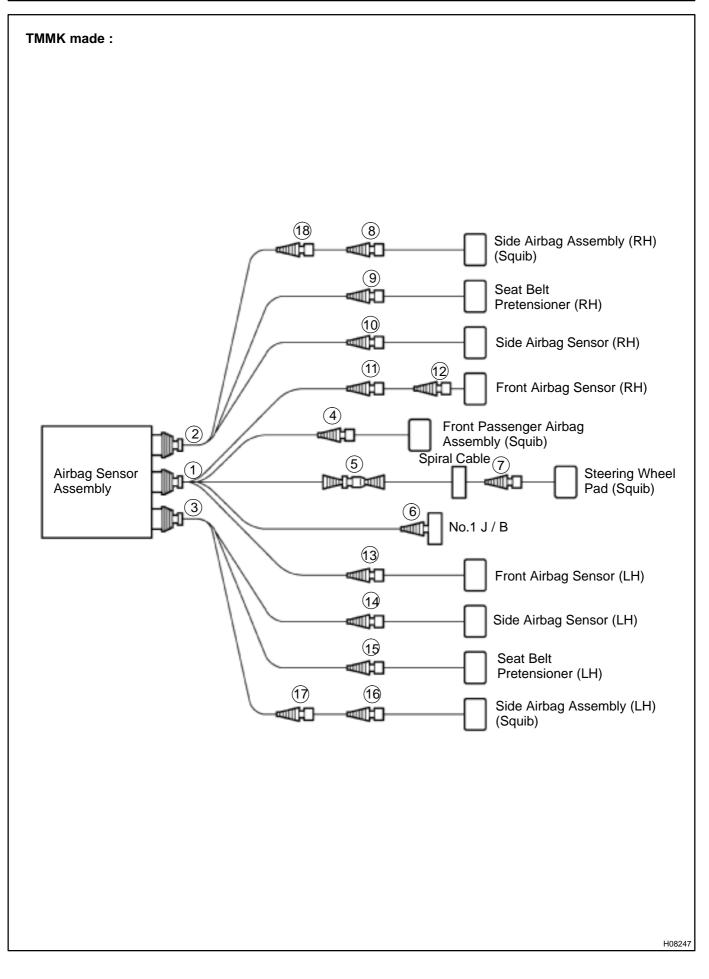
H01461

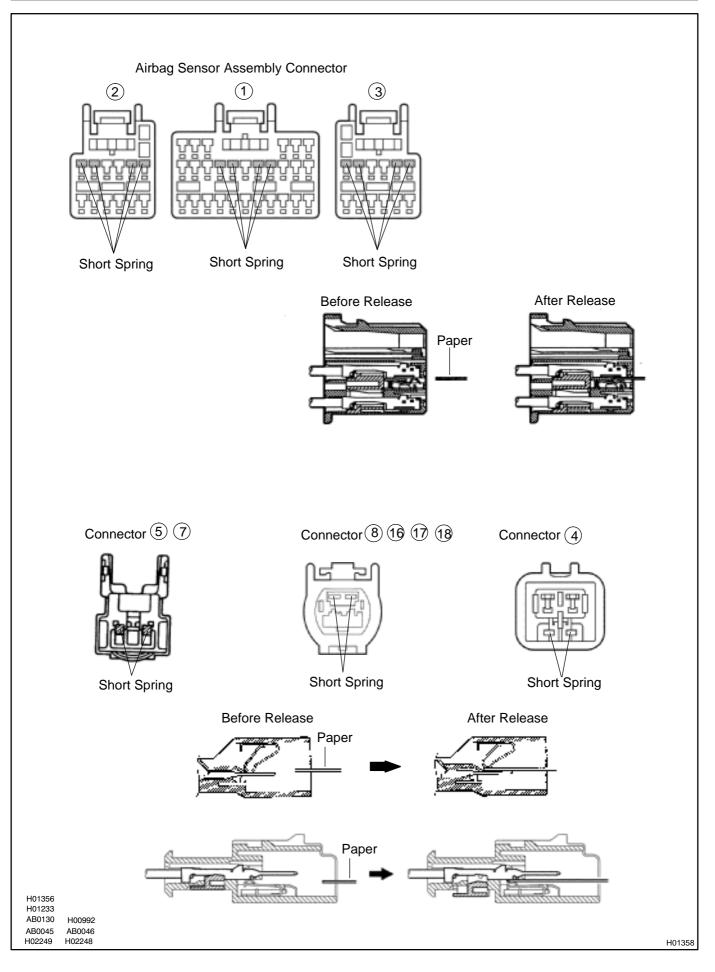
H02271

- (d) Several seconds after doing the clearing procedure, the SRS warning light will blink in a 50 m sec. cycle to indicate the codes which have been cleared.
- 6. Past troubles codes: DTC CLEARANCE (See step 5.)

7. RELEASE METHOD OF AIRBAG ACTIVATION PRE-VENTION MECHANISM


An airbag activation prevention mechanism is built into the connector for the squib circuit of the SRS.


When release of the airbag activation prevention mechanism is directed in the troubleshooting procedure, as shown in the illustration of the connectors on the next pages, insert paper which is the same thickness as the male terminal, between the terminal and the short spring.


CAUTION:

Never release the airbag activation prevention mechanism on the steering wheel pad connector. NOTICE:

- Do not release the airbag activation prevention mechanism unless specifically directed by the troubleshooting procedure.
- If the inserted paper is too thick the terminal and short spring may be damaged, so always use paper with the same thickness as the male terminal.

DIAGNOSTIC TROUBLE CODE CHART

DI1AZ-04

If a malfunction code is displayed during the DTC check, check the circuit listed for that code in the table below (Proceed to the page given for that circuit.).

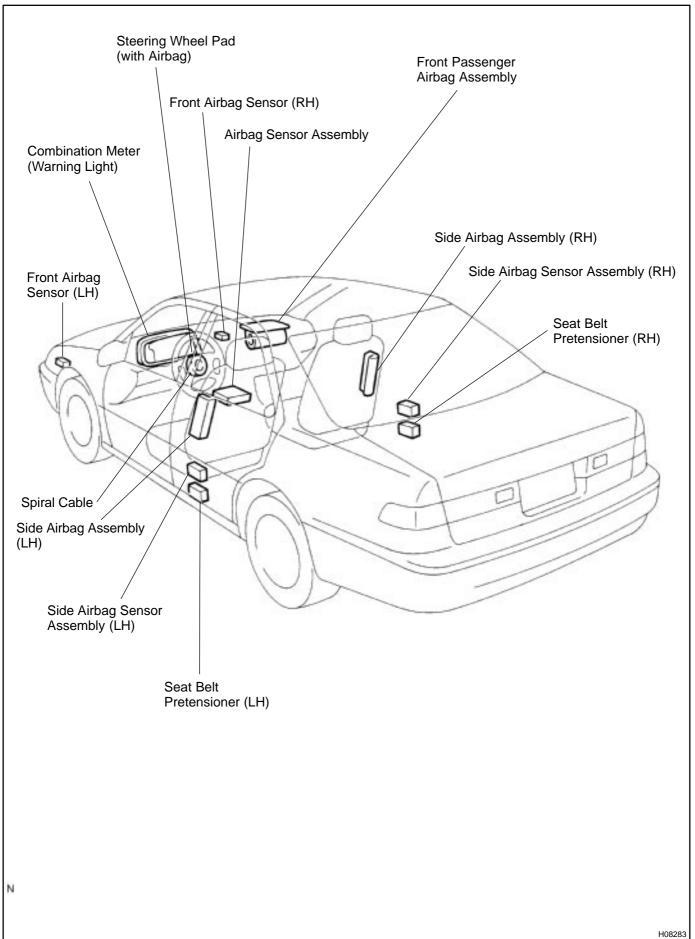
DTC No. (See Page)	Detection Item	Trouble Area	SRS Warning Light
B0100/13 (DI–640)	 Short in D squib circuit 	 Steering wheel pad (squib) Spiral cable Airbag sensor assembly Wire harness 	ON
B0101/14 (DI–645)	 Open in D squib circuit 	•Steering wheel pad (squib) •Spiral cable •Airbag sensor assembly •Wire harness	ON
B0102/11 (DI–649)	 Short in D squib circuit (to Ground) 	•Steering wheel pad (squib) •Spiral cable •Airbag sensor assembly •Wire harness	ON
B0103/12 (DI–653)	●Short in D squib circuit (to B+)	•Steering wheel pad (squib) •Spiral cable •Airbag sensor assembly •Wire harness	ON
B0105/53 (DI–657)	•Short in P squib circuit	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0106/54 (DI–661)	•Open in P squib circuit	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0107/51 (DI–664)	•Short in P squib circuit (to Ground)	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
B0108/52 (DI-667)	•Short in P squib circuit (to B+)	 Front passenger airbag assembly (squib) Airbag sensor assembly Wire harness 	ON
TMC made: B0110/43 (DI–670)	•Short in side squib (RH) circuit	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink
TMMK made: B0110/43 (DI–674)	•Short in side squib (RH) circuit	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0111/44 (DI–679)	•Open in side squib (RH) circuit	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink
TMMK made: B0111/44 (DI–682)	•Open in side squib (RH) circuit	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0112/41 (DI–686)	•Short in side squib (RH) circuit (to Ground)	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness 	Blink

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

DTC No. (See Page)	Detection Item	Trouble Area	SRS Warning Light
TMMK made: B0112/41 (DI–689)	 Short in side squib (RH) circuit (to Ground) 	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0113/42 (DI–693)	•Short in side squib (RH) circuit (to B+)	Side airbag assembly RH (squib)Airbag sensor assemblyWire harness	Blink
TMMK made: B0113/42 (DI–696)	•Short in side squib (RH) circuit (to B+)	 Side airbag assembly RH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0115/47 (DI–700)	 Short in side squib (LH) circuit 	Side airbag assembly LH (squib)Airbag sensor assemblyWire harness	Blink
TMMK made: B0115/47 (DI–704)	 Short in side squib (LH) circuit 	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0116/48 (DI–709)	 Open in side squib (LH) circuit 	Side airbag assembly LH (squib)Airbag sensor assemblyWire harness	Blink
TMMK made: B0116/48 (DI–712)	•Open in side squib (LH) circuit	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0117/45 (DI–716)	•Short in side squib (LH) circuit (to Ground)	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness 	Blink
TMMK made: B0117/45 (DI–719)	 Short in side squib (LH) circuit (to Ground) 	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
TMC made: B0118/46 (DI–723)	•Short in side squib (LH) circuit (to B+)	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness 	Blink
TMMK made: B0118/46 (DI–726)	•Short in side squib (LH) circuit (to B+)	 Side airbag assembly LH (squib) Airbag sensor assembly Wire harness Sub wire harness 	Blink
B0130/63 (DI-730)	•Short in P/T squib (RH) circuit	Seat belt pretensioner RH (squib)Airbag sensor assemblyWire harness	Blink
B0131/64 (DI–734)	•Open in P/T squib (RH) circuit	 Seat belt pretensioner RH (squib) Airbag sensor assembly Wire harness 	Blink
B0132/61 (DI–737)	•Short in P/T squib (RH) circuit (to Ground)	Seat belt pretensioner RH (squib)Airbag sensor assemblyWire harness	Blink
B0133/62 (DI-740)	•Short in P/T squib (RH) circuit (to B+)	Seat belt pretensioner RH (squib)Airbag sensor assemblyWire harness	Blink

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

DTC No. (See Page)	Detection Item	Trouble Area	SRS Warning Light
B0135/73 (DI–743)	●Short in P/T squib (LH) circuit	Seat belt pretensioner LH (squib)Airbag sensor assemblyWire harness	Blink
B0136/74 (DI–747)	●Open in P/T squib (LH) circuit	Seat belt pretensioner LH (squib)Airbag sensor assemblyWire harness	Blink
B0137/71 (DI–750)	•Short in P/T squib (LH) circuit (to Ground)	Seat belt pretensioner LH (squib)Airbag sensor assemblyWire harness	Blink
B0138/72 (DI–753)	 Short in P/T squib (LH) circuit (to B+) 	Seat belt pretensioner LH (squib)Airbag sensor assemblyWire harness	Blink
B1100/31 (DI–756)	 Airbag sensor assembly malfunction 	•Airbag sensor assembly	ON
B1140/32 (DI-758)	 Side airbag sensor assembly (RH) malfunction 	Side airbag sensor assembly (RH)Wire harness	Blink
B1141/33 (DI–766)	 Side airbag sensor assembly (LH) malfunction 	•Side airbag sensor assembly (LH) •Wire harness	Blink
B1156/B1157/ 15 (DI–774)	 Front airbag sensor (RH) malfunction 	Front airbag sensor (RH)Wire harnessEngine room main wire harness	ON
B1158/B1159/ 16 (DI–782)	 Front airbag sensor (LH) malfunction 	Front airbag sensor (LH)Wire harness	ON
	 System normal 	-	OFF
Normal (DI–787)	•Voltage source drop	•Battery •Airbag sensor assembly	ON

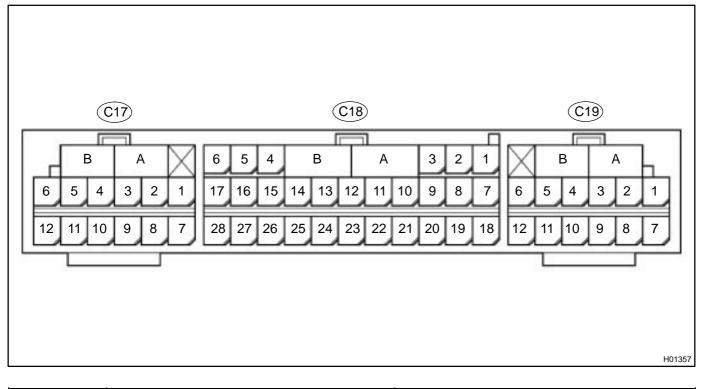

HINT:

• When the SRS warning light remains lit up and the DTC is the normal code, this means a voltage source drops.

This malfunction is not stored in memory by the airbag sensor assembly and if the power source voltage returns to normal, the SRS warning light will automatically go out.

- When 2 or more codes are indicated, the codes will be displayed in numeral order starting from the lowest numbered code.
- If a code not listed on the chart is displayed, the airbag sensor assembly is faulty.

PARTS LOCATION



Author :

DI1B0-04

DI1B1-08

TERMINALS OF ECU

No.	Symbol	Terminal Name
А	_	Electrical Connector Check Mechanism
В	_	Electrical Connector Check Mechanism
C18 – 3	LA	SRS Warning Light
C18 – 5	IG2	Power Source (IGN Fuse)
C18 – 6	ACC	Power Source (CIG Fuse)
C18 – 9	SR+	Front Airbag Sensor (RH)
C18 – 10	P+	Squib (Passenger)
C18 – 11	P–	Squib (Passenger)
C18 – 12	SIL	Diagnosis
C18 – 13	D-	Squib (Driver)
C18 – 14	D+	Squib (Driver)
C18 – 15	SL+	Front Airbag Sensor (LH)
C18 – 19	Тс	Diagnosis
C18 – 20	SR–	Front Airbag Sensor (RH)
C18 – 26	SL-	Front Airbag Sensor (LH)
C18 – 27	E1	Ground
C18 – 28	E2	Ground
C17 – 1	PL-	Squib (Seat Belt Pretensioner, LH)
C17 – 2	PL+	Squib (Seat Belt Pretensioner, LH)
C17 – 5	SFL+	Squib (Side, LH)
C17 – 6	SFL-	Squib (Side, LH)
C17 – 7	VUPL	Side Airbag Sensor (LH)
C17 – 9	SSL+	Side Airbag Sensor (LH)
C17 – 10	FSL	Side Airbag Sensor (LH)
C17 – 12	ESL	Side Airbag Sensor (LH)

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

No.	Symbol	Terminal Name
C19 – 1	SFR-	Squib (Side, RH)
C19-2	SFR+	Squib (Side, RH)
C19 – 5	PR+	Squib (Pretensioner, RH)
C19-6	PR-	Squib (Pretensioner, RH)
C19 – 7	ESR	Side Airbag Sensor (RH)
C19 – 9	FSR	Side Airbag Sensor (RH)
C19 – 10	SSR+	Side Airbag Sensor (RH)
C19 – 12	VUPR	Side Airbag Sensor (RH)

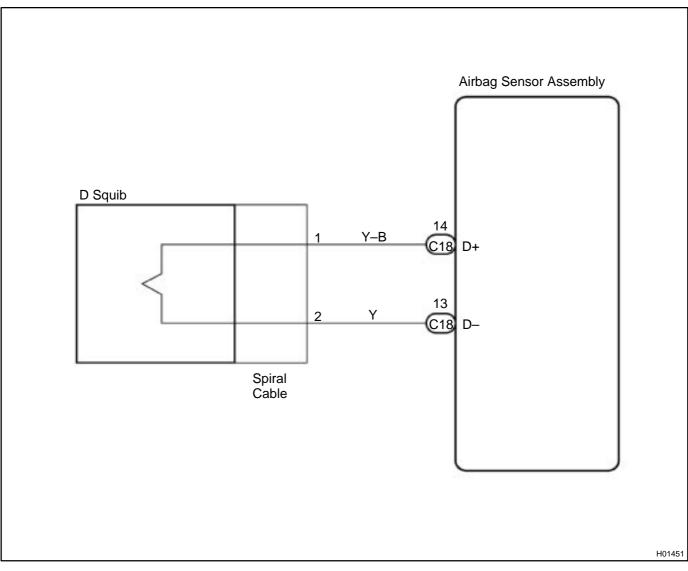
PROBLEM SYMPTOMS TABLE

DI164-18

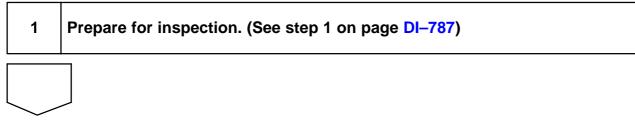
Proceed with troubleshooting of each circuit in the table below.

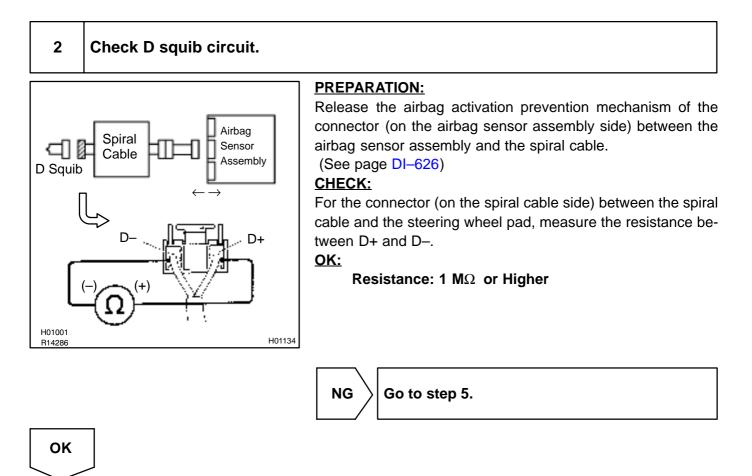
Symptom	Suspect Area	See page
•With the ignition switch in ACC or ON position, the SRS warning light sometimes lights up after approx. 6 seconds have elapsed.	•SRS warning light circuit	DI790
•SRS warning light is always lit up even when ignition switch is in the LOCK position.	(Always lights up when ignition switch is in LOCK posi- tion.)	
•With the ignition switch in ACC or ON position, the SRS warning light does not light up.	•SRS warning light circuit (Does not light up when ignition switch is turned to ACC or ON.)	DI-792
•DTC is not displayed.		
•SRS warning light is always lit up at the time of DTC check pro- cedure.	●Tc terminal circuit	DI-796
•DTC is displayed without Tc and E1 terminal connection.		

CIRCUIT INSPECTION

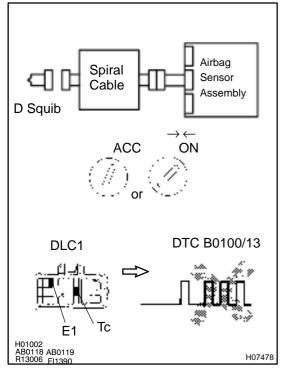

DTC B0100/13 Short in D Squib Circuit

CIRCUIT DESCRIPTION


The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0100/13 is recorded when a short is detected in the D squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0100/13	 Short circuit between D+ wire harness and D- wire harness of squib D squib malfunction Spiral cable malfunction Airbag sensor assembly malfunction 	 Steering wheel pad (D squib) Spiral cable Airbag sensor assembly Wire harness

WIRING DIAGRAM


INSPECTION PROCEDURE

DI-641

3 Check airbag sensor assembly.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

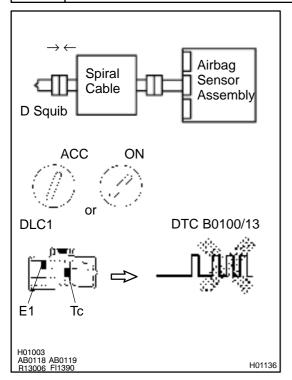
- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0100/13 is not output.

HINT:

Codes other than code B0100/13 may be output at this time, but they are not relevant to this check.



Replace airbag sensor assembly.

OK

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

4 Check D squib.

PREPARATION:

(a) Turn ignition switch to LOCK.

- (b) Disconnect negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- Connect the steering wheel pad connector. (c)
- Connect negative (-) terminal cable to the battery, and (d) wait at least for 2 seconds.

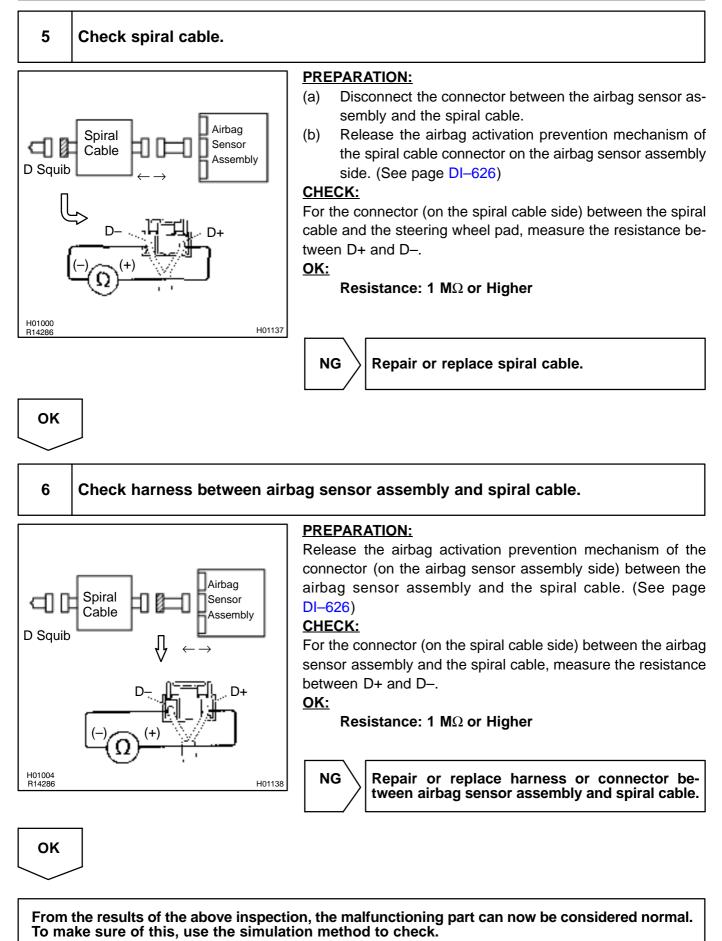
CHECK:

- (a) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (b) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- Clear DTC stored in memory. (C) (See page DI-626)
- (d) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- Turn ignition switch to ACC or ON, and wait at least for 20 (e) seconds.
- Check DTC. (f) (See page DI-626)

<u>OK:</u>

DTC B0100/13 is not output.

HINT:


Codes other than code B0100/13 may be output at this time, but they are not relevant to this check.

NG

Replace steering wheel pad.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI18R-16

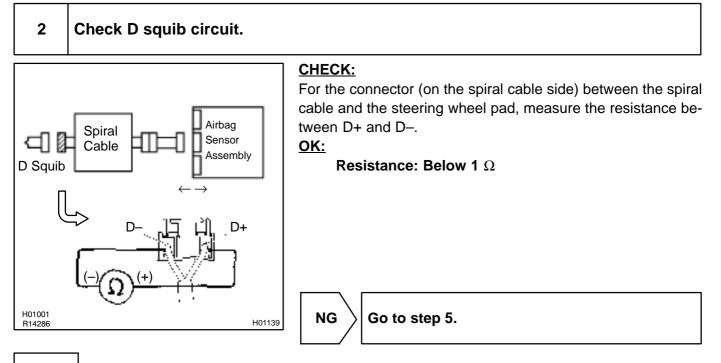
DTC

B0101/14

Open in D Squib Circuit

CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0101/14 is recorded when an open is detected in the D squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0101/14	 Open circuit in D+ wire harness or D- wire harness of squib D squib malfunction Spiral cable malfunction Airbag sensor assembly malfunction 	 Steering wheel pad (D squib) Spiral cable Airbag sensor assembly Wire harness

WIRING DIAGRAM

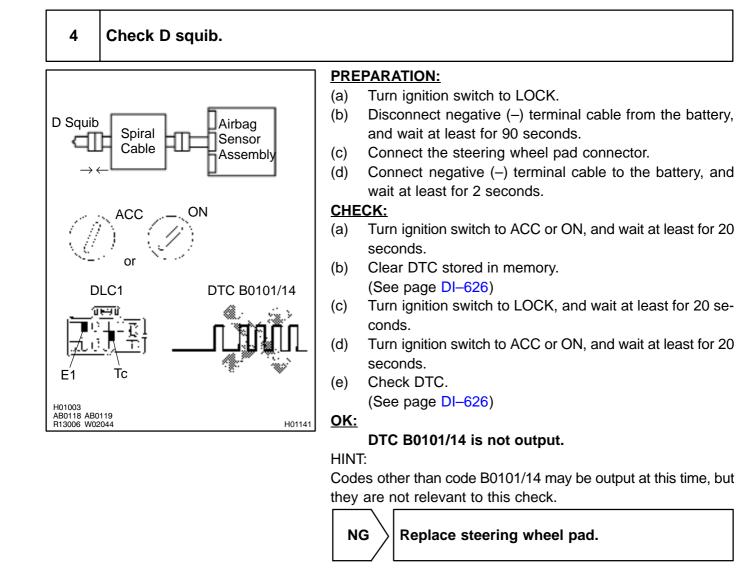
See page DI-640.

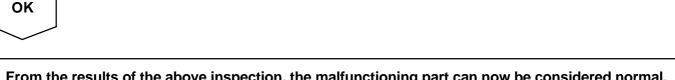
INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI-787)

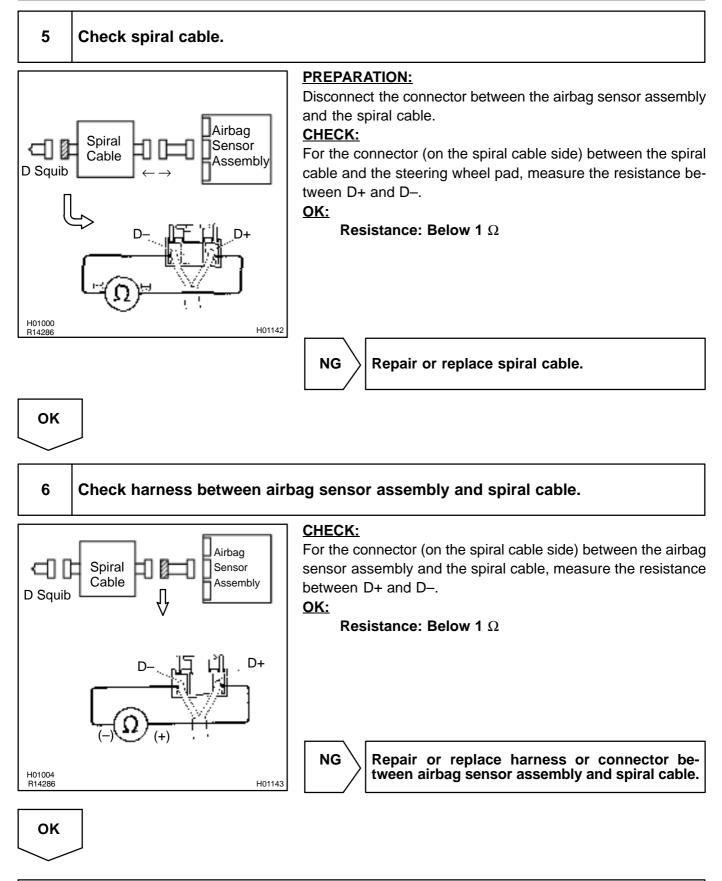
οκ

3 Check airbag sensor assembly. **PREPARATION:** (a) Connect the connector to the airbag sensor assembly. (b) Using a service wire, connect D+ and D– of the connector Airbag (on the spiral cable side) between the spiral cable and the Spiral Sensor N. d I Cable steering wheel pad. Assemblv Connect negative (-) terminal cable to the battery, and (c) D Squib wait at least for 2 seconds. CHECK: ON ACC (a) Turn ignition switch to ACC or ON, and wait at least for 20 D+ Dseconds. (b) Clear DTC stored in memory. (See page DI-626) DLC1 Turn ignition switch to LOCK, and wait at least for 20 se-(C) DTC B0101/14 conds. (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds. Check DTC. (e) To E1 (See page DI-626) H01002 AB0069 AB0118 AB0119 R13006 W02044 OK: H01140 DTC B0101/14 is not output.


HINT:


Codes other than code B0101/14 may be output at this time, but they are not relevant to this check.

NG


Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

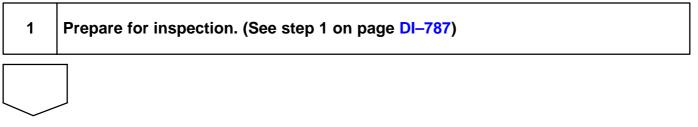
DI4L2-01

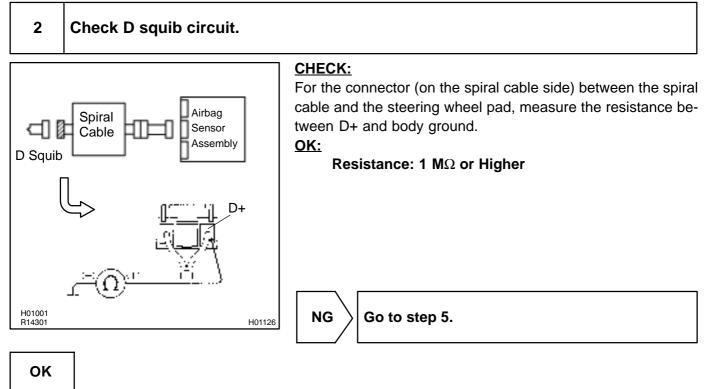
DTC

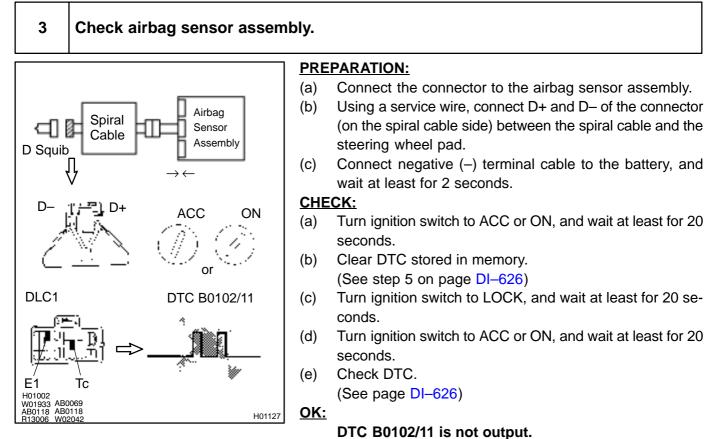
B0102/11

Short in D Squib Circuit (to Ground)

CIRCUIT DESCRIPTION


The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0102/11 is recorded when a ground short is detected in the D squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit in D squib wire harness (to ground) 	●Steering wheel pad (D squib)
B0102/11	 D squib malfunction 	•Spiral cable
D0102/11	 Spiral cable malfunction 	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness

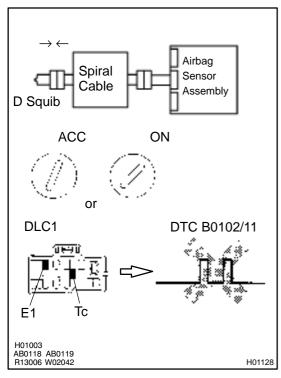

WIRING DIAGRAM

See page DI-640.

INSPECTION PROCEDURE

HINT:

Codes other than code B0102/11 may be output at this time, but they are not relevant to this check.


NG

Replace airbag sensor assembly.

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

4 Check D squib.

OK

PREPARATION:

(a) Turn ignition switch to LOCK.

- (b) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the steering wheel pad connector.
- (d) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

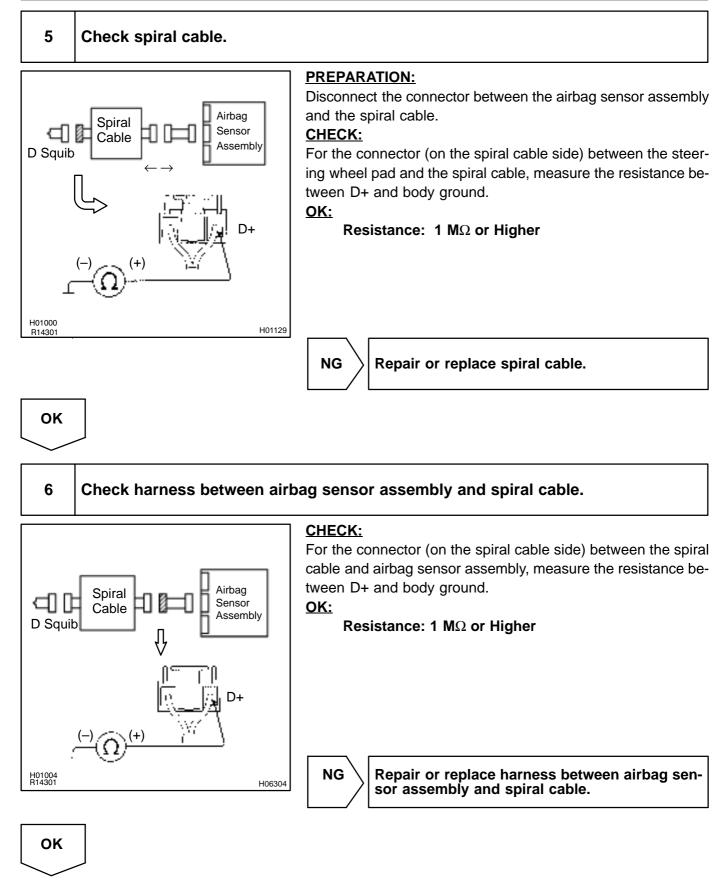
CHECK:

- (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0102/11 is not output.

HINT:


Codes other than code B0102/11 may be output at this time, but they are not relevant to this check.

NG

 \rangle Replace steering wheel pad.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

Date :

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI4I 3-01

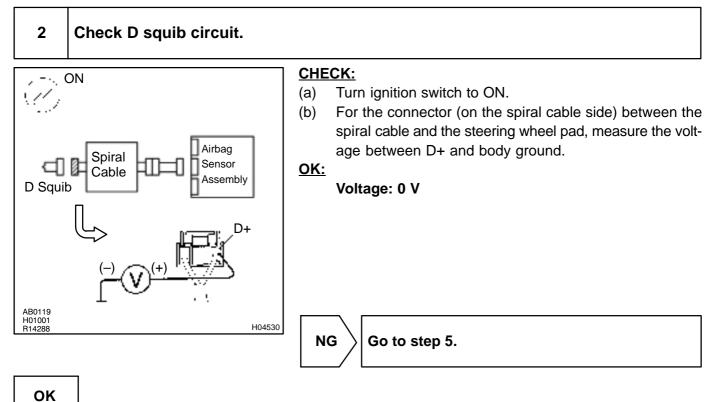
DTC

B0103/12

Short in D Squib Circuit (to B+)

CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, spiral cable and steering wheel pad. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0103/12 is recorded when a B+ short is detected in the D squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit in D squib wire harness (to B+) 	 Steering wheel pad (D squib)
B0103/12	 D squib malfunction 	●Spiral cable
D0103/12	 Spiral cable malfunction 	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness

WIRING DIAGRAM

See page DI-640.

INSPECTION PROCEDURE

Author :

DTC B0103/12 is not output.

they are not relevant to this check.

Codes other than code B0103/12 may be output at this time, but

Replace airbag sensor assembly.

3 Check airbag sensor assembly. **PREPARATION:** (a) Connect the connector to the airbag sensor assembly. (b) Using a service wire, connect D+ and D– of the connector Airbag Spiral (on the spiral cable side) between the spiral cable and the Sensor Cable Assembly steering wheel pad. D Squib Connect negative (-) terminal cable to the battery, and (c) Ŋ wait at least for 2 seconds. ACC ON D+ CHECK: D (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds. (b) Clear DTC stored in memory. DTC B0103/12 (See step 5 on page DI-626) DLC1 Turn ignition switch to LOCK, and wait at least for 20 se-(c) . a. 3 conds. (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds. E1 Тс Check DTC. (e) (See page DI-626) H01002 AB0069 AB0118 AB0119 R13006 W02043 OK: H01131

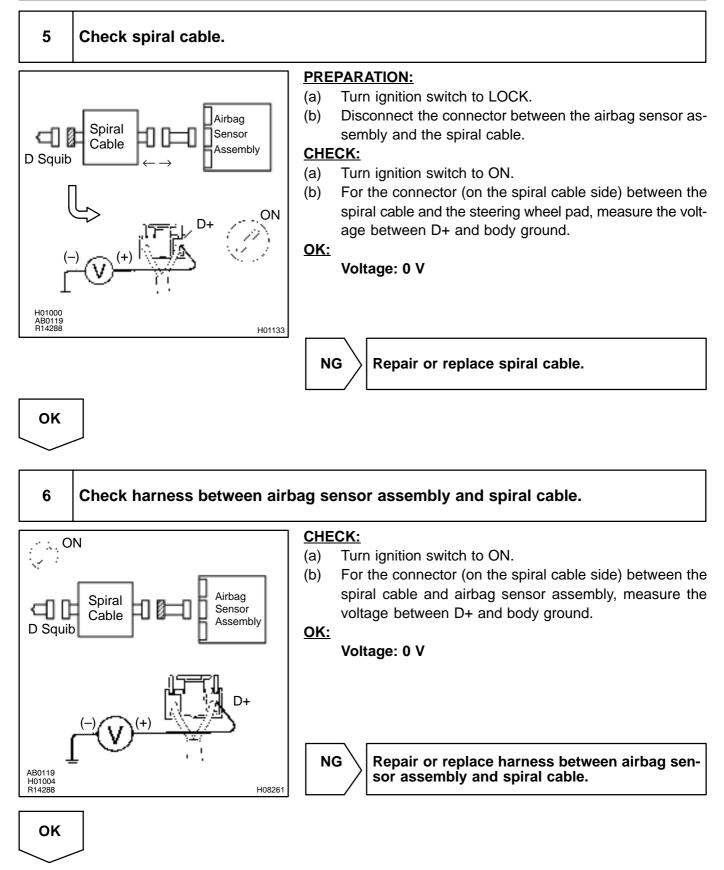
HINT:

NG

ОК

Author :

4 Check D squib. PREPARATION: (a) Turn ignition switch to LOCK. (b) Disconnect negative (-) terminal cable from the battery, Airbag and wait at least for 90 seconds. Spiral Sensor Connect the steering wheel pad connector. Cable (c) Assembly D Squib Connect negative (-) terminal cable to the battery, and (d) wait at least for 2 seconds. CHECK: ACC ON (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds. (b) Clear DTC stored in memory. or (See step 5 on page DI-626) DTC B0103/12 DLC1 Turn ignition switch to LOCK, and wait at least for 20 se-(C) conds. (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds. (e) Check DTC. E1 Tc (See page DI-626) H01003 AB0118 AB0019 OK: H01132 R13006 W02043 DTC B0103/12 is not output. HINT:


Codes other than code B0103/12 may be output at this time, but they are not relevant to this check.

NG

OK

 \rangle Replace steering wheel pad.

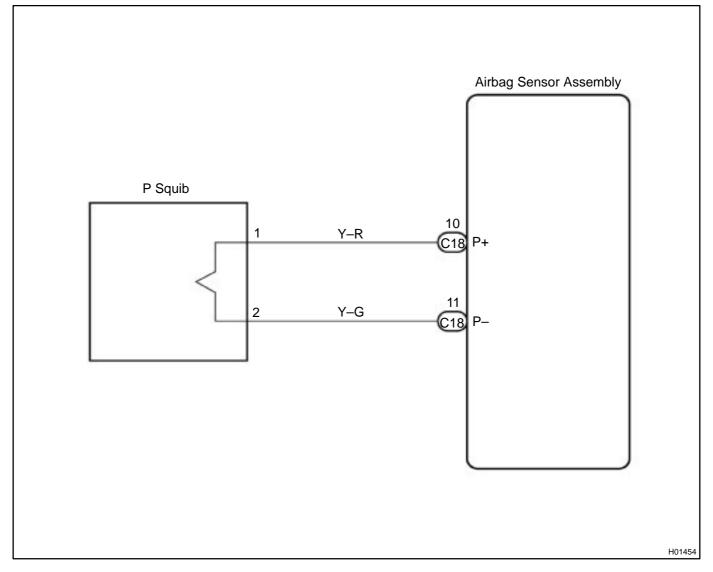
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

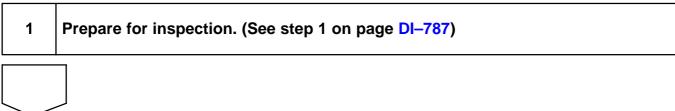
DI1B6-12

DTC

B0105/53

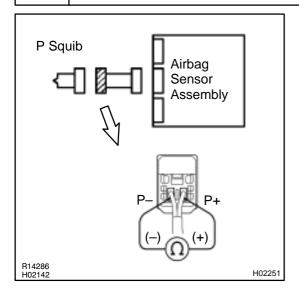

Short in P Squib Circuit

CIRCUIT DESCRIPTION


The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0105/53 is recorded when a short is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	•Short circuit in P squib wire harness	•Front passenger airbag assembly (P squib)
B0105/53	●P squib malfunction	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness

WIRING DIAGRAM



INSPECTION PROCEDURE

2

Check P squib circuit.

PREPARATION:

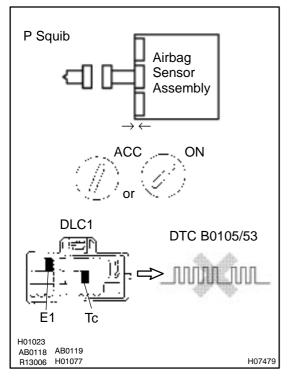
Release airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the front passenger airbag assembly and the airbag sensor assembly. (See page DI–626)

CHECK:

For the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly, measure the resistance between P+ and P-.

<u> 0K:</u>

Resistance: 1 M Ω or Higher



Repair or replace harness or connector between front passenger airbag assembly and airbag sensor assembly.

ОК

3

Check airbag sensor assembly.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

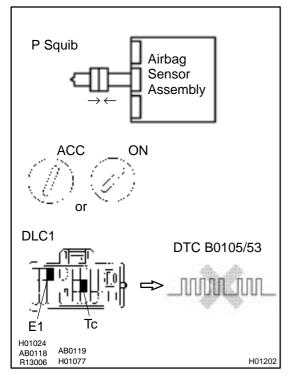
CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0105/53 is not output.

HINT:


Codes other than code B0105/53 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

ОК

4 Check P squib.

PREPARATION:

(a) Turn ignition switch to LOCK.

- (b) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the front passenger airbag assembly connector.
- (d) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to LOOK, and wait at least for 20 seconds.
- (b) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (c) Clear DTC stored in memory.
 - (See page DI-626)
- (d) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (e) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (f) Check DTC. (See page DI–626)

<u> 0K:</u>

DTC B0105/53 is not output.

HINT:

Codes other than code B0105/53 may be output at this time, but they are not relevant to this check.

NG

Replace front passenger airbag assembly.

ок

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

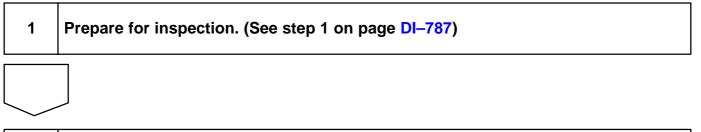
DI1B7-17

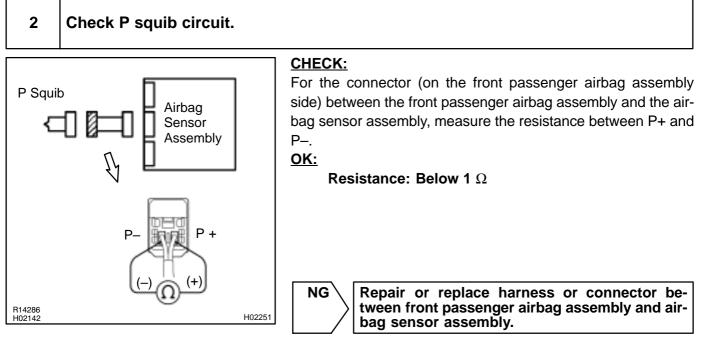
DTC

B0106/54

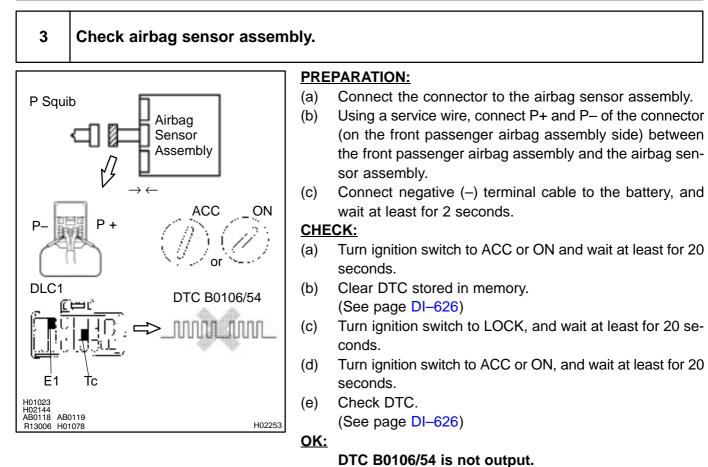
Open in P Squib Circuit

CIRCUIT DESCRIPTION


The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0106/54 is recorded when an open is detected in the P squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0106/54	 Open circuit in P+ wire harness or P- wire harness of squib P squib malfunction Airbag sensor assembly malfunction 	 Front passenger airbag assembly (P squib) Airbag sensor assembly Wire harness

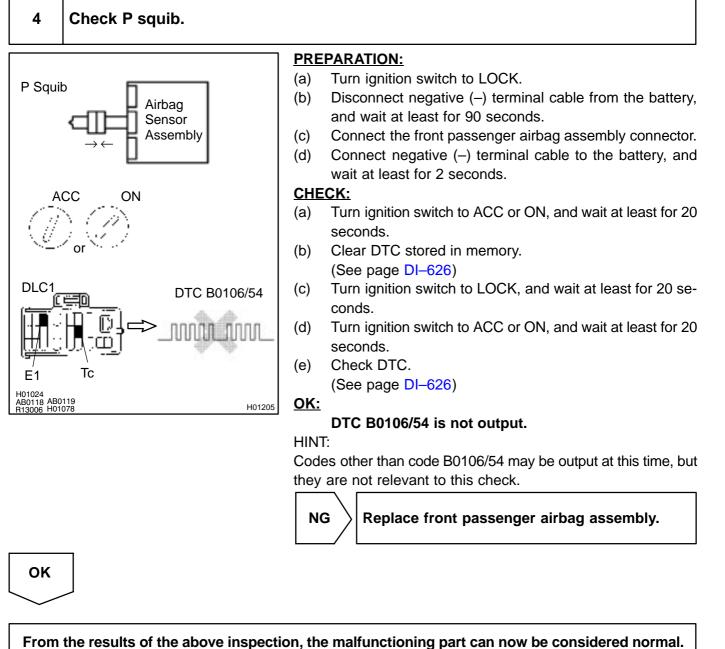
WIRING DIAGRAM


See page DI-657.

INSPECTION PROCEDURE

οκ

HINT:


Codes other than code B0106/54 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

To make sure of this, use the simulation method to check.

DI1B8-11

DTC

B0107/51

Short in P Squib Circuit (to Ground)

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-2. DTC B0107/51 is recorded when ground short is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit in P squib wire harness (to ground) 	 Front passenger airbag assembly (P squib)
B0107/51	●P squib malfunction	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	●Wire harness

WIRING DIAGRAM

See page DI-657.

INSPECTION PROCEDURE

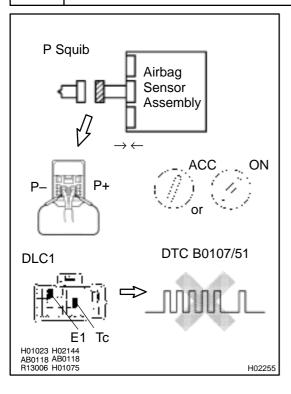
1	Prepare for inspection. (See	e step 1 on page DI–787)
2	Check P squib circuit.	
P Squi	Airbag Sensor Assembly	CHECK: For the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly, measure the resistance between P+ and body ground.

OK:

Resistance: 1 M Ω or Higher

NG

H02254


Repair or replace harness or connector between front passenger airbag assembly and airbag sensor assembly.

OK

H01227

102145

3 Check airbag sensor assembly.

PREPARATION:

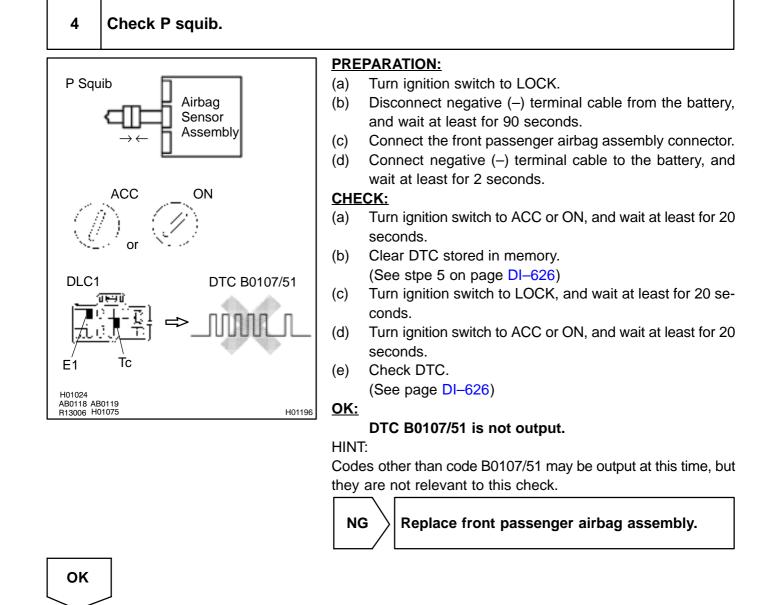
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect P+ and P- of the connector (on the front passenger airbag assembly side) between the front passenger airbag assembly and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0107/51 is not output.


HINT:

Codes other than code B0107/51 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI1B9-16

DTC

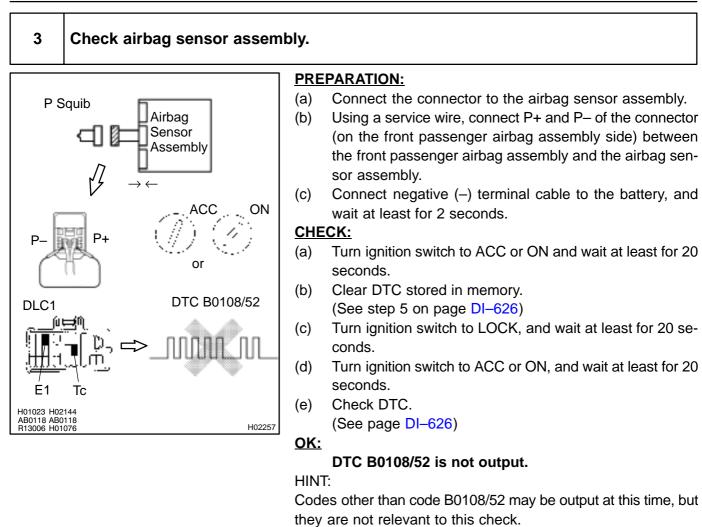
B0108/52

Short in P Squib Circuit (to B+)

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0108/52 is recorded when a B+ short is detected in the P squib circuit.

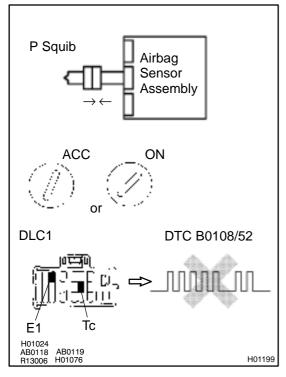
DTC No.	DTC Detecting Condition	Trouble Area
D0400/50	•Short circuit in P squib wire harness (to B+)	•Front passenger airbag assembly (P squib)
B0108/52	 P squib malfunction 	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness


WIRING DIAGRAM

See page DI-657.

INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI–787)	
2	Check P squib circuit.	


NG

Replace airbag sensor assembly.

OK

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

4 Check P squib.

PREPARATION:

(a) Turn ignition switch to LOCK.

- (b) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the front passenger airbag assembly connector.
- (d) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0108/52 is not output.

HINT:

Codes other than code B0108/52 may be output at this time, but they are not relevant to this check.

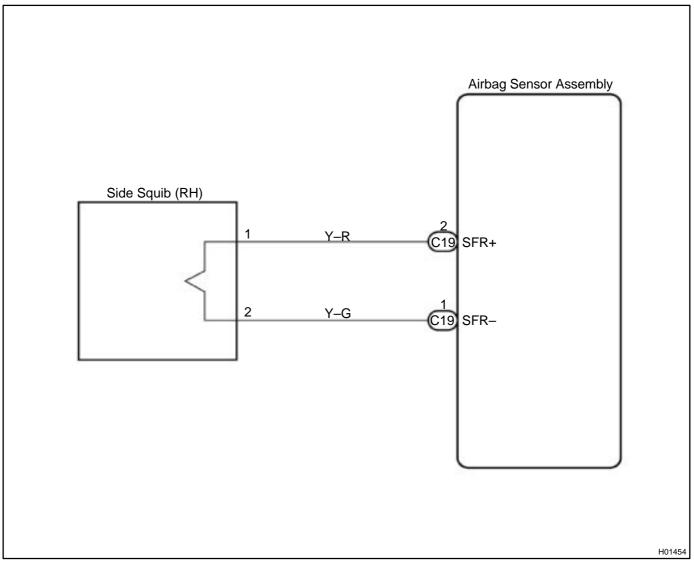
NG

Replace front passenger airbag assembly.

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI16G-08

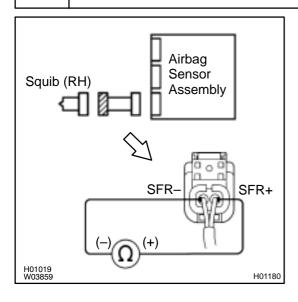

DTC B0110/43 Short in Side Squib (RH) Circuit (TMC Made)

CIRCUIT DESCRIPTION

The side squib (RH) circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0110/43 is recorded when a short is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0110/43	 Short circuit between SFR+ wire harness and SFR- wire harness of squib Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection. (See step 1 on page DI–787)

2

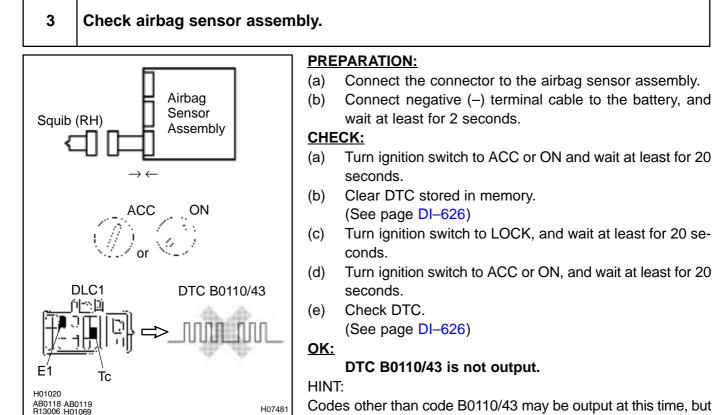
Check side squib (RH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the side airbag assembly (RH). (See page DI–626)

CHECK:

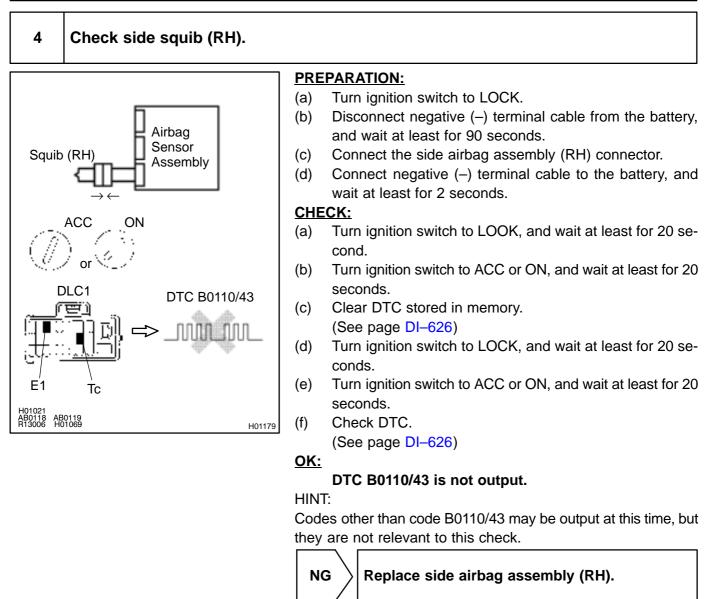
For the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly, measure the resistance between SFR+ and SFR-.


<u>OK:</u>

Resistance: 1 M Ω or Higher

Repair or replace harness or connector between side airbag assembly (RH) and airbag sensor assembly.

OK



Codes other than code B0110/43 may be output at this time, but they are not relevant to this check.

NG

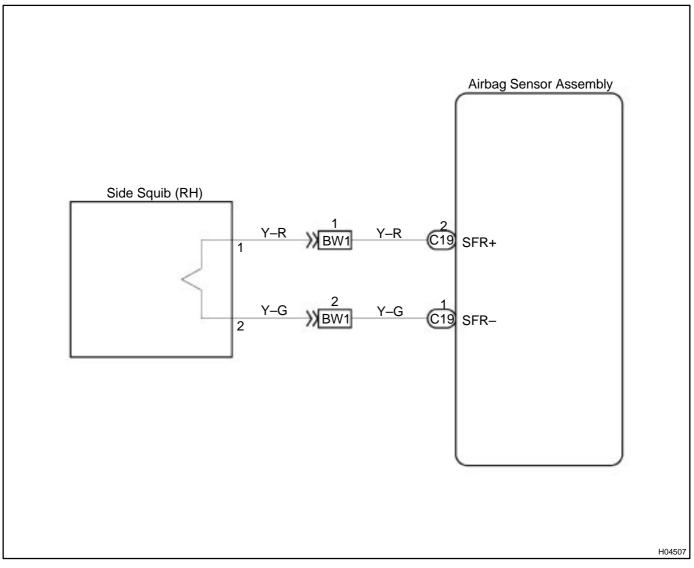
Replace airbag sensor assembly.

OK

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI1KY-02

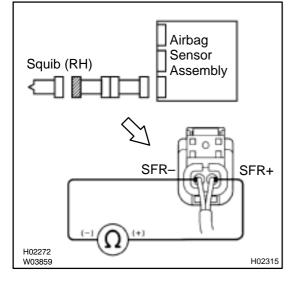

DTC B0110/43 Short in Side Squib (RH) Circuit (TMMK Made)

CIRCUIT DESCRIPTION

The side squib (RH) circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0110/43 is recorded when a short is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit between SFR+ wire harness and SFR- wire harness of squib 	Side airbag assembly (RH)Airbag sensor assembly
B0110/43	 Side squib (RH) malfunction 	•Wire harness
	 Airbag sensor assembly malfunction 	•Sub wire harness

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection. (See step 1 on page DI–787)

2

Check side squib (RH) circuit.

PREPARATION:

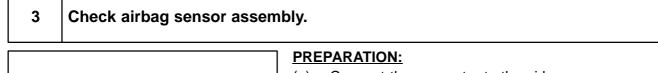
Release airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the side airbag assembly (RH). (See page DI–626)

CHECK:

For the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly, measure the resistance between SFR+ and SFR-.

<u>OK:</u>

Resistance: 1 M Ω or Higher


NG Go to step 5.

οκ

Squib (RH)

DLC1

的小问

- (a) Connect the connector to the airbag sensor assembly.
- (b) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

Airbag Sensor

 $\rightarrow \leftarrow$

ACC

Assembly

ON

DTC B0110/43

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

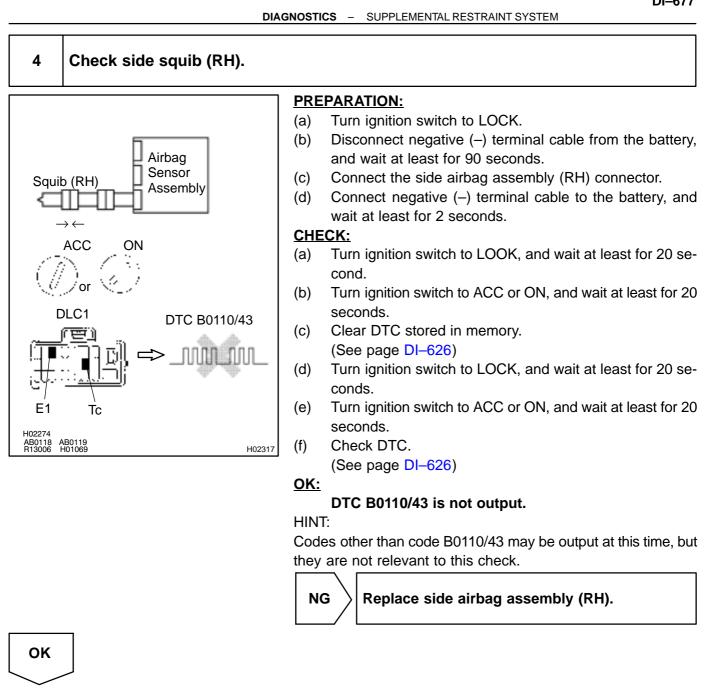
<u>OK:</u>

DTC B0110/43 is not output.

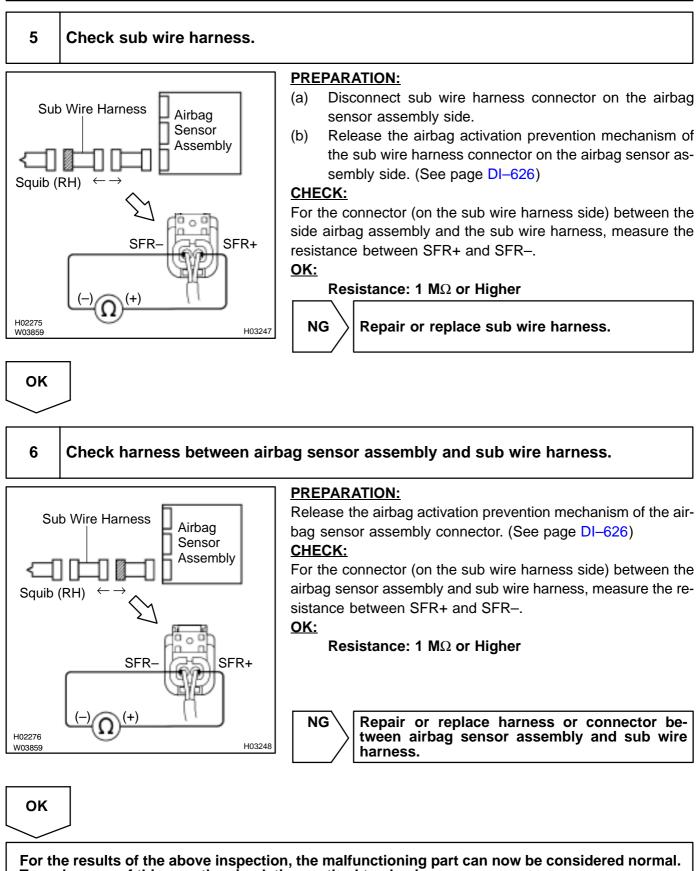
HINT:

H08249

Codes other than code B0110/43 may be output at this time, but they are not relevant to this check.



Replace airbag sensor assembly.


ОК

H08250

W03860 AB0118 AB0119 R13006 H01069

For the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

To make sure of this, use the simulation method to check.

DI1BA-03

DTC

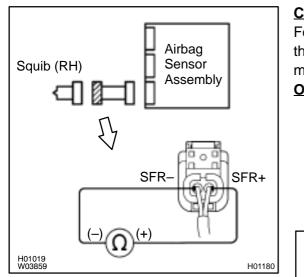
B0111/44

Open in Side Squib (RH) Circuit (TMC Made)

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0111/44 is recorded when an open is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0111/44	 Open circuit in SFR+ wire harness or SFR- wire harness of squib Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness


WIRING DIAGRAM

See page DI–670.

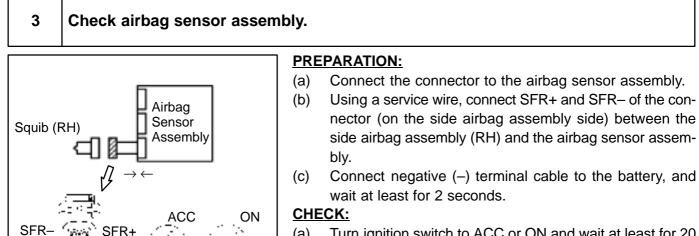
INSPECTION PROCEDURE

	1	Prepare for inspection. (See step 1 on page DI–787)
1		

2 Check side squib (RH) circuit.

CHECK:

For the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly, measure the resistance between SFR+ and SFR–.


<u>OK:</u>

NG

Resistance: Below 1 Ω

Repair or replace harness or connector between side airbag assembly (RH) and airbag sensor assembly.

ΟΚ

or

DTC B0111/44

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

H01181

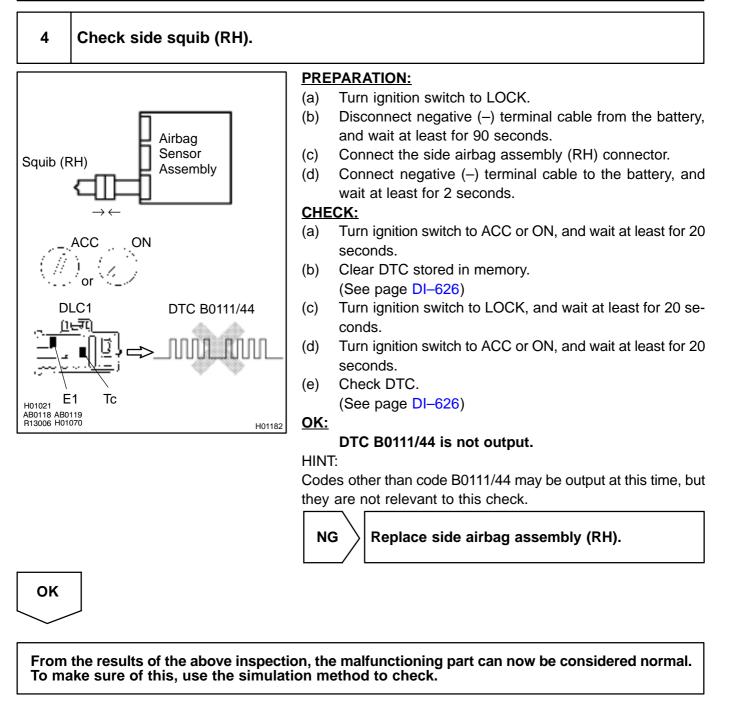
DTC B0111/44 is not output.

HINT:

Codes other than code B0111/44 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.


ΟΚ

DLC1

Тс

H01020 W03860 E1 AB0118 AB0119 R13006 H01070

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

DI1L0-02

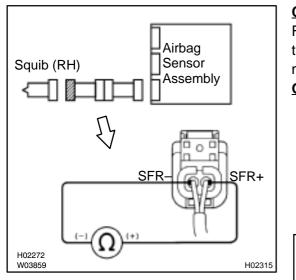
DTC B0111/44 Open in Side Squib (RH) Circuit (TMMK Made)

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0111/44 is recorded when an open is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	 Open circuit in SFR+ wire harness or SFR- wire harness 	●Side airbag assembly (RH)
B0111/44	of squib	 Airbag sensor assembly
D0111/44	 Side squib (RH) malfunction 	•Wire harness
	 Airbag sensor assembly malfunction 	●Sub wire harness

WIRING DIAGRAM


See page DI-674.

OK

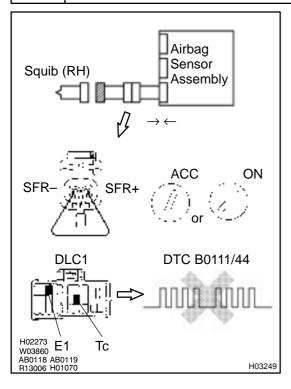
INSPECTION PROCEDURE

	1	Prepare for inspection. (See step 1 on page DI–787)	

2 Check side squib (RH) circuit.

CHECK:

For the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly, measure the resistance between SFR+ and SFR–.


<u>OK:</u>

NG

Resistance: Below 1 Ω

 \rangle Go to step 5.

3 Check airbag sensor assembly.

PREPARATION:

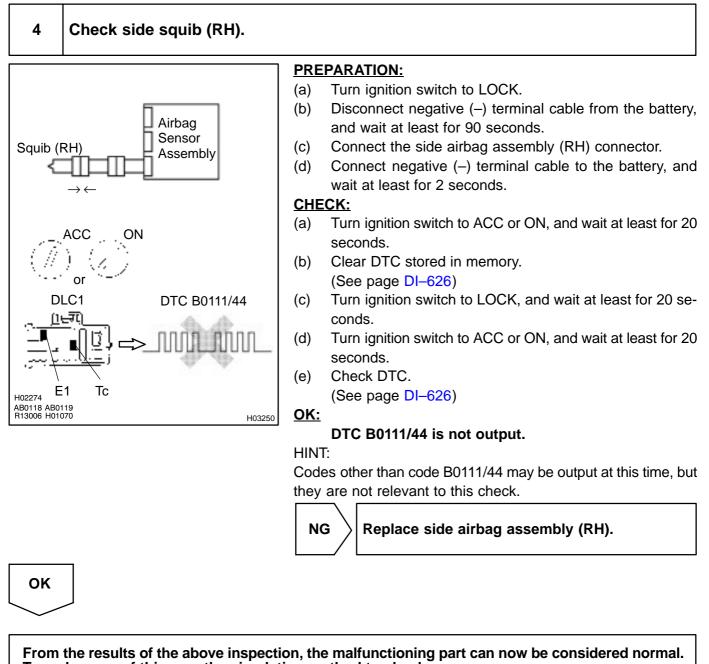
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

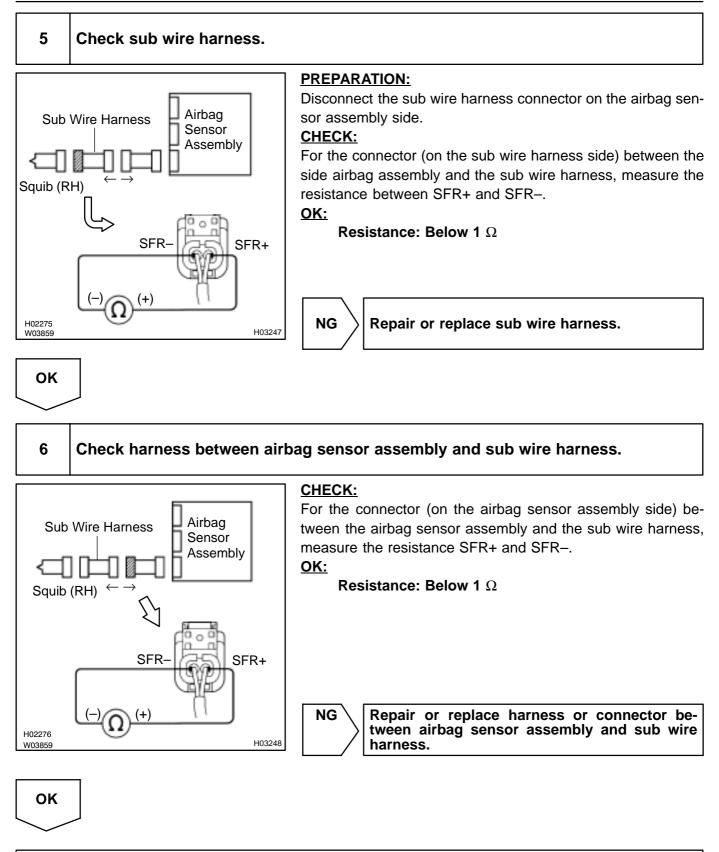
- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0111/44 is not output.


HINT:

Codes other than code B0111/44 may be output at this time, but they are not relevant to this check.


NG

Replace airbag sensor assembly.

ОК

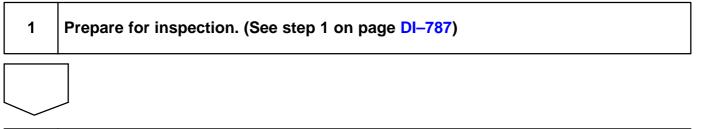
To make sure of this, use the simulation method to check.

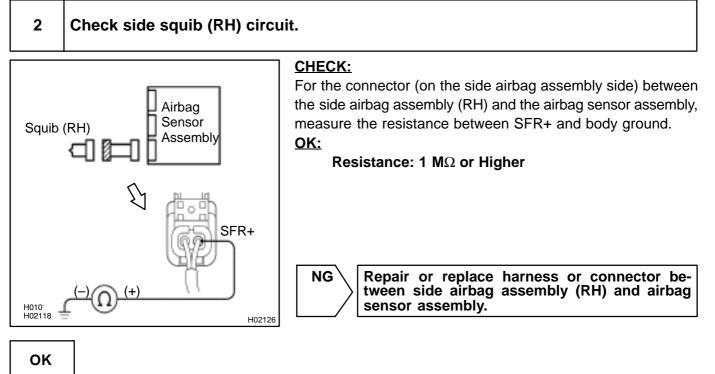
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI1BB-03

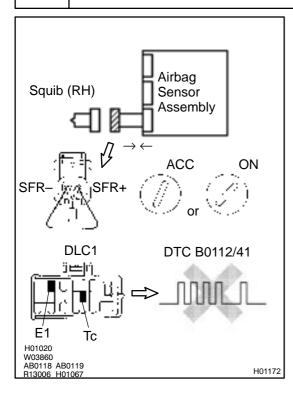
DTC B0112/41 Short in Side Squib (RH) Circuit (to Ground) (TMC Made)

CIRCUIT DESCRIPTION


The side squib circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0112/41 is recorded when ground short is detected in the side squib (RH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0112/41	 Short circuit in side squib (RH) wire harness (to ground) Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM


See page DI-670.

INSPECTION PROCEDURE

3 Check airbag sensor assembly.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

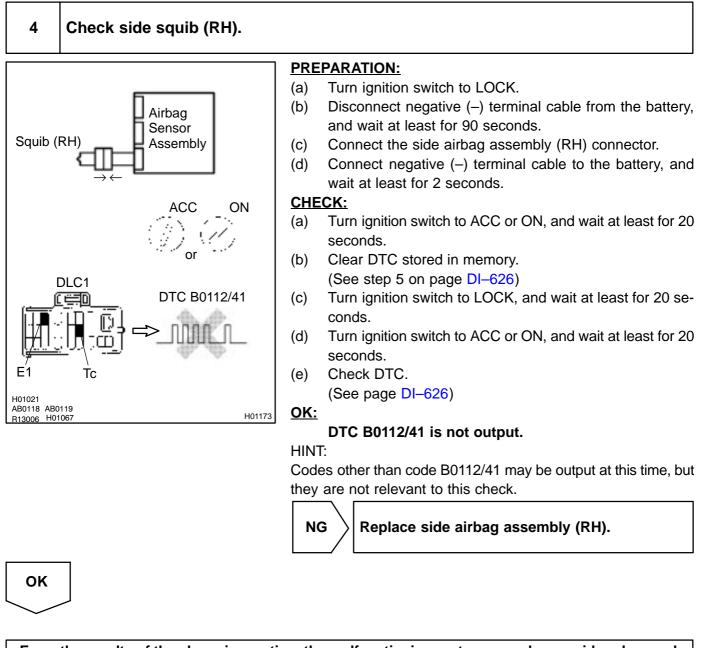
CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0112/41 is not output.

HINT:


Codes other than code B0112/41 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

DI-688

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI4L4--01

DTC

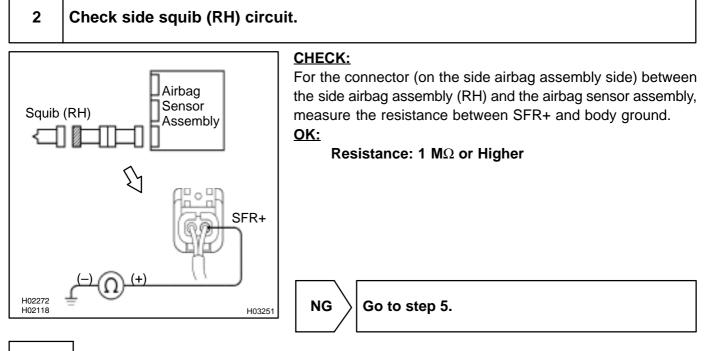
B0112/41

Short in Side Squib (RH) Circuit (to Ground) (TMMK Made)

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0112/41 is recorded when ground short is detected in the side squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0112/41	 Short circuit in side squib (RH) wire harness (to ground) Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness Sub wire harness


WIRING DIAGRAM

See page DI-674.

OK

INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI–787)

Author :

Squib (RH)

SFR

E1

H02273 W03860

AB0118 AB0119 R13006 H01067

B

SFR+

DLC1

ï⊫li

Tc

Assembly

DTC B0112/41

ON

ACC

- nector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assemblv.
- Connect negative (-) terminal cable to the battery, and (c) wait at least for 2 seconds.

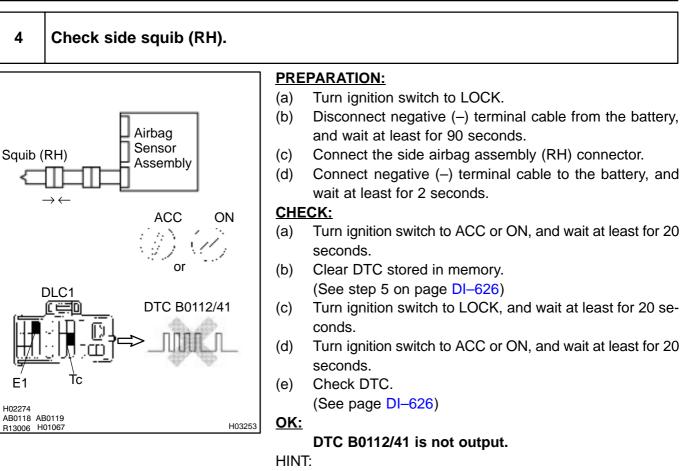
CHECK:

- Turn ignition switch to ACC or ON and wait at least for 20 (a) seconds.
- Clear DTC stored in memory. (b) (See step 5 on page DI-626)
- Turn ignition switch to LOCK, and wait at least for 20 se-(C) conds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI-626)

<u>OK:</u>

H03252

DTC B0112/41 is not output.


HINT:

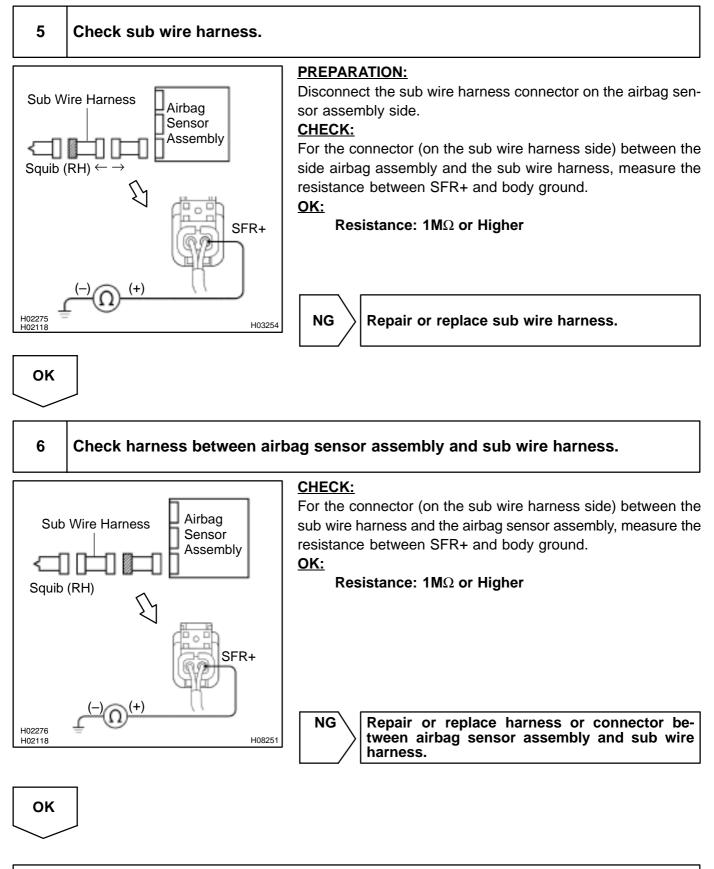
Codes other than code B0112/41 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ΟΚ

Codes other than code B0112/41 may be output at this time, but they are not relevant to this check.


NG

OK

Replace side airbag assembly (RH).

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI-692

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI1BC-03

DTC

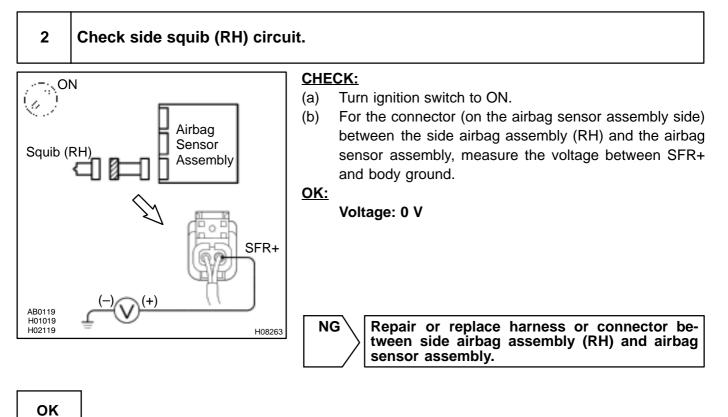
B0113/42

Short in Side Squib (RH) Circuit (to B+) (TMC Made)

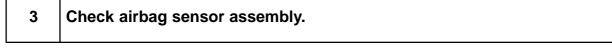
CIRCUIT DESCRIPTION

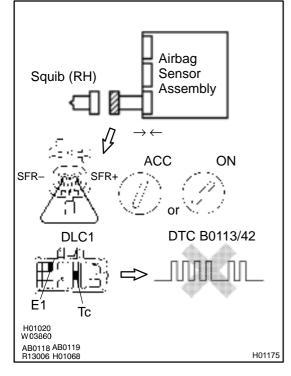
The side squib circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2.

DTC B0113/42 is recorded when a B+ short is detected in the side squib (RH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
•Short circuit in side squib (RH) wire harness (to B+)		●Side airbag assembly (RH)
B0113/42	 Side squib (RH) malfunction 	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness

WIRING DIAGRAM


See page DI-670.


INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI–626)

Author :

PREPARATION:

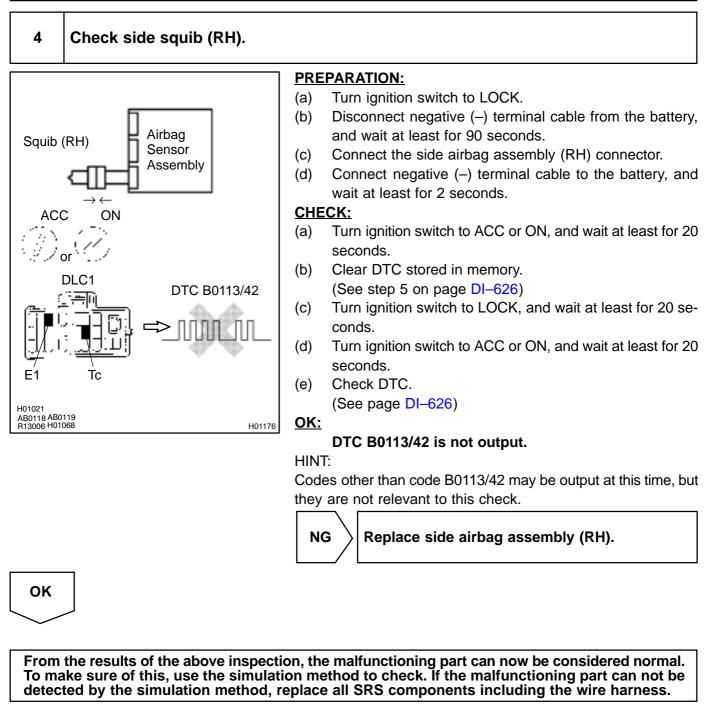
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0113/42 is not output.


HINT:

Codes other than code B0113/42 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

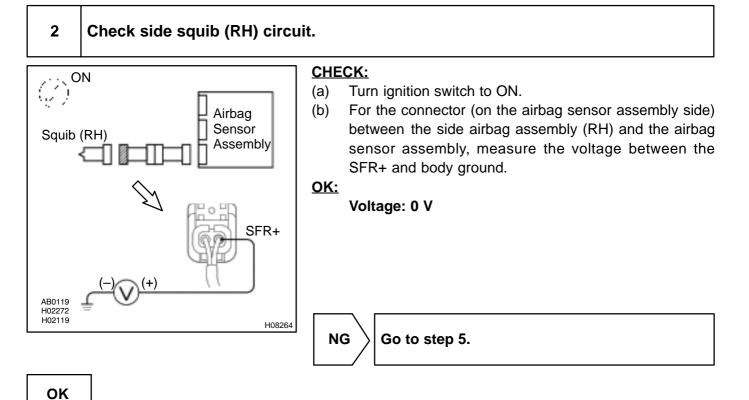
ΟΚ

DI4L5--01

DTC	B0113/42	Short in Side Squib (RH) Circuit (to B+) (TMMK Made)
-----	----------	---

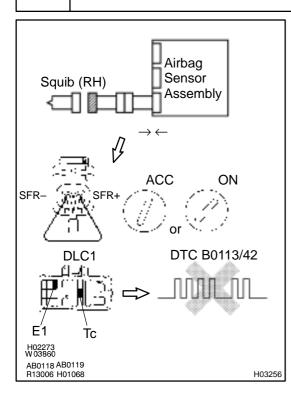
CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0113/42 is recorded when a B+ short is detected in the side squib (RH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0113/42	 Short circuit in side squib (RH) wire harness (to B+) Side squib (RH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (RH) Airbag sensor assembly Wire harness Sub wire harness

WIRING DIAGRAM

See page DI-674.


INSPECTION PROCEDURE

1		Prepare for inspection. (See step 1 on page DI–787)
	_	

Date :

3 Check airbag sensor assembly.

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the connector (on the side airbag assembly side) between the side airbag assembly (RH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

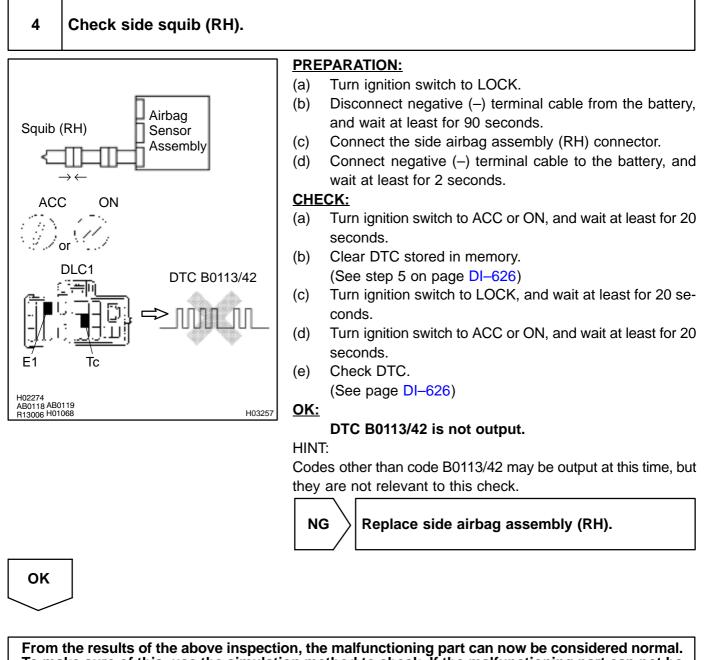
CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

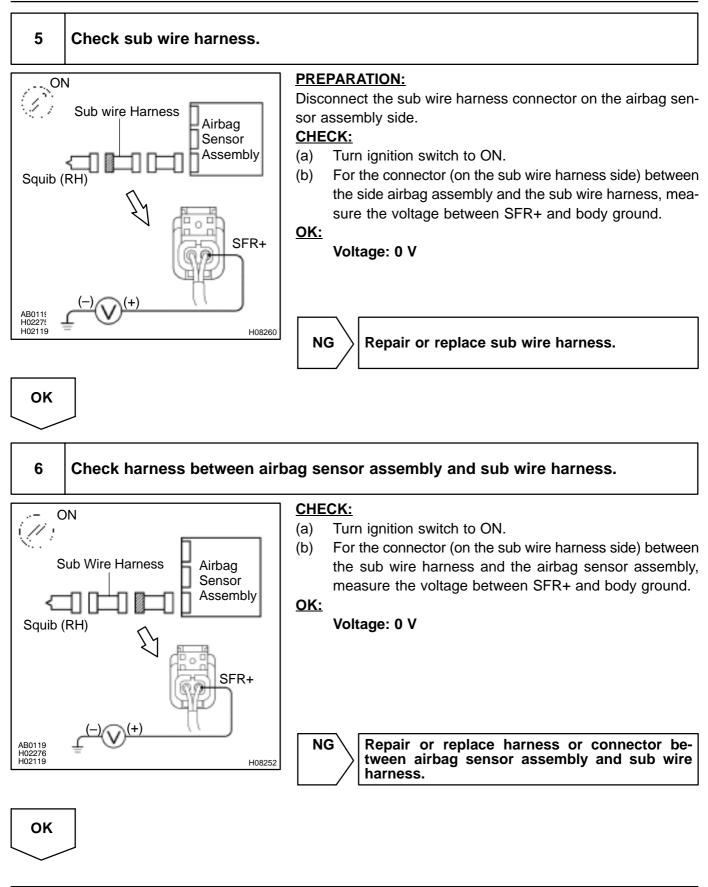
<u>OK:</u>

DTC B0113/42 is not output.

HINT:


Codes other than code B0113/42 may be output at this time, but they are not relevant to this check.

NG


Replace airbag sensor assembly.

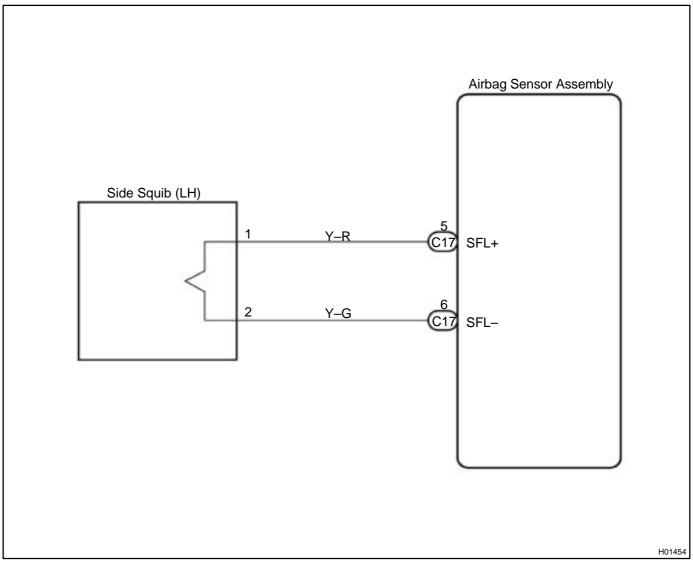
ΟΚ

DI-698

To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

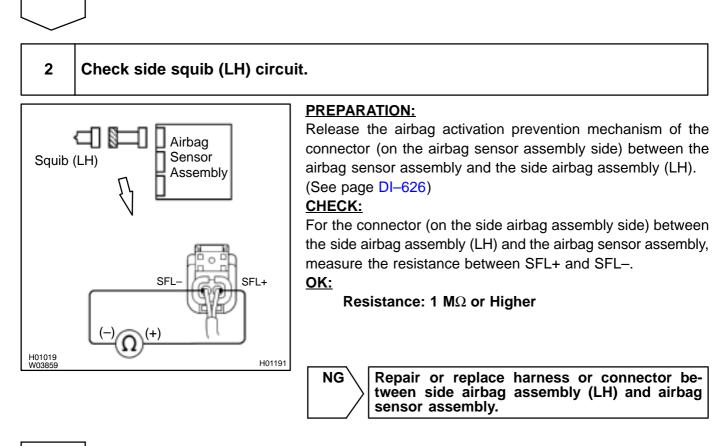
DI16K-08


DTC B0115/47 Short in Side Squib (LH) Circuit (TMC Made)

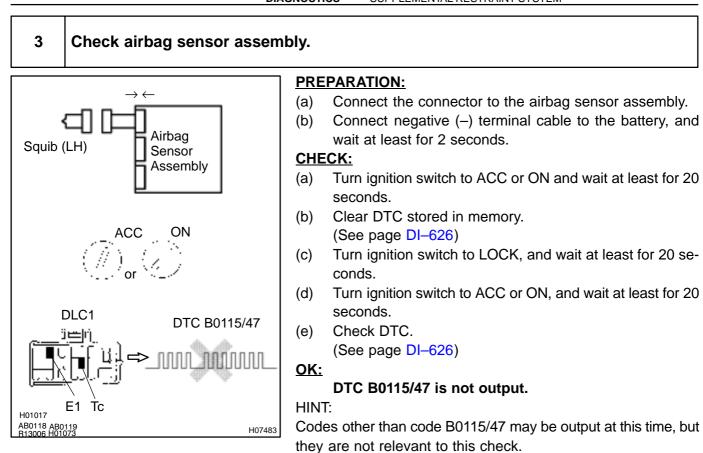
CIRCUIT DESCRIPTION

The side squib (LH) circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0115/47 is recorded when a short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0115/47	 Short circuit between SFL+ wire harness and SFL- wire harness of squib Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness


WIRING DIAGRAM

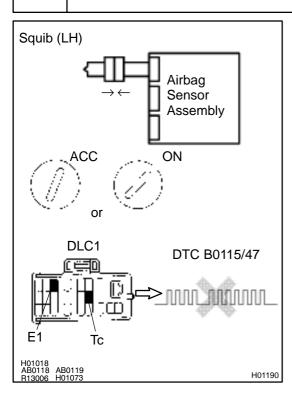
INSPECTION PROCEDURE


1 Prepare for inspection. (See step 1 on page DI-787)

OK

DI-701

Author :


NG

Replace airbag sensor assembly.

ОК

Check side squib (LH).

4

PREPARATION:

(a) Turn ignition switch to LOCK.

- (b) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the side airbag assembly (LH) connector.
- (d) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to LOOK, and wait at least for 20 second.
- (b) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (c) Clear DTC stored in memory. (See page DI-626)
- (d) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (e) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (f) Check DTC. (See page DI–626)

<u> 0K:</u>

DTC B0115/47 is not output.

HINT:

Codes other than code B0115/47 may be output at this time, but they are not relevant to this check.

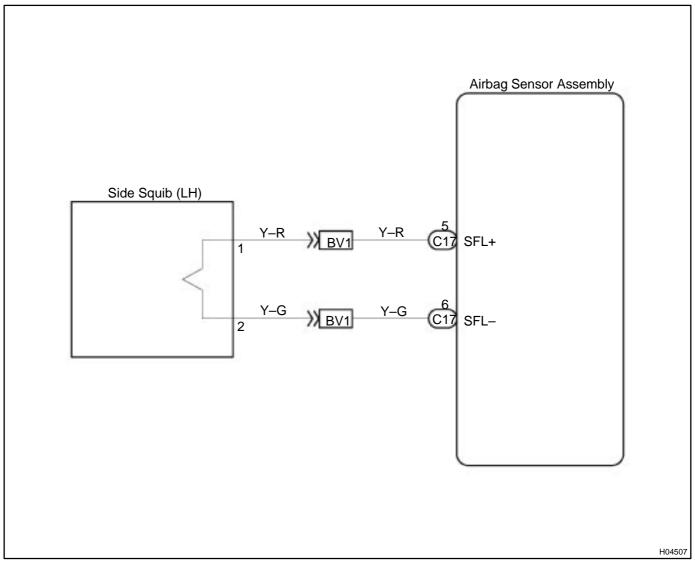
Replace side airbag assembly (LH).

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI1L6-02

DTC	B0115/47	Short in Side Squib (LH) Circuit (TMMK Made)
	BU115/47	(TMMK Made)

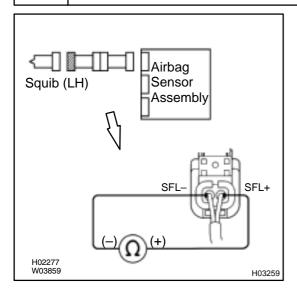

CIRCUIT DESCRIPTION

The side squib (LH) circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0115/47 is recorded when a short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area	
	•Short circuit between SFL+ wire harness and SFL- wire	•Side airbag assembly (LH)	

	B0115/47	•Short circuit between SFL+ wire harness and SFL- wire	 Side airbag assembly (LH)
		harness of squib	 Airbag sensor assembly
	D0113/47	 Side squib (LH) malfunction 	•Wire harness
		 Airbag sensor assembly malfunction 	•Sub wire harness

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection. (See step 1 on page DI–787)

2

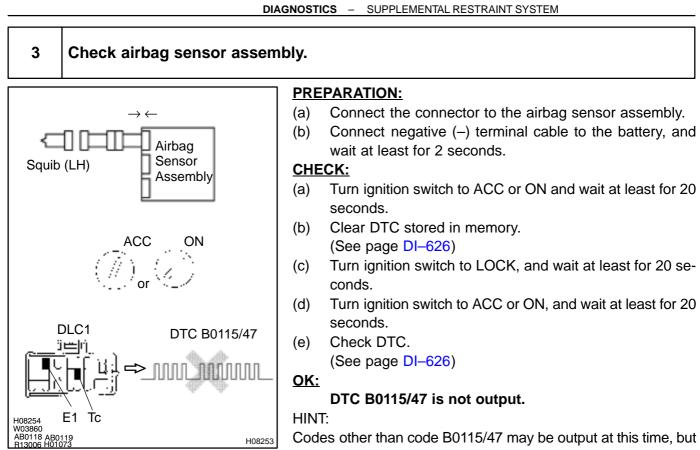
Check side squib (LH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the side airbag assembly (LH). (See page DI–626)

CHECK:

For the connector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly, measure the resistance between SFL+ and SFL–.


<u>OK:</u>

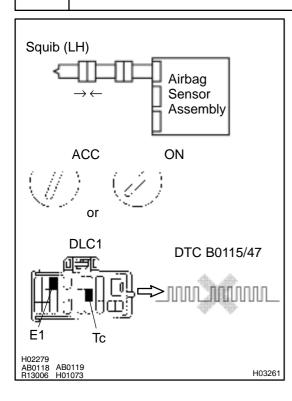
NG Go to step 5.

Resistance: 1 M Ω or Higher

ΟΚ

940

Codes other than code B0115/47 may be output at this time, but they are not relevant to this check.



Replace airbag sensor assembly.

OK

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

4 Check side squib (LH).

PREPARATION:

(a) Turn ignition switch to LOCK.

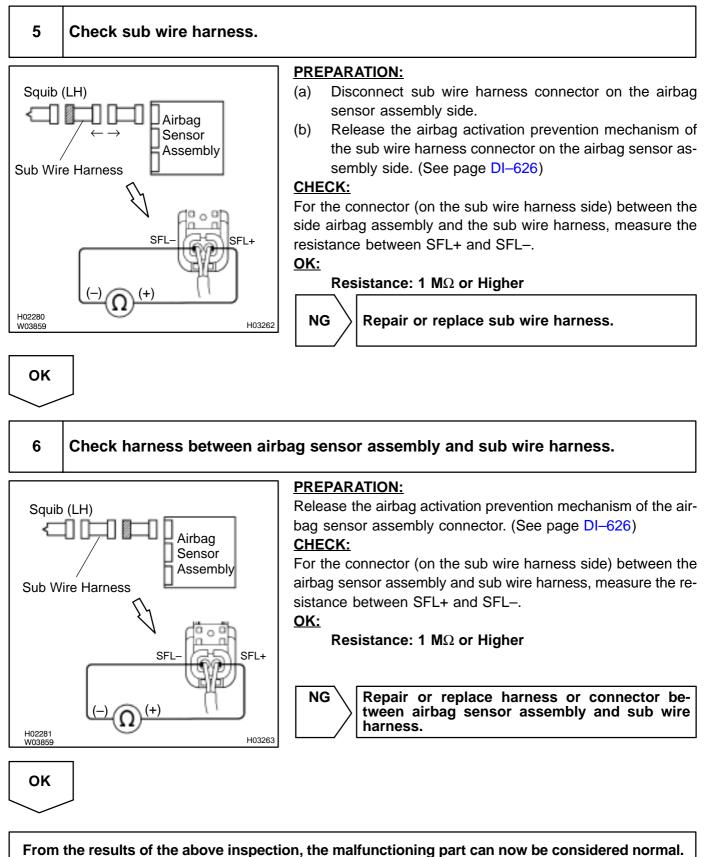
- (b) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the side airbag assembly (LH) connector.
- (d) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to LOOK, and wait at least for 20 second.
- (b) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (c) Clear DTC stored in memory. (See page DI-626)
- (d) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (e) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (f) Check DTC. (See page DI–626)

<u> 0K:</u>

DTC B0115/47 is not output.


HINT:

Codes other than code B0115/47 may be output at this time, but they are not relevant to this check.

Replace side airbag assembly (LH).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

To make sure of this, use the simulation method to check.

DI1BD-03

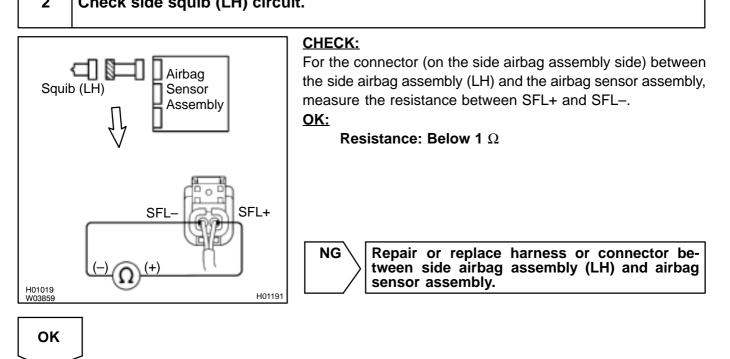
DTC

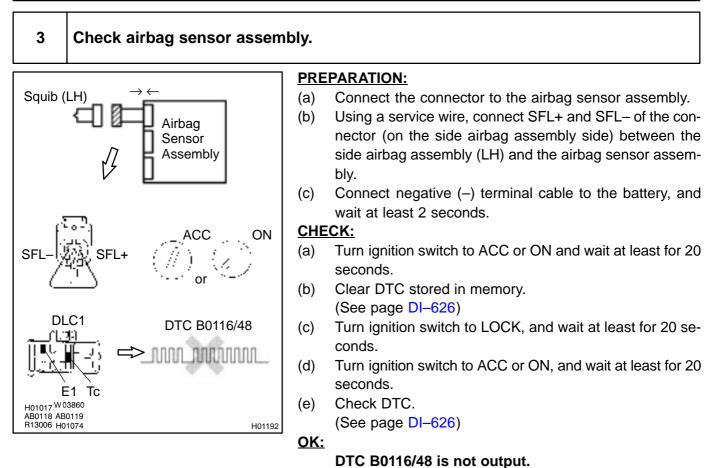
B0116/48

Open in Side Squib (LH) Circuit (TMC Made)

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0116/48 is recorded when an open is detected in the side squib (LH) circuit.

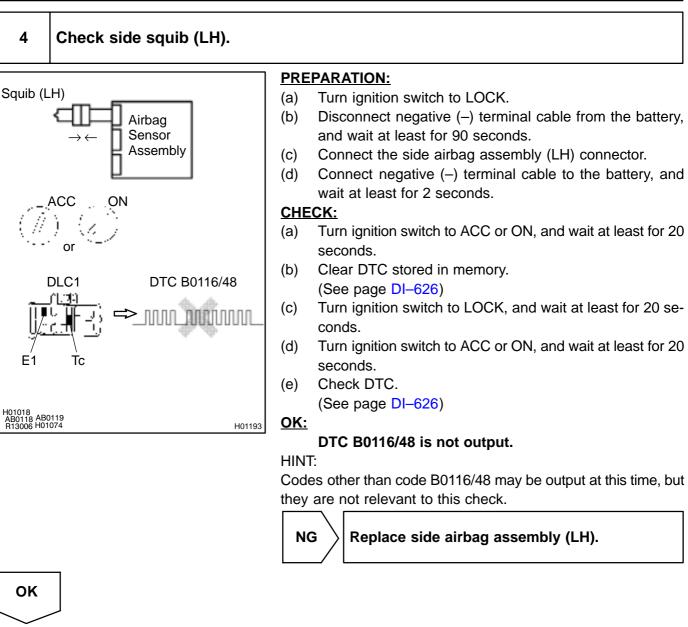

DTC No.	DTC Detecting Condition	Trouble Area
B0116/48	 Open circuit in SFL+ wire harness or SFL- wire harness of squib Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness


WIRING DIAGRAM

See page DI–700.

INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI–787)
2	Check side squib (I H) circuit.


HINT:

Codes other than code B0116/48 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

946

Date :

DI-711

DTC

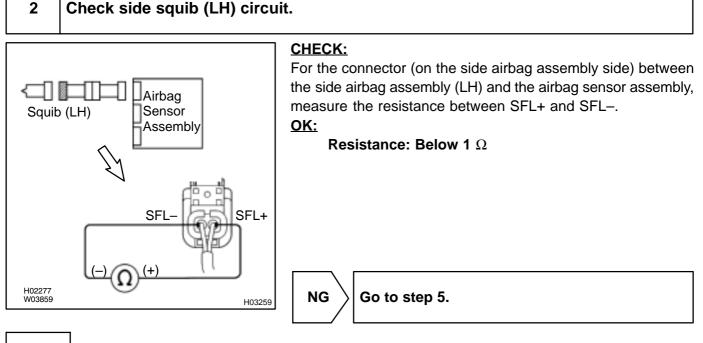
DI1L8-02

B0116/48 Open in Side Squib (LH) Circuit (TMMK Made)

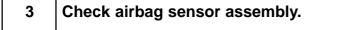
CIRCUIT DESCRIPTION

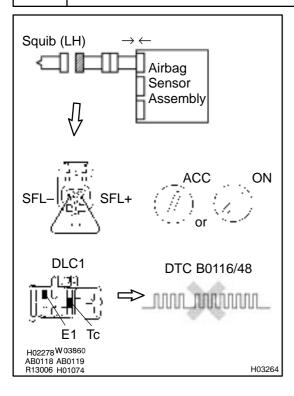
The side squib circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0116/48 is recorded when an open short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	 Open circuit in SFL+ wire harness or SFL- wire harness 	●Side airbag assembly (LH)
B0116/48	of squib	 Airbag sensor assembly
D0110/40	 Side squib (LH) malfunction 	•Wire harness
	 Airbag sensor assembly malfunction 	●Sub wire harness


WIRING DIAGRAM

See page DI-704.


OK


INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI-787)

Author :

PREPARATION:

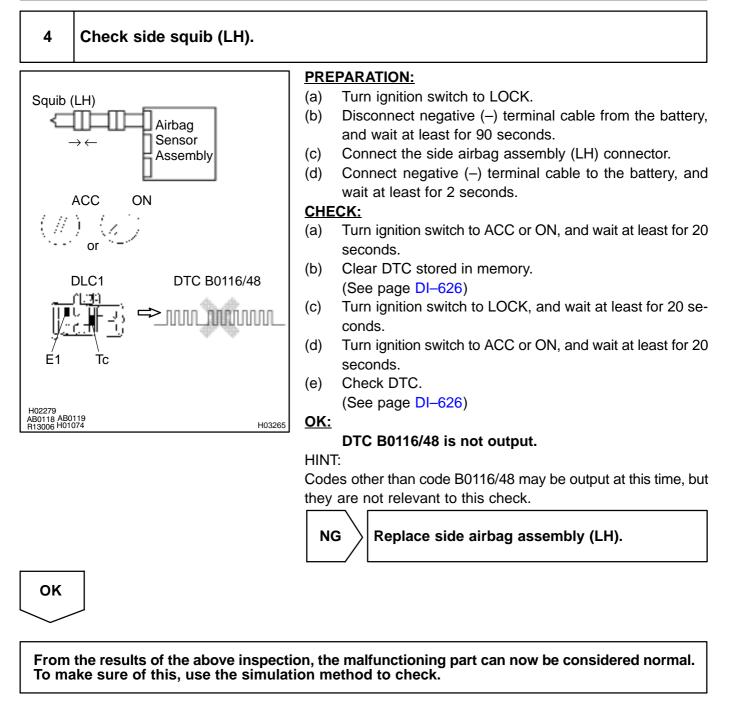
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFL+ and SFL– of the connector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least 2 seconds.

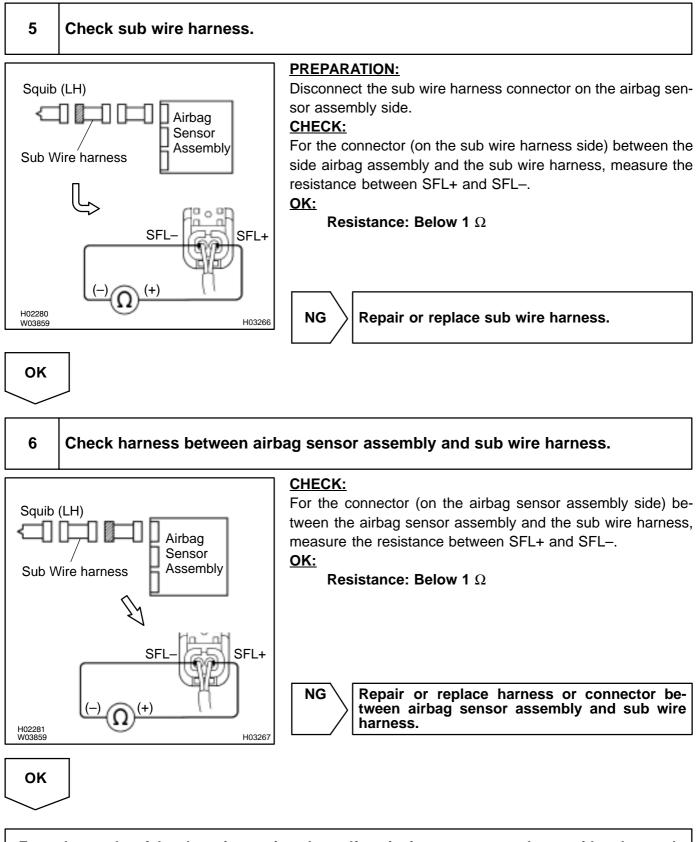
CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0116/48 is not output.


HINT:


Codes other than code B0116/48 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

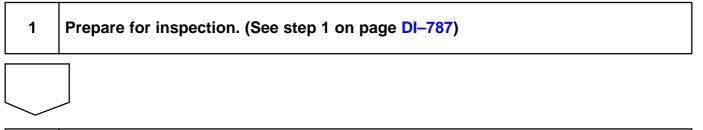
ΟΚ

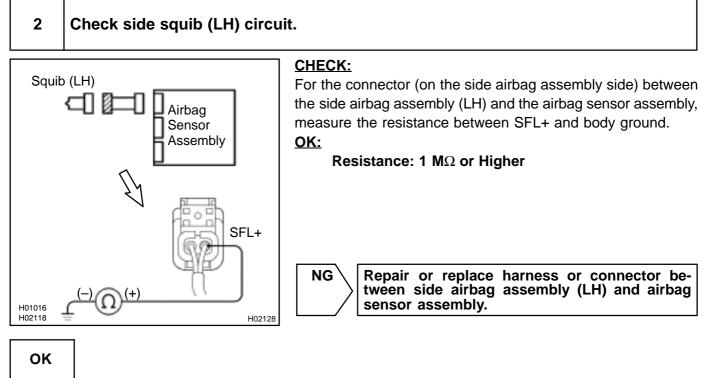
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI1BE-03

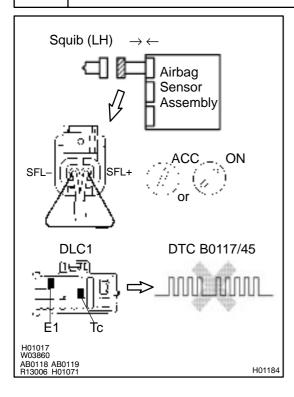
DTC B0117/45 Short in Side Squib (LH) Circuit (to Ground) (TMC Made)

CIRCUIT DESCRIPTION


The side squib circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0117/45 is recorded when ground short is detected in the side squib (LH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0117/45	 Short circuit in side squib (LH) wire harness (to ground) Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness

WIRING DIAGRAM


See page DI-700.

INSPECTION PROCEDURE

3 Check airbag sensor assembly.

PREPARATION:

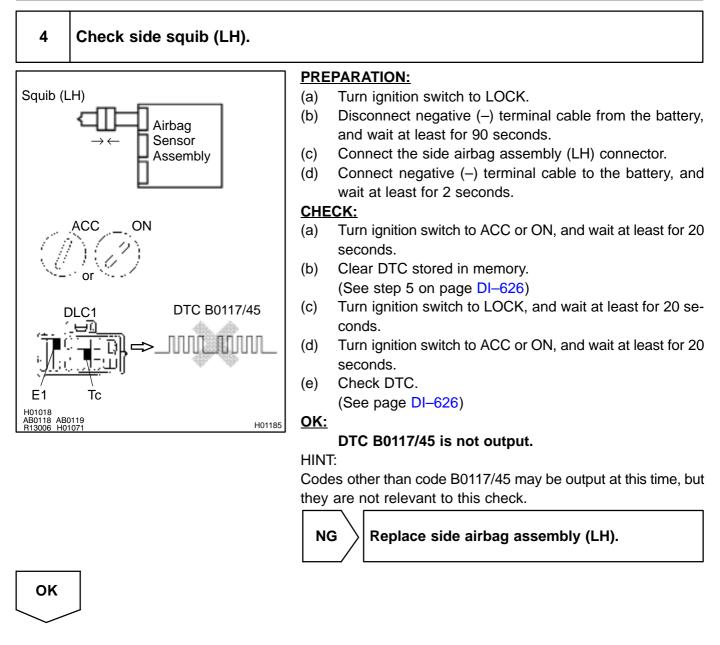
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFL+ and SFL– of the connector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly.
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0117/45 is not output.


HINT:

Codes other than code B0117/45 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI4L6-01

DTC

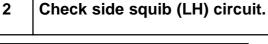
B0117/45

Short in Side Squib (LH) Circuit (to Ground) (TMMK Made)

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0117/45 is recorded when a ground short is detected in the side squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0117/45	 Short circuit in side squib (LH) wire harness (to ground) Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness Sub wire harness

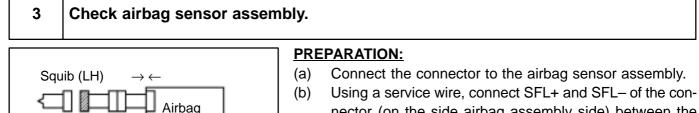

WIRING DIAGRAM

See page DI-704.

OK

INSPECTION PROCEDURE

1	Prepare for inspection. (See step 1 on page DI–787)


CHECK: For the connector (on the side airbag assembly side) between Squib (LH) the side airbag assembly (LH) and the airbag sensor assembly, Airbag measure the resistance between SFL+ and body ground. Sensor OK: Assembly Resistance: 1 M Ω or Higher SFL+ NG Repair or replace harness or connector between side airbag assembly (LH) and airbag sensor assembly. H02277 H02118 H03268

954

SFI

H02278

W03860 AB0118 AB0119 R13006 H01071

Sensor

ACC

or

SFL+

ΩU I

Ťc

DLC1

(1∟₹Ç

Assembly

4

DTC B0117/45

ON

- nector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly.
 (c) Connect negative (-) terminal cable to the battery, and
- (c) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

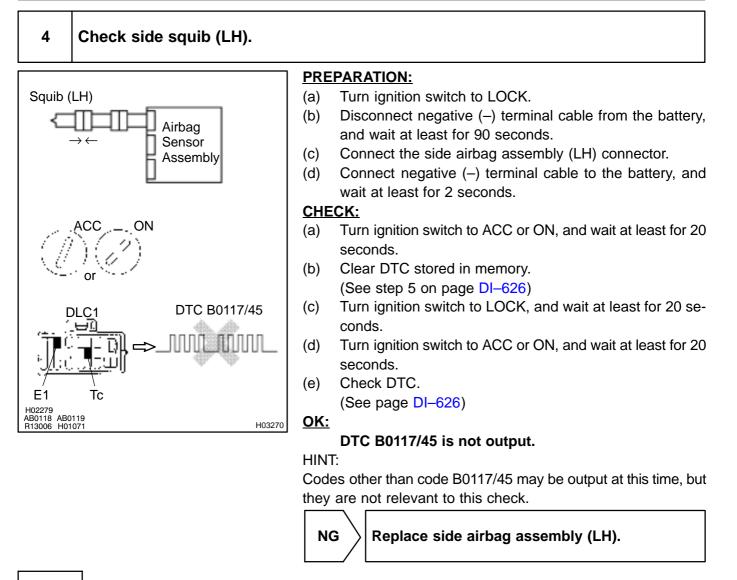
CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

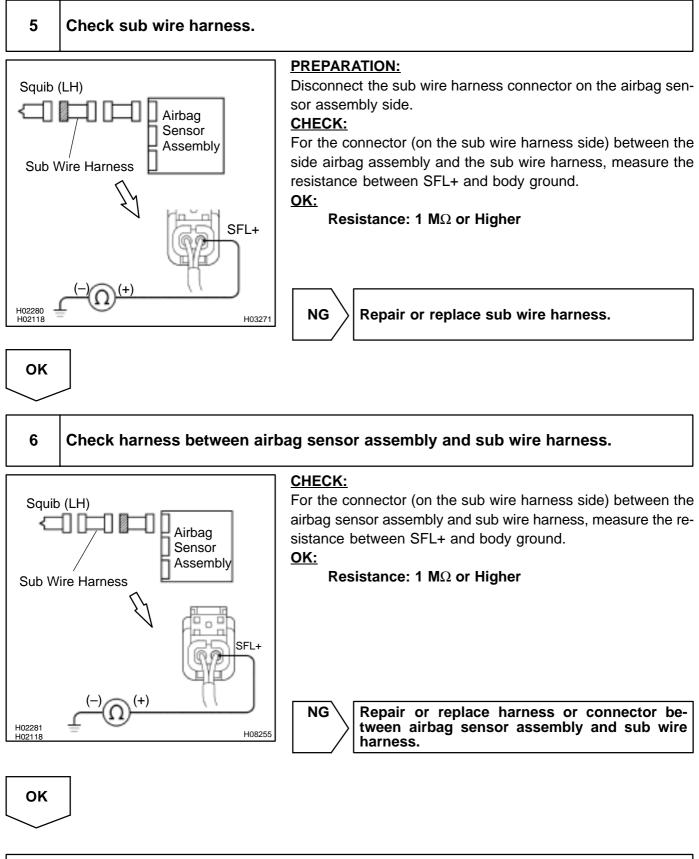
H03269

DTC B0117/45 is not output.


HINT:

Codes other than code B0117/45 may be output at this time, but they are not relevant to this check.

NG


Replace airbag sensor assembly.

OK

ок

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI1BF-03

DTC

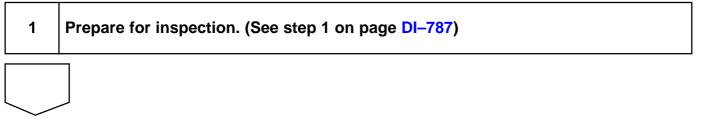
B0118/46

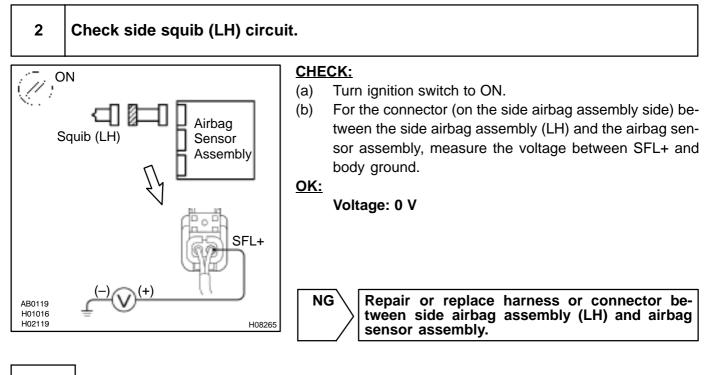
Short in Side Squib (LH) Circuit (to B+) (TMC Made)

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2.

DTC B0118/46 is recorded when a B+ short is detected in the side squib (LH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	 Short circuit in side squib (LH) wire harness (to B+) 	●Side airbag assembly (LH)
B0118/46	 Side squib (LH) malfunction 	 Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness

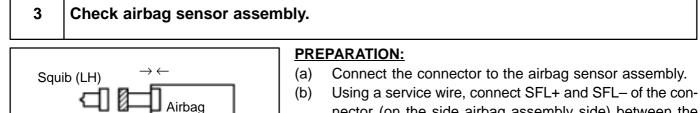

WIRING DIAGRAM

See page DI-700.

OK

INSPECTION PROCEDURE

SFL


DLC1

TT:

E1 Tc

H01017 W03860

AB0118 AB0119 R13006 H01072 1:1

Sensor

ACC

DTC B0118/46

SFL+

ON

Assembly

- nector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

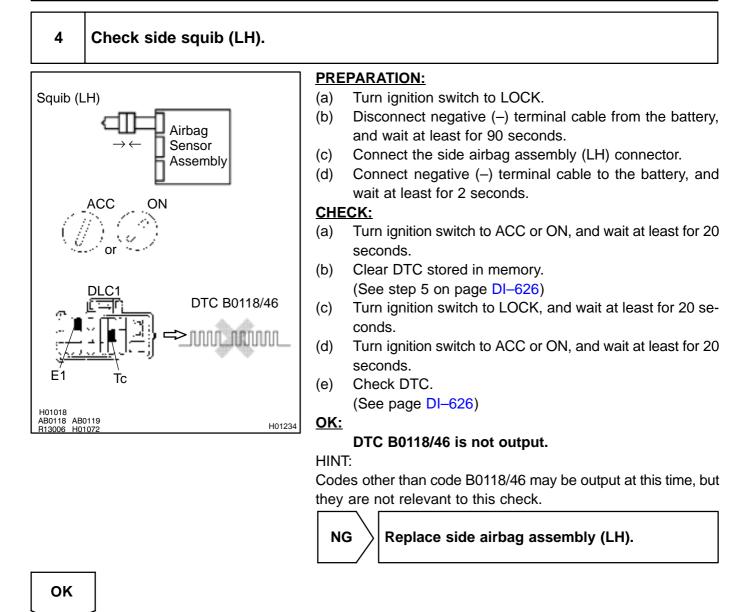
CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

H01187

DTC B0118/46 is not output.


HINT:

Codes other than code B0118/46 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ΟΚ

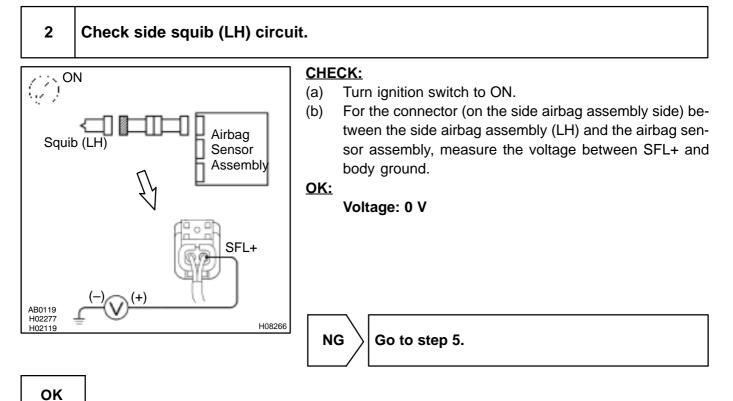
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI4L7-01

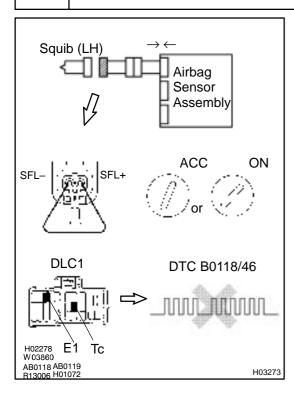
DTC	Short in Side Squib (LH) Circuit (to B+) (TMMK Made)
DTC	

CIRCUIT DESCRIPTION

The side squib circuit consists of the airbag sensor assembly and side airbag assembly (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0118/46 is recorded when a B+ short is detected in the side squib (LH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0118/46	 Short circuit in side squib (LH) wire harness (to B+) Side squib (LH) malfunction Airbag sensor assembly malfunction 	 Side airbag assembly (LH) Airbag sensor assembly Wire harness Sub wire harness

WIRING DIAGRAM


See page DI-704.

INSPECTION PROCEDURE

1		Prepare for inspection. (See step 1 on page DI–787)
	_	

3 Check airbag sensor assembly.

PREPARATION:

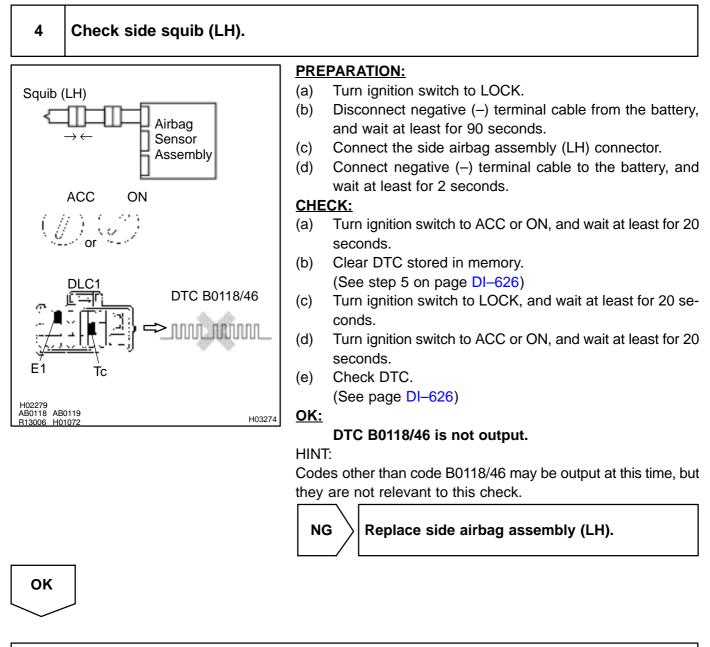
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFL+ and SFL– of the connector (on the side airbag assembly side) between the side airbag assembly (LH) and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

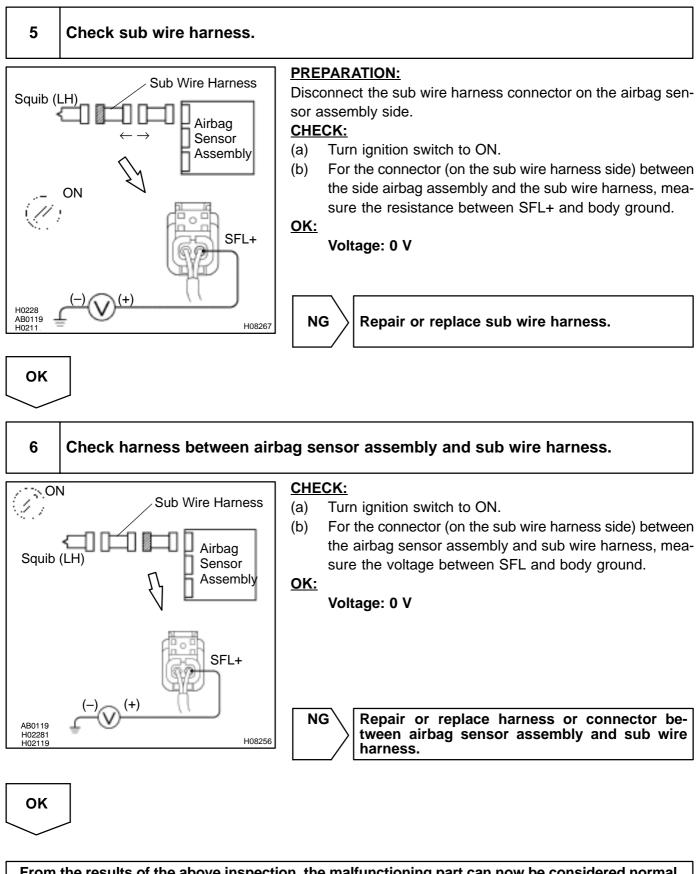
- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0118/46 is not output.


HINT:

Codes other than code B0118/46 may be output at this time, but they are not relevant to this check.


NG

Replace airbag sensor assembly.

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

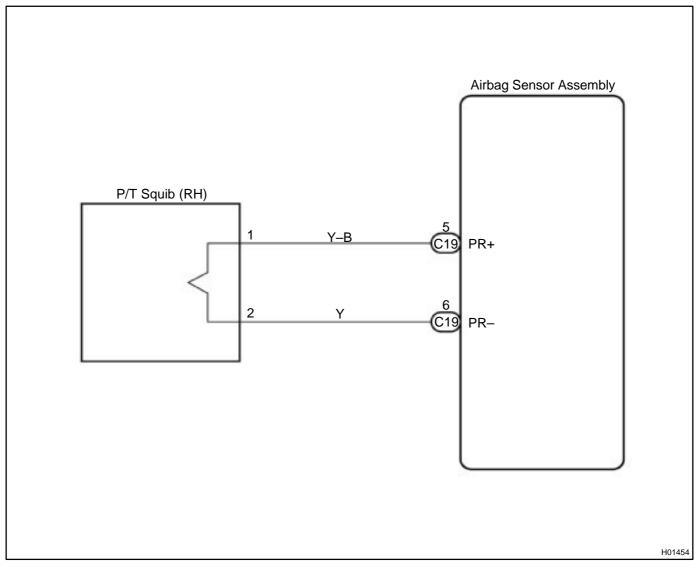
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI-729

DI16S-17

DTC

B0130/63

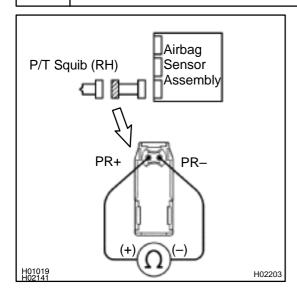

Short in P/T Squib (RH) Circuit

CIRCUIT DESCRIPTION

The P/T squib (RH) circuit consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0130/63 is recorded when a short is detected in the P/T squib (RH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0130/63	 Short circuit between PR+ wire harness and PR- wire harness of squib P/T squib (RH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection. (See step 1 on page DI–787)

2

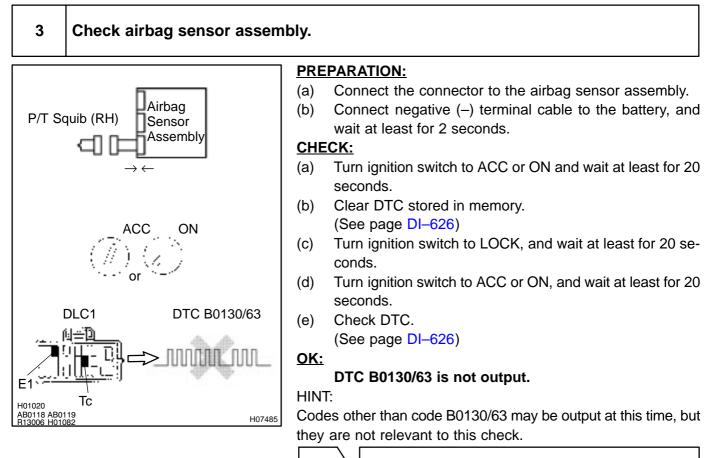
Check P/T squib (RH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the seat belt pretensioner (RH). (See page DI–626).

CHECK:

For the connector (on the seat belt pretensioner side) between the seat belt pretensioner (RH) and the airbag sensor assembly, measure the resistance between PR+ and PR-.

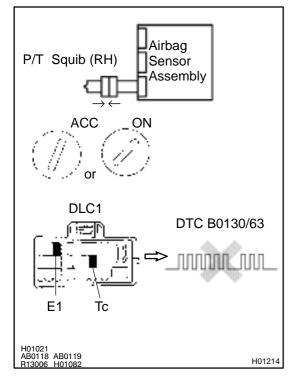

<u>OK:</u>

Resistance: 1 M Ω or Higher

NG

Repair or replace harness or connector between seat belt pretensioner (RH) and airbag sensor assembly.

ОК


NG

Replace airbag sensor assembly.

ОК

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

4 Check P/T squib (RH).

PREPARATION:

(a) Turn ignition switch to LOCK.

- (b) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the seat belt pretensioner (RH) connector.
- (d) Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to LOOK, and wait at least for 20 second.
- (b) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (c) Clear DTC stored in memory. (See page DI-626)
- (d) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (e) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (f) Check DTC. (See page DI–626)

<u> 0K:</u>

DTC B0130/63 is not output.

HINT:

Codes other than code B0130/63 may be output at this time, but they are not relevant to this check.

NG

Replace seat belt pretensioner (RH).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI1BG-13

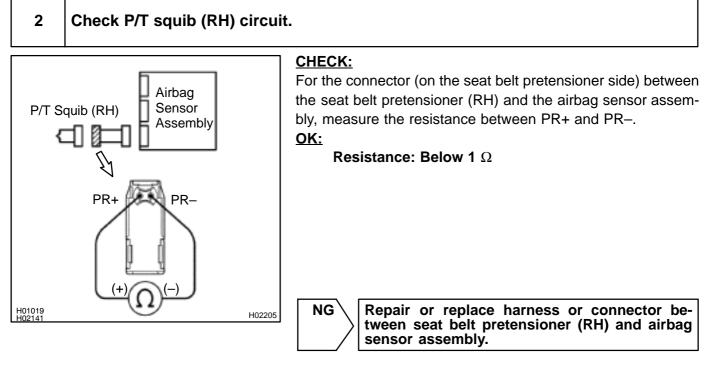
DTC

B0131/64

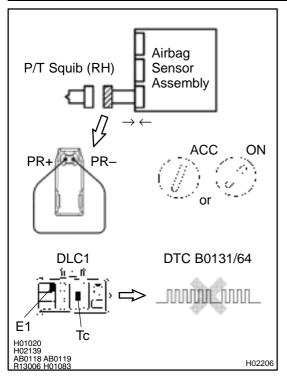
Open in P/T Squib (RH) Circuit

CIRCUIT DESCRIPTION

The P/T squib circuit (RH) consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0131/64 is recorded when an open is detected in the P/T squib (RH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0131/64	 Open circuit in PR+ wire harness or PR- wire harness of squib P/T squib (RH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness


WIRING DIAGRAM


See page DI-730.

INSPECTION PROCEDURE

PREPARATION:

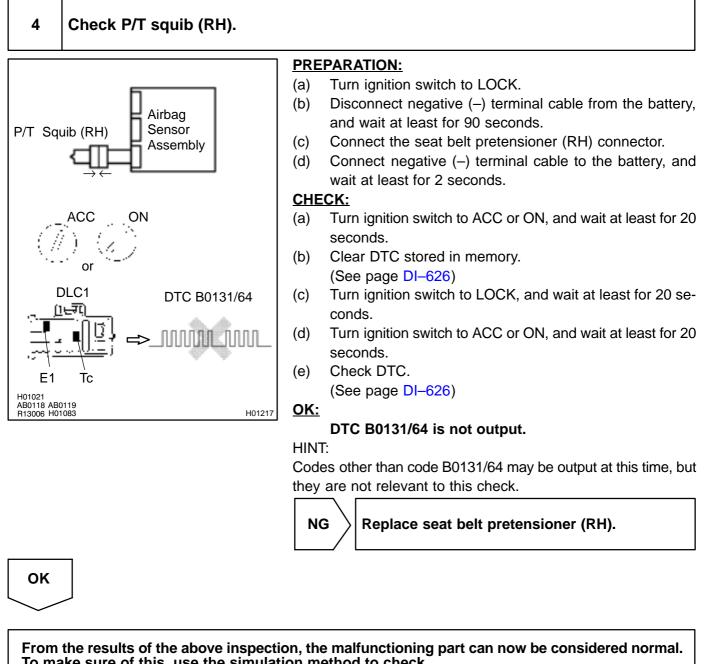
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect PR+ and PR- of the connector (on the seat belt pretensioner side) between the seat belt pretensioner (RH) and the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B0131/64 is not output.


HINT:

Codes other than code B0131/64 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

To make sure of this, use the simulation method to check.

DI-737

DI1BH-10

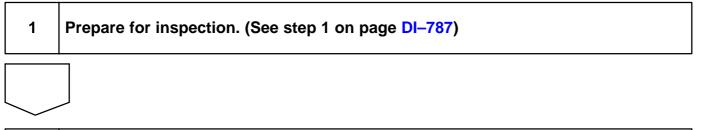
Short in P/T Squib (RH) Circuit (to Ground)

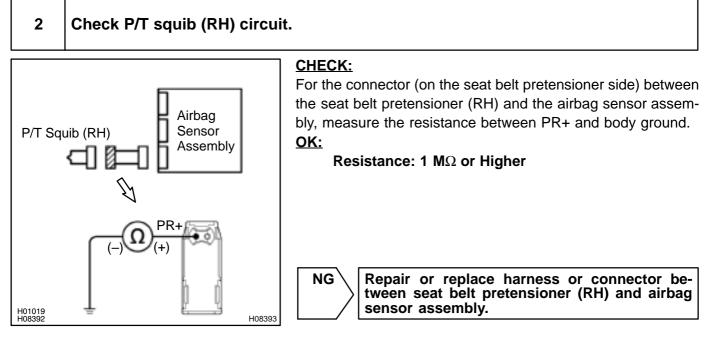
CIRCUIT DESCRIPTION

B0132/61

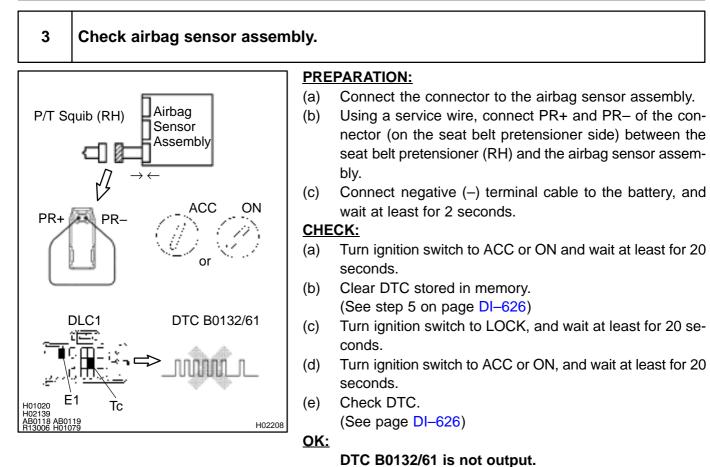
The P/T squib (RH) circuit consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2.

DTC B0132/61 is recorded when a ground short is detected in the P/T squib (RH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0132/61 •F	P/T squib (RH) malfunction	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness


WIRING DIAGRAM

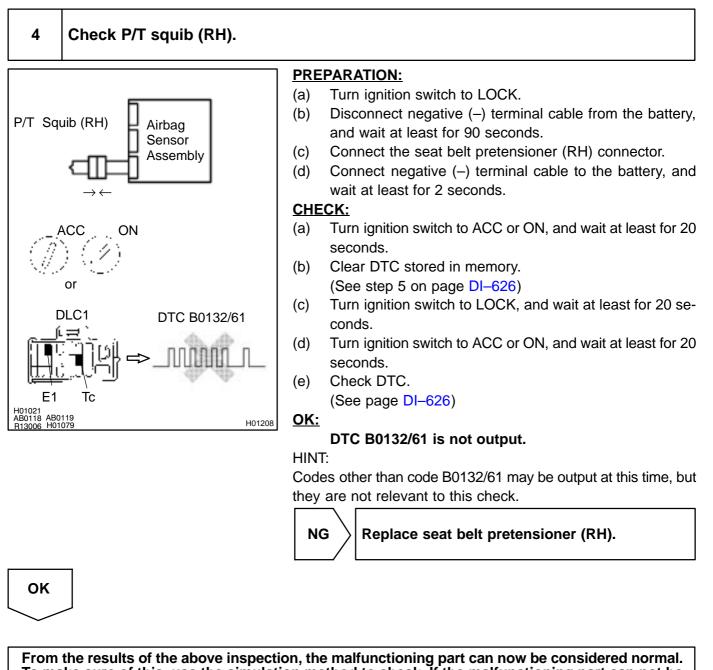
See page DI-730.


DTC

INSPECTION PROCEDURE

ΟΚ

HINT:


Codes other than code B0132/61 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ОК

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

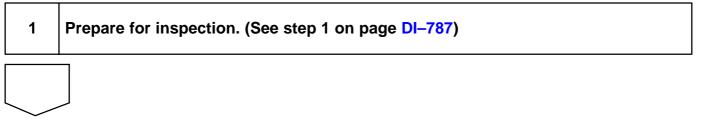
DTC

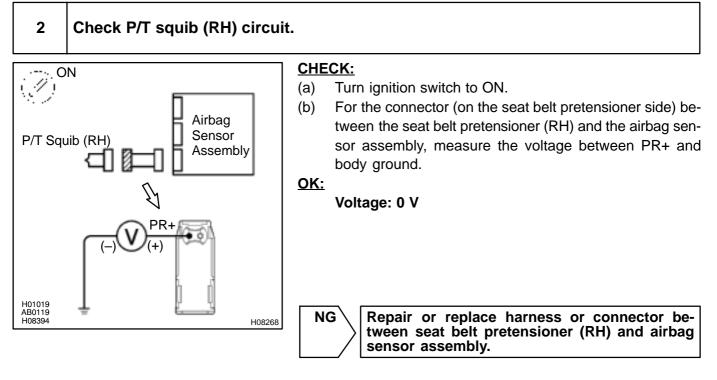
B0133/62

Short in P/T Squib (RH) Circuit (to B+)

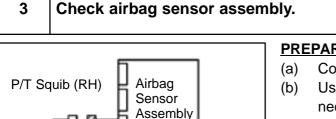
DI1BI-13

CIRCUIT DESCRIPTION


The P/T squib (RH) circuit consists of the airbag sensor assembly and seat belt pretensioner (RH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0133/62 is recorded when a B+ short is detected in the P/T squib (RH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0133/62	 Short circuit in seat belt pretensioner (RH) wire harness (to B+) P/T squib (RH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (RH) Airbag sensor assembly Wire harness

WIRING DIAGRAM


See page DI-730.

INSPECTION PROCEDURE

OK

ACC

DTC B0133/62

ON

PREPARATION:

- Connect the connector to the airbag sensor assembly.
- Using a service wire, connect PR+ and PR- of the connector (on the seat belt pretensioner side) between the seat belt pretensioner (RH) and the airbag sensor assemblv.
- Connect negative (-) terminal cable to the battery, and (c) wait at least for 2 seconds.

CHECK:

- Turn ignition switch to ACC or ON and wait at least for 20 (a) seconds.
- Clear DTC stored in memory. (b) (See step 5 on page DI-626)
- Turn ignition switch to LOCK, and wait at least for 20 se-(C) conds.
- Turn ignition switch to ACC or ON, and wait at least for 20 (d) seconds.
- (e) Check DTC. (See page DI-626)

<u>OK:</u>

H02210

DTC B0133/62 is not output.

HINT:

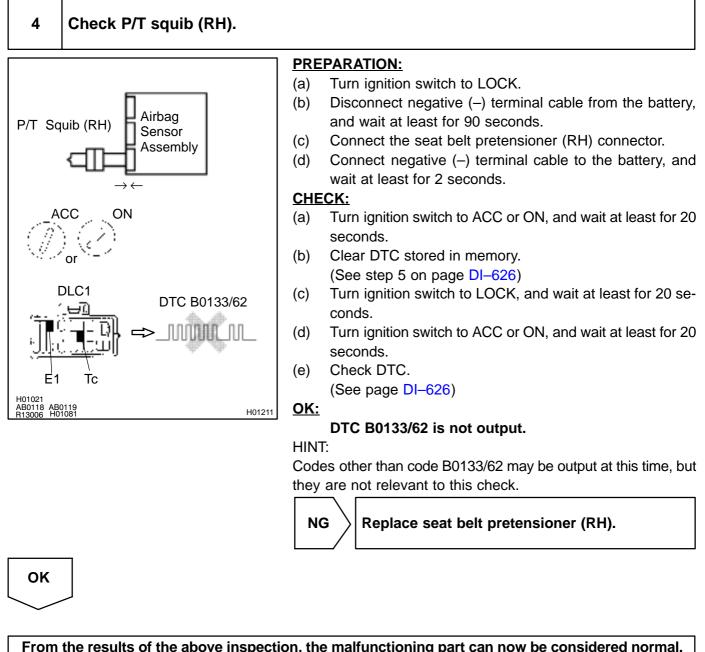
Codes other than code B0133/62 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ΟΚ

H0102139 H02139 AB0118 AB0119 P13006_H01081


PR+

DLC1

í: 🚝 lí

Тс

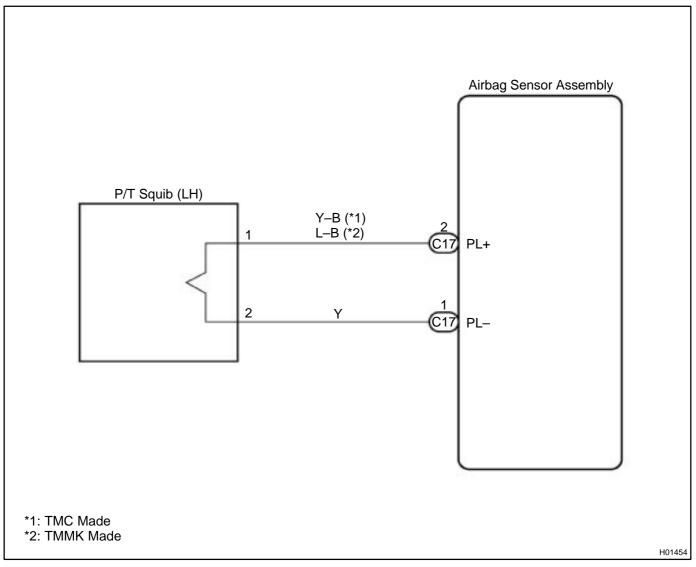
PR-

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI16W-17

DTC

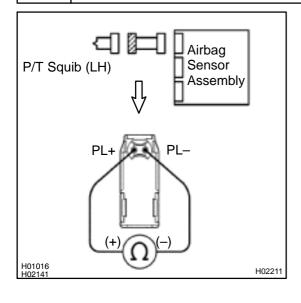
B0135/73


Short in P/T Squib (LH) Circuit

CIRCUIT DESCRIPTION

The P/T squib (LH) circuit consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0135/73 is recorded when a short is detected in the P/T squib (LH) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0135/73	 Short circuit between PL+ wire harness and PL- wire harness of squib P/T squib (LH) malfunction Airbag sensor assembly malfunction 	Seat belt pretensioner (LH)Airbag sensor assemblyWire harness


WIRING DIAGRAM

INSPECTION PROCEDURE

1 Prepare for inspection. (See step 1 on page DI–787)

2 Check P/T squib (LH) circuit.

PREPARATION:

Release the airbag activation prevention mechanism of the connector (on the airbag sensor assembly side) between the airbag sensor assembly and the seat belt pretensioner (LH). (See page DI–626)

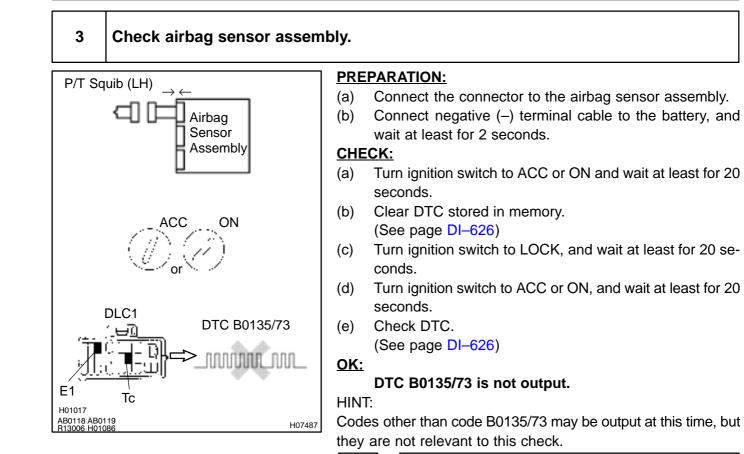
CHECK:

For the connector (on the seat belt pretensioner side) between the seat belt pretensioner (LH) and the airbag sensor assembly, measure the resistance between PL+ and PL-.

> Repair or replace harness or connector between seat belt pretensioner (LH) and airbag

<u>OK:</u>

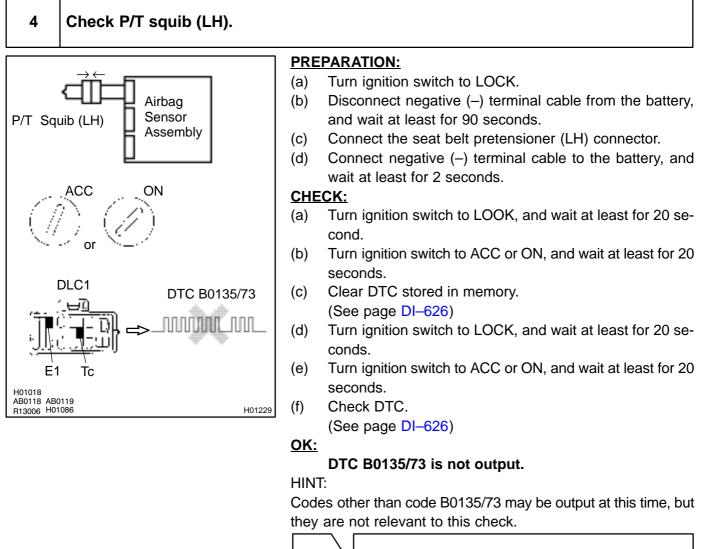
NG


Resistance: 1 M Ω or Higher

sensor assembly.

ΟΚ

Author :



NG

Replace airbag sensor assembly.

ок

980

NG

Replace seat belt pretensioner (LH).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

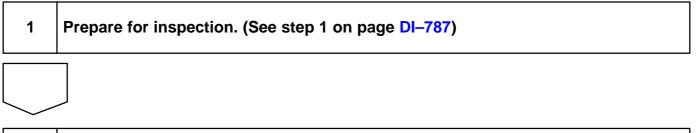
DI1B.I-14

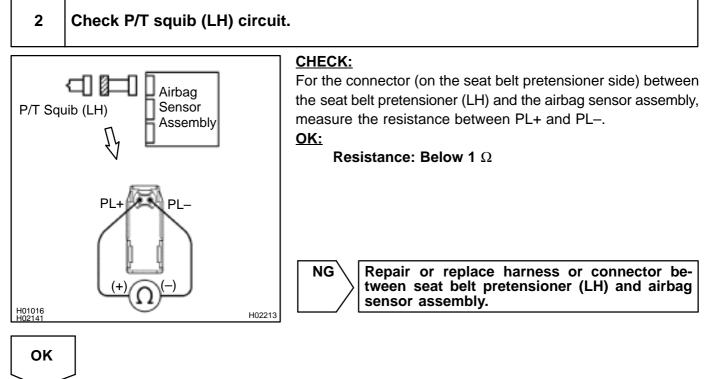
DTC

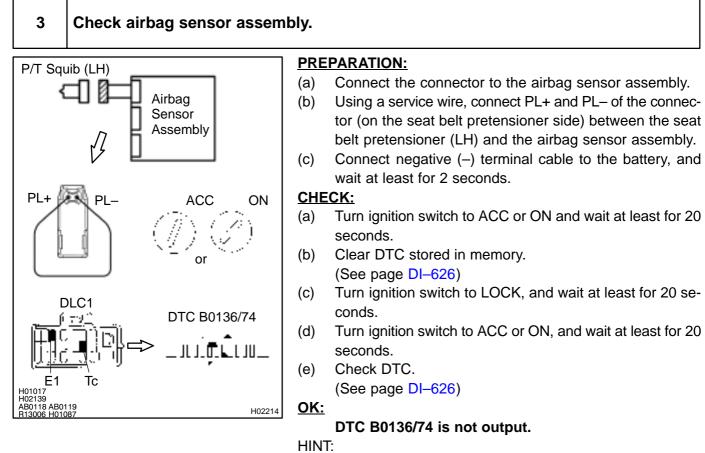
B0136/74

Open in P/T Squib (LH) Circuit

CIRCUIT DESCRIPTION

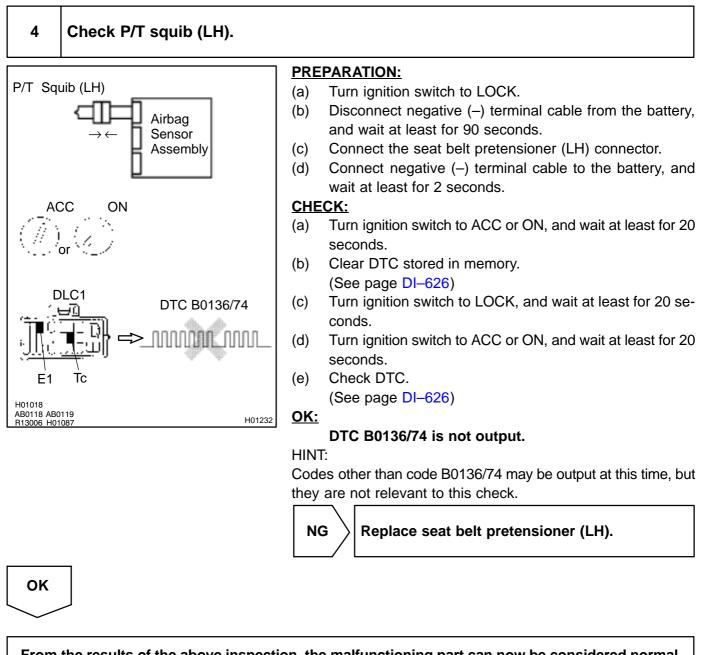

The P/T squib circuit (LH) consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0136/74 is recorded when an open is detected in the P/T squib (LH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0136/74	 Open circuit in PL+ wire harness or PL– wire harness of squib P/T squib (LH) malfunction Airbag sensor assembly malfunction 	Seat belt pretensioner (LH)Airbag sensor assemblyWire harness


WIRING DIAGRAM

See page DI-743.

INSPECTION PROCEDURE



Codes other than code B0136/74 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

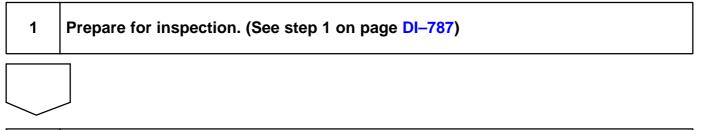
DI1BK-10

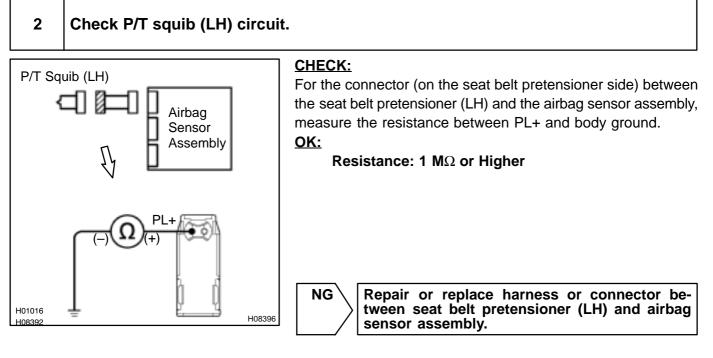
DTC	Short in P/T Squib (LH) Circuit (to Ground)

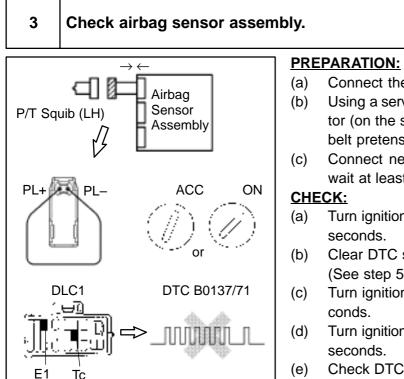
CIRCUIT DESCRIPTION

The P/T squib (LH) circuit consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-2.

DTC B0137/71 is recorded when a ground short is detected in the P/T squib (LH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0137/71	●P/T squib (LH) malfunction	 Seat belt pretensioner (LH) Airbag sensor assembly
	 Airbag sensor assembly malfunction 	•Wire harness


WIRING DIAGRAM


See page DI-743.

OK

INSPECTION PROCEDURE

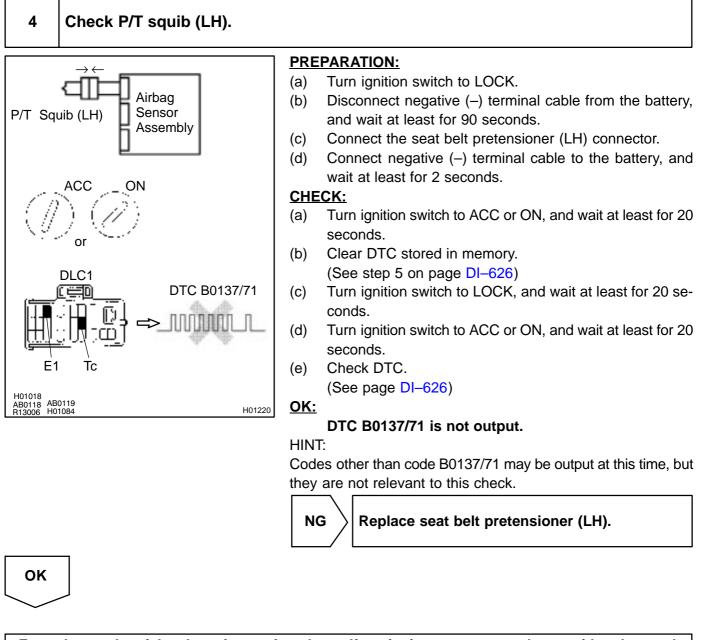
- Connect the connector to the airbag sensor assembly.
- Using a service wire, connect PL+ and PL- of the connector (on the seat belt pretensioner side) between the seat belt pretensioner (LH) and the airbag sensor assembly.
- Connect negative (-) terminal cable to the battery, and wait at least for 2 seconds.
- Turn ignition switch to ACC or ON and wait at least for 20
- Clear DTC stored in memory. (See step 5 on page DI-626)
- Turn ignition switch to LOCK, and wait at least for 20 se-
- Turn ignition switch to ACC or ON, and wait at least for 20
- Check DTC. (See page DI-626)

OK:

H02216

DTC B0137/71 is not output.

HINT:


Codes other than code B0137/71 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

H01017 H02139 AB0118 AB0119 R13006 H01084

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

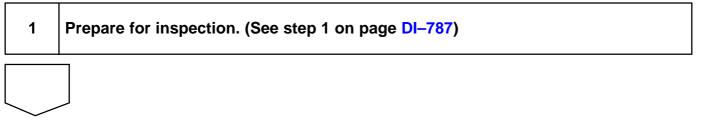
DI1BL-14

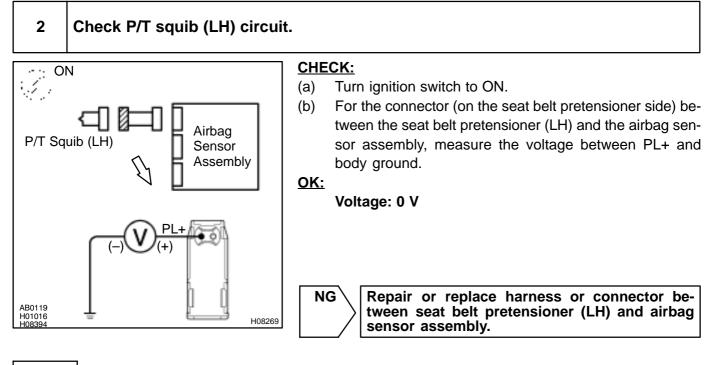
DTC

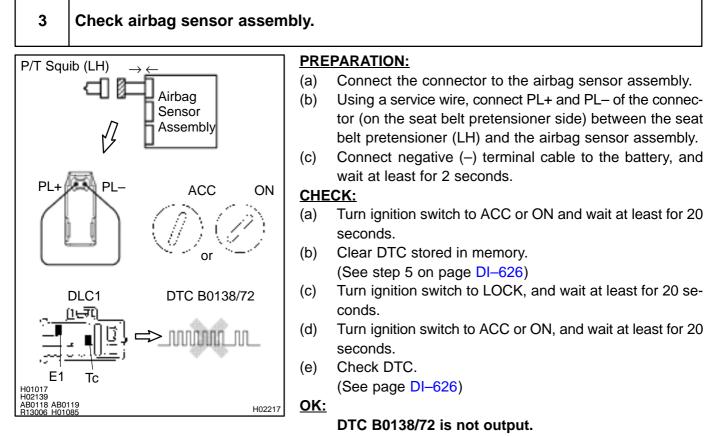
B0138/72

Short in P/T Squib (LH) Circuit (to B+)

CIRCUIT DESCRIPTION

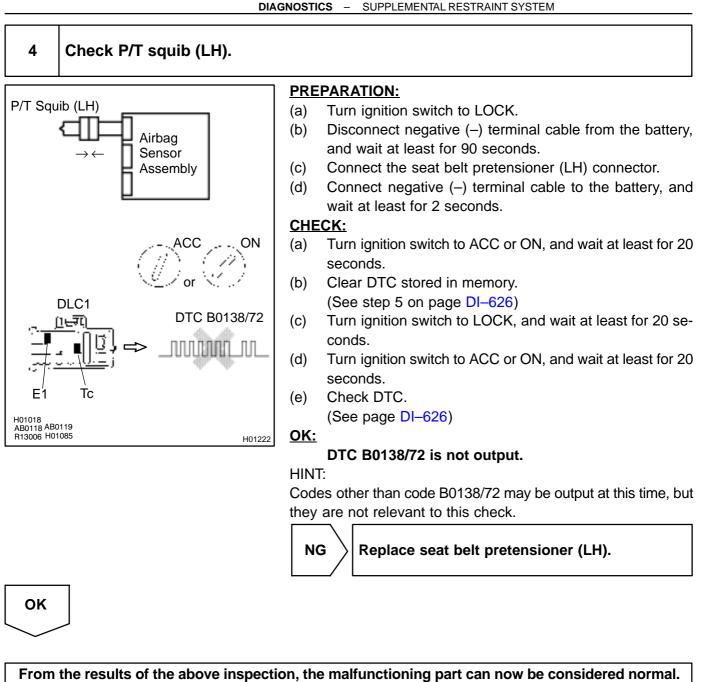

The P/T squib (LH) circuit consists of the airbag sensor assembly and seat belt pretensioner (LH). It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS–2. DTC B0138/72 is recorded when a B+ short is detected in the P/T squib (LH) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0138/72	 Short circuit in seat belt pretensioner (LH) wire harness (to B+) P/T squib (LH) malfunction Airbag sensor assembly malfunction 	 Seat belt pretensioner (LH) Airbag sensor assembly Wire harness


WIRING DIAGRAM

See page DI-743.

INSPECTION PROCEDURE


HINT:

Codes other than code B0138/72 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI1BM-18

DTC

B1100/31

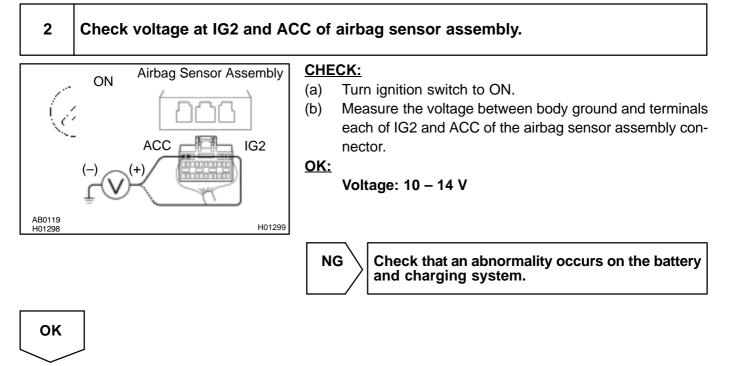
Airbag Sensor Assembly Malfunction

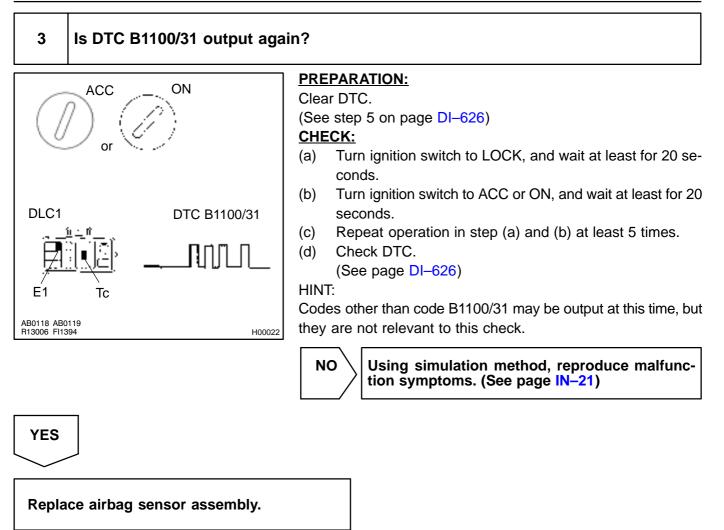
CIRCUIT DESCRIPTION

The airbag sensor assembly consists of a airbag sensor, safing sensor, drive circuit, diagnosis circuit and ignition control, etc.

It receives signals from the airbag sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

DTC B1100/31 is recorded when occurrence of a malfunction in the airbag sensor assembly is detected.


DTC No.	DTC Detecting Condition	Trouble Area
B1100/31	 Airbag sensor assembly malfunction 	•Airbag sensor assembly


INSPECTION PROCEDURE

HINT:

When a malfunction code other than code B1100/31 is displayed at the same time, first repair the malfunction indicated by the malfunction code other than code B1100/31.

1	Prepare for inspection. (See step 1 on page DI–787)

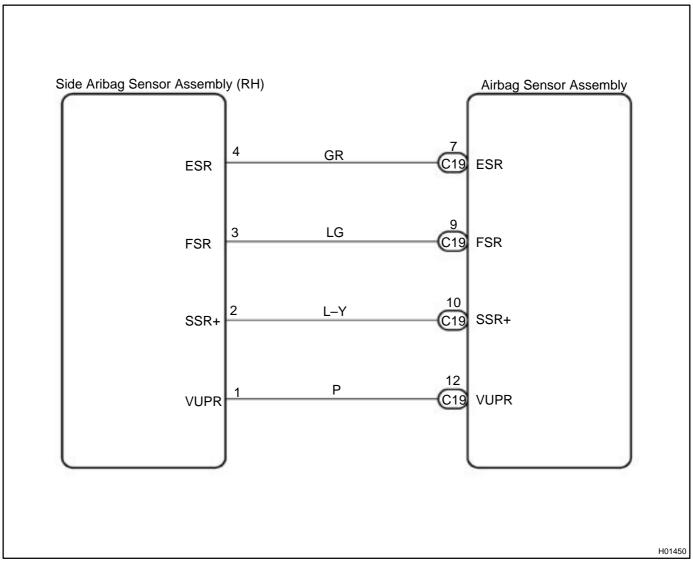
Author :

DTC

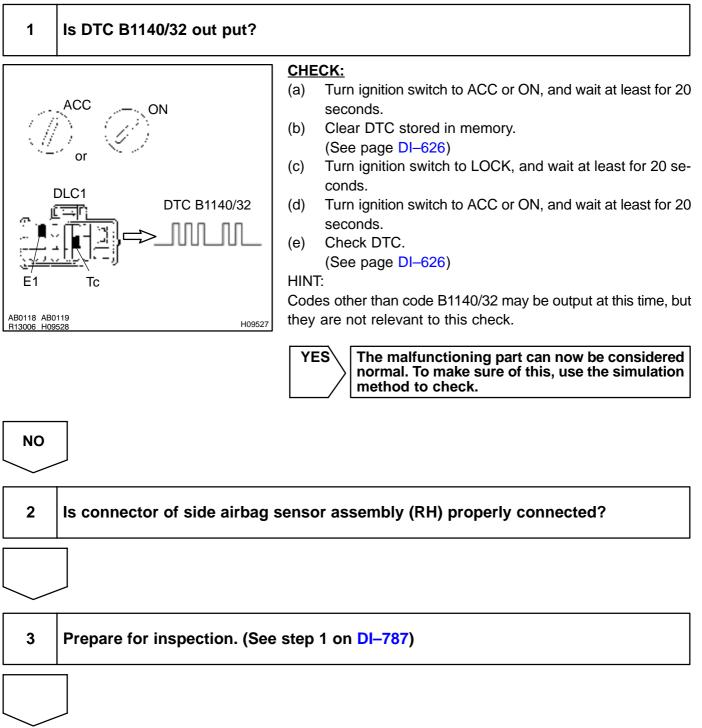
DI4L8-01

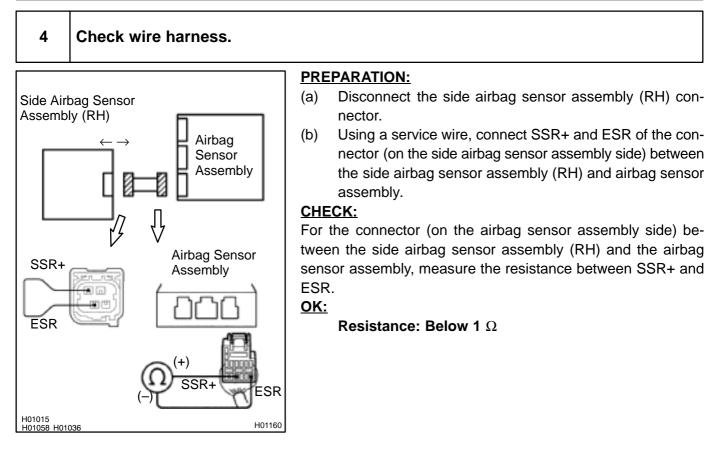
B1140/32 Side Airbag Sensor Assembly (RH) Malfunction

CIRCUIT DESCRIPTION


The side airbag sensor assembly (RH) consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

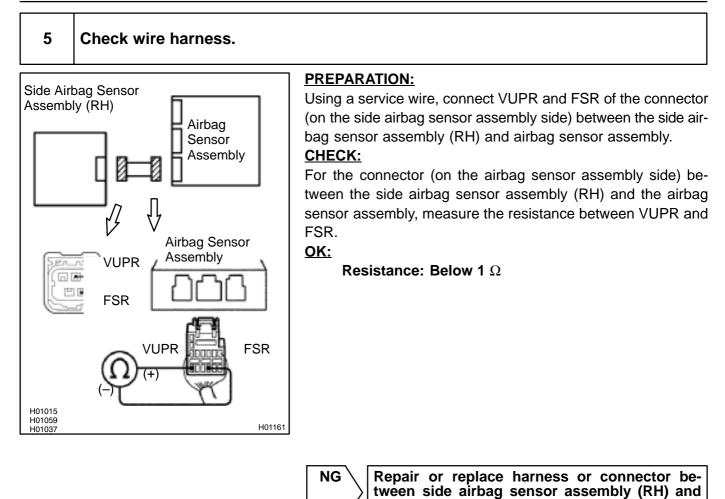
It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and diagnosis system malfunction.


DTC B1140/32 is recorded when occurrence of a malfunction in the side airbag sensor assembly (RH) is detected.


DTC No.	DTC Detecting Condition	Trouble Area
		 Side airbag sensor assembly (RH)
B1140/32	 Side airbag sensor assembly (RH) malfunction 	•Wire harness
		 Airbag sensor assembly

WIRING DIAGRAM

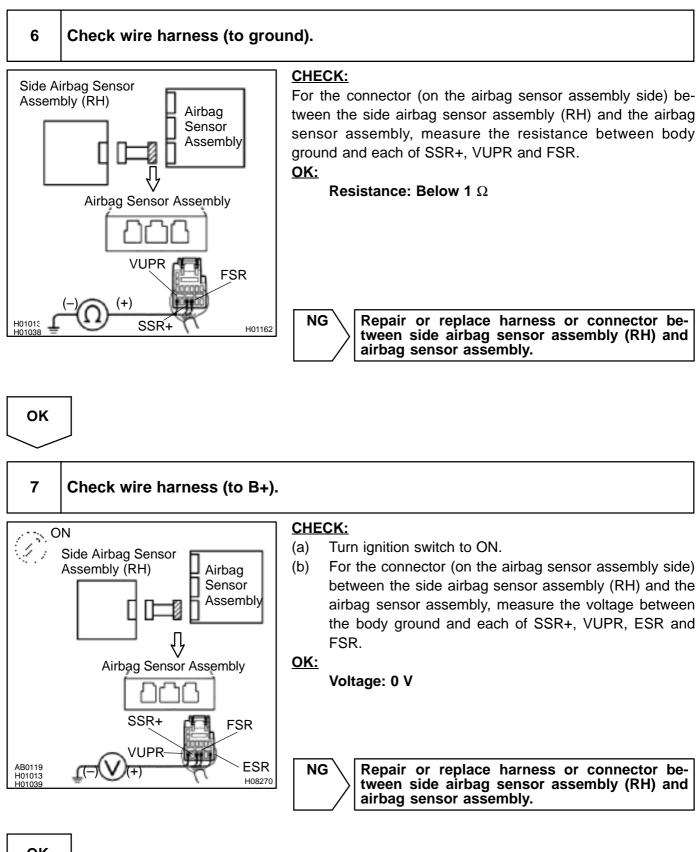
INSPECTION PROCEDURE



NG

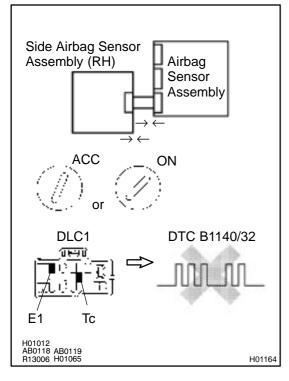
Repair or replace harness or connector between side airbag sensor assembly (RH) and airbag sensor assembly.

OK



ΟΚ

airbag sensor assembly.


DI-762

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

OK

8 Is DTC B1140/32 out put again?

PREPARATION:

- Connect the connector to the side airbag sensor assembly (RH).
- (b) Connect the connector to the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI–626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>

DTC B1140/32 is not output.

HINT:

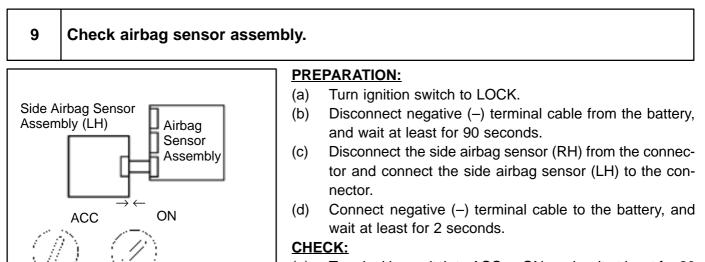
Codes other than code B1140/32 may be output at this time, but they are not relevant to this check.

ок

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-764

0


DLC1

നലാസ

Tc

E1

H01012 AB0118 AB0119 R13006 H01065 DTC B1140/32

- (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI-626)

<u> 0K:</u>

H01164

DTC B1140/32 is not output.

HINT:

Codes other than code B1140/32 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ОК

10 Check side airbag sensor assembly (RH). PREPARATION: $\rightarrow \leftarrow$ (a) Turn ignition switch to LOCK. (b) Disconnect negative (-) terminal cable from the battery, and wait at least for 90 seconds. Airbag Sensor Connect the side airbag sensor (RH) to the connector that (c) Assembly Side Airbag Sensor the side airbag sensor (LH) was connected to. Assembly (RH) Connect negative (-) terminal cable to the battery, and (d) wait at least for 2 seconds. ACC ON CHECK: Turn ignition switch to ACC or ON, and wait at least for 20 (a) seconds. Clear DTC stored in memory. (b) DLC1 DTC B1141/33 (See page DI-626) Turn ignition switch to LOCK, and wait at least for 20 se-(c) conds. (d) Turn ignition switch to ACC or ON, and wait at least for 20 E1 Tc seconds. (e) Check DTC. H01007 AB0118 AB0119 R13006 H01066 (See page DI-626) H01170 <u>OK:</u> DTC B1141/33 is not output. HINT: Codes other than code B1141/33 may be output at this time, but they are not relevant to this check. NG Replace side airbag sensor assembly (RH).

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

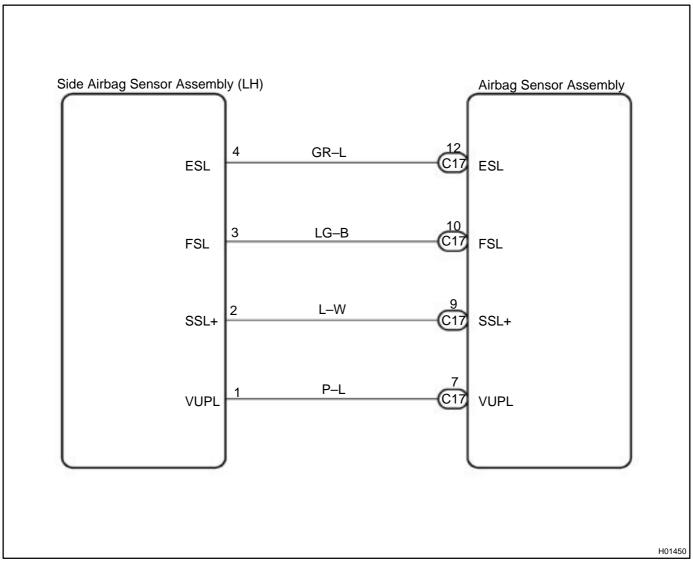
1000

DI-765

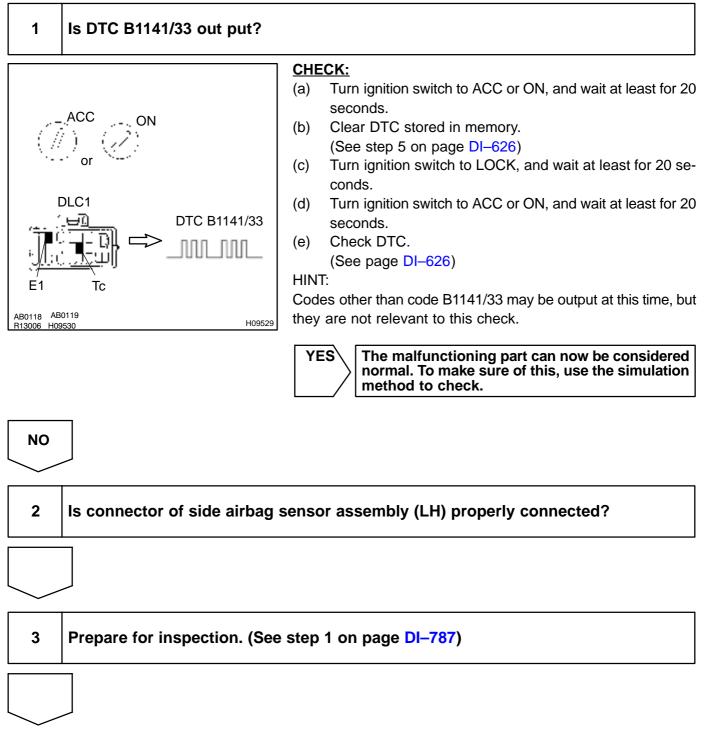
DI4L9-01

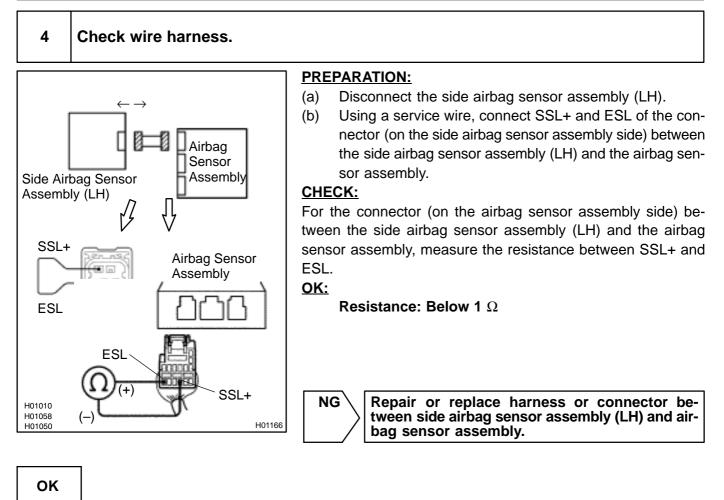
DTC B1141/33 Side Airbag Sensor Assembly (LH) Malfunction

CIRCUIT DESCRIPTION


The side airbag sensor assembly (LH) consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

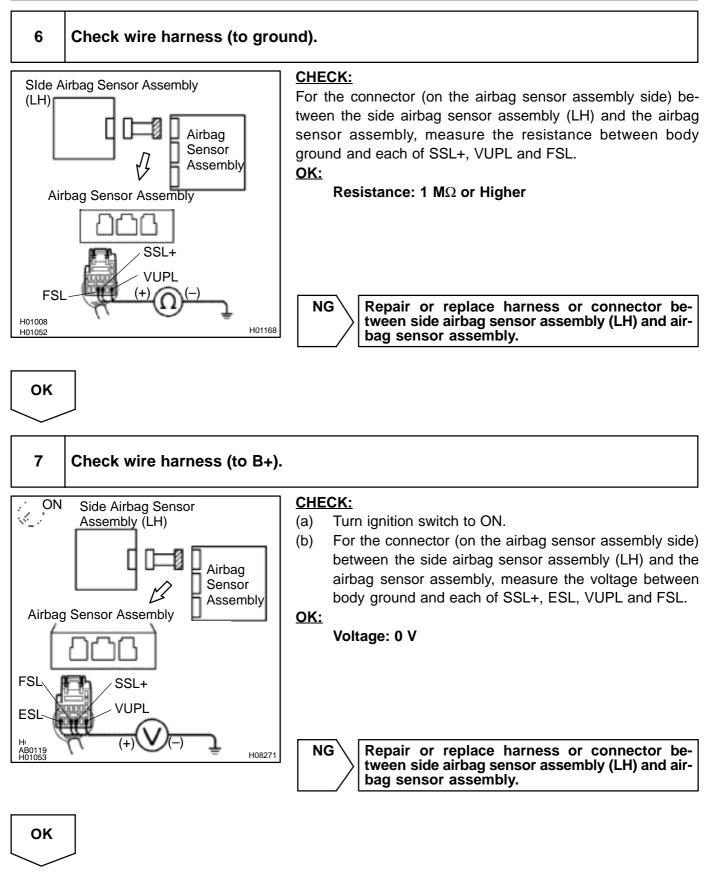
It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and diagnosis system malfunction.


DTC B1141/33 is recorded when occurrence of a malfunction in the side airbag sensor assembly (LH) is detected.

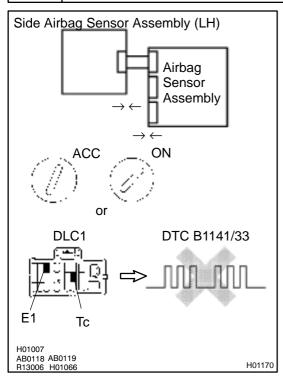

DTC No.	DTC Detecting Condition	Trouble Area
		 Side airbag sensor assembly (LH)
B1141/33	 Side airbag sensor assembly (LH) malfunction 	•Wire harness
		 Airbag sensor assembly

WIRING DIAGRAM

INSPECTION PROCEDURE



5 Check wire harness. Side Airbag Sensor PREPARATION: Assembly (LH) Using a service wire, connect VUPL and FSL of the connector (on the side airbag sensor assembly side) between the side airbag sensor assembly (LH) and the airbag sensor assembly. Airbag Sensor CHECK: Assembly For the connector (on the airbag sensor assembly side) between the side airbag sensor assembly (LH) and the airbag sensor assembly, measure the resistance between VUPL and FSL. VUPL <u>OK:</u> Airbag Sensor **Resistance: Below 1** Ω Assembly FSL FSL VUPL NG Repair or replace harness or connector be-H01010 tween side airbag sensor assembly (LH) and air-H01059 H01167 bag sensor assembly. H01051


ОК

DI-770

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

8 Is DTC B1141/33 out put again?

YES

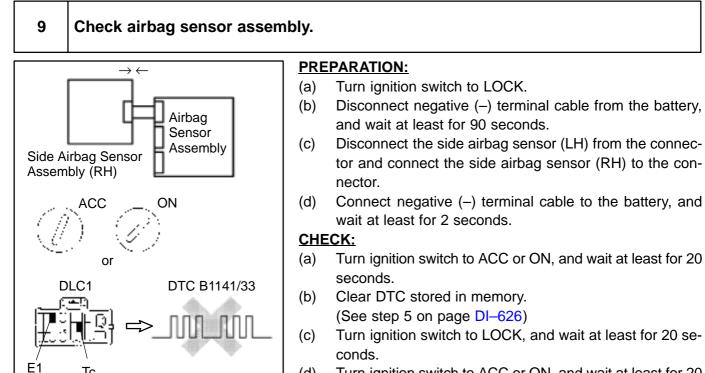
PREPARATION:

- Connect the connector to the side airbag sensor assembly (LH).
- (b) Connect the connector to the airbag sensor assembly.
- (c) Connect negative (–) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (b) Clear DTC stored in memory. (See step 5 on page DI-626)
- (c) Turn ignition switch to LOCK, and wait at least for 20 seconds.
- (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds.
- (e) Check DTC. (See page DI–626)

<u>OK:</u>


DTC B1141/33 is not output.

HINT:

Codes other than code B1141/33 may be output at this time, but they are not relevant to this check.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

- Turn ignition switch to ACC or ON, and wait at least for 20 (d) seconds.
- Check DTC. (e) (See page DI-626)

<u>OK:</u>

H01170

DTC B1141/33 is not output.

HINT:

Codes other than code B1141/33 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

H01007 AB0118 AB0119 R13006 H01066

Tc

10 Check side airbag sensor assembly (LH). PREPARATION: (a) Turn ignition switch to LOCK. Side Airbag Sensor (b) Disconnect negative (-) terminal cable from the battery, Assembly (LH) Airbag and wait at least for 90 seconds. Sensor Connect the side airbag sensor (LH) to the connector that (c) Assembly the side airbag sensor (RH) was connected to. Connect negative (-) terminal cable to the battery, and (d) wait at least for 2 seconds. ON ACC CHECK: Turn ignition switch to ACC or ON, and wait at least for 20 (a) seconds. o Clear DTC stored in memory. (b) DTC B1140/32 DLC1 (See page DI-626) ாசா Turn ignition switch to LOCK, and wait at least for 20 se-(c) conds. (d) Turn ignition switch to ACC or ON, and wait at least for 20 seconds. E1 To (e) Check DTC. H01012 AB0118 AB0119 R13006 H01065 (See page DI-626) H01164 <u>OK:</u> DTC B1140/32 is not output. HINT: Codes other than code B1140/32 may be output at this time, but they are not relevant to this check. NG Replace side airbag sensor assembly (LH).

OK

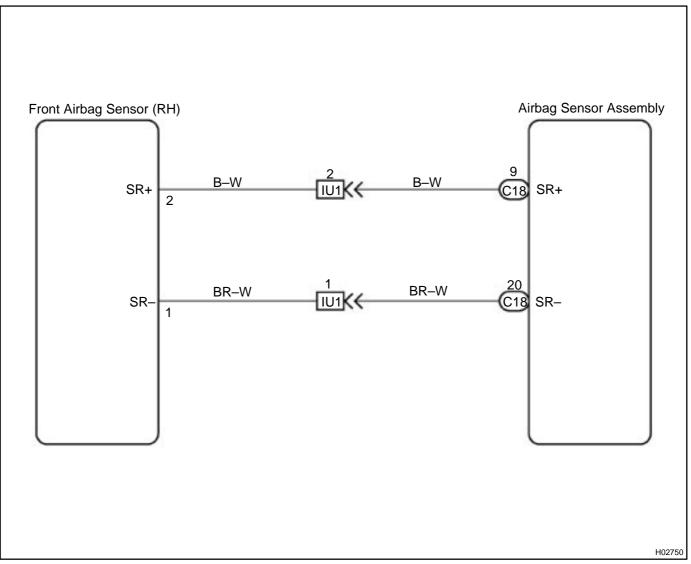
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI4LA-01

DTC

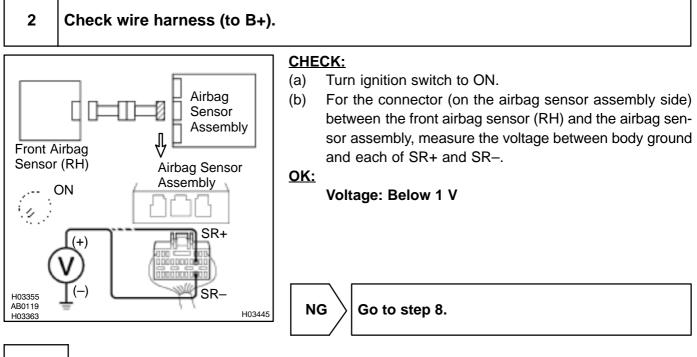
B1156/B1157/15

Front Airbag Sensor (RH) Malfunction

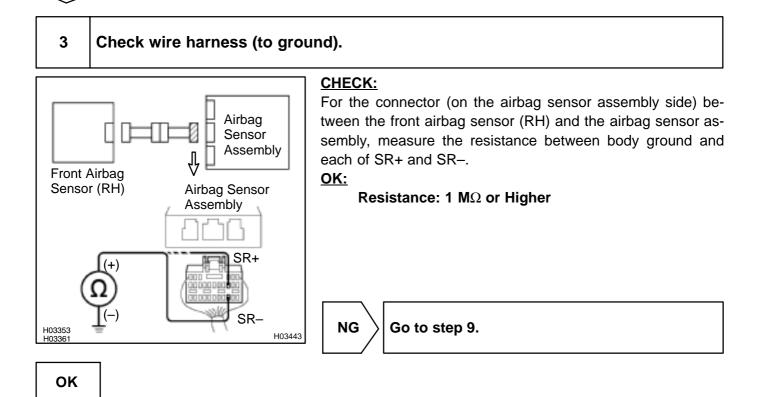

CIRCUIT DESCRIPTION

The front airbag sensor (RH) circuit consists of the airbag sensor assembly and front airbag sensor (RH). For details of the function of each component, see OPERATION on page RS–2.

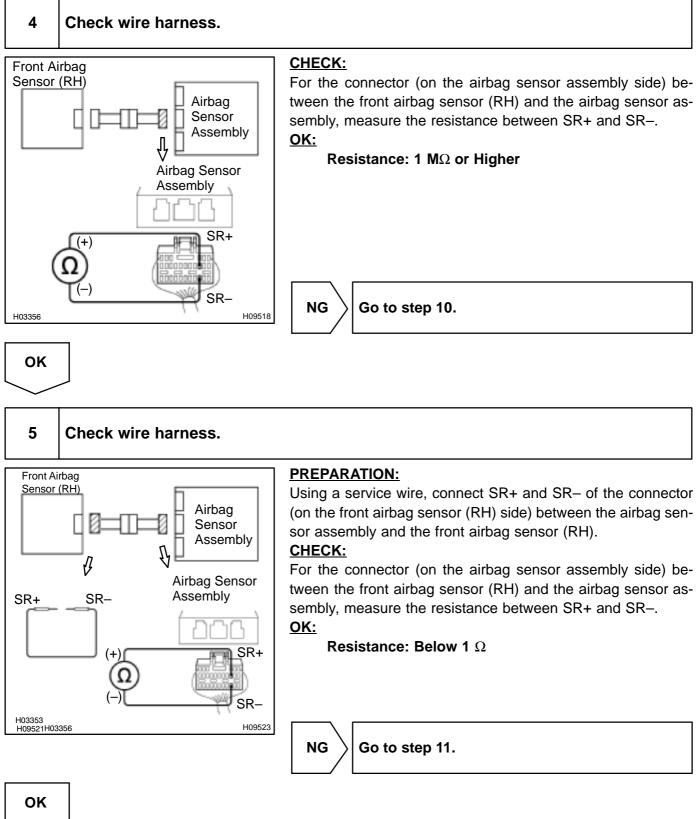
DTC B1156/B1157/15 is recorded when malfunction is detected in the front airbag sensor (RH) circuit.

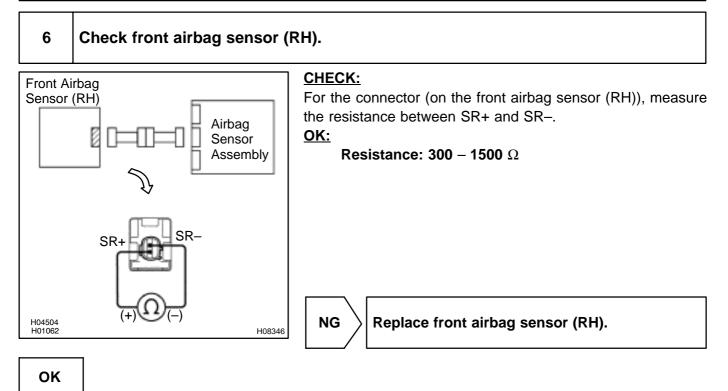

DTC No.	DTC Detecting Condition	Trouble Area
B1156/B1157/15	 Front airbag sensor (RH) malfunction 	●Front airbag sensor (RH)
		•Wire harness
		Engine room main wire harness
		 Airbag sensor assembly

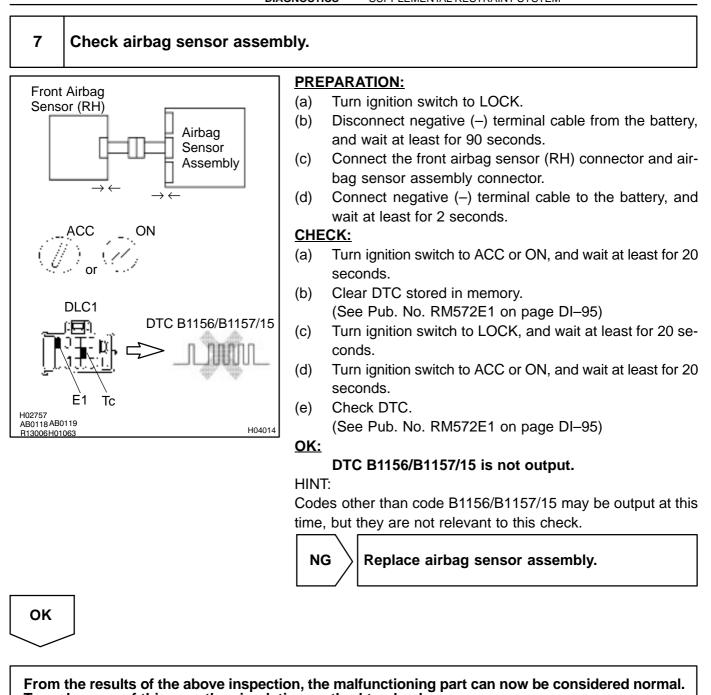
WIRING DIAGRAM

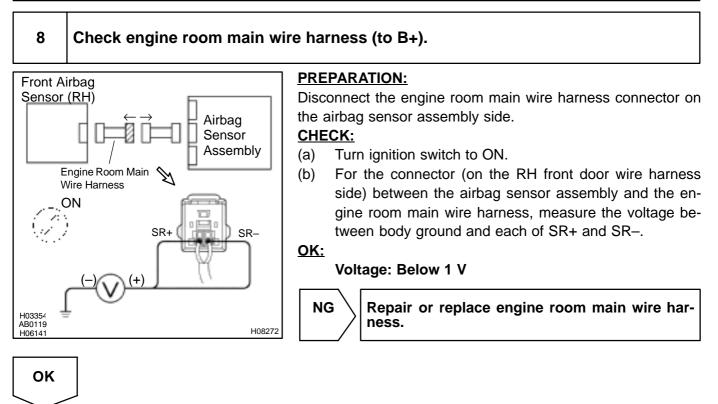


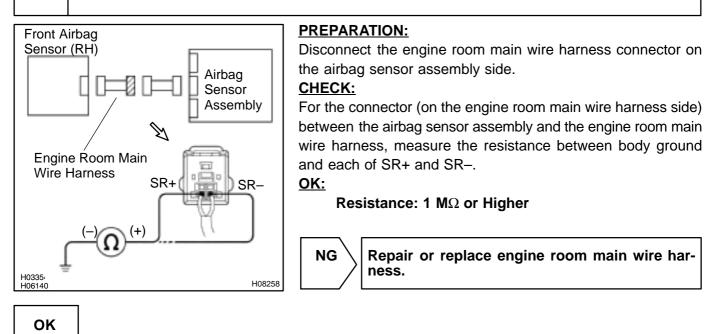
INSPECTION PROCEDURE


1 Prepare for inspection. (See step 1 on page DI–787)

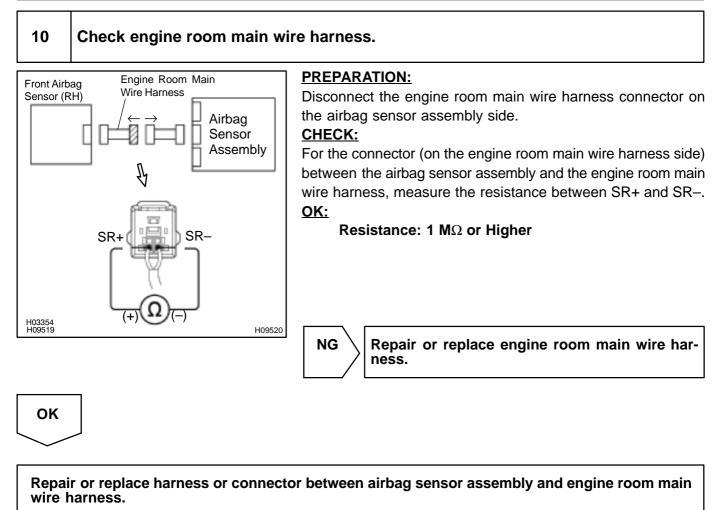



ΟΚ


DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM



To make sure of this, use the simulation method to check.



Repair or replace harness or connector between airbag sensor assembly and engine room main wire harness.

9 Check engine room main wire harness (to ground).

Repair or replace harness or connector between airbag sensor assembly and engine room main wire harness.

Image: Non-Series of the constraint of the constraint

Assembly

SR-

H09522

 $\leftarrow \rightarrow$

SR-

Д

Ø

SR+

(b) Using a service wire, connect SR+ and SR- of the connector (on the engine room main wire harness side) between the engine room main wire harness and the front airbag sensor (RH).

CHECK:

NG

For the connector (on the engine room main wire harness side) between the airbag sensor assembly and the engine room main wire harness, measure the resistance between SR+ and SR-. **OK:**

Resistance: Below 1 Ω

Repair or replace engine room main wire harness.

οκ

SR+

H03352 H09521 H09519

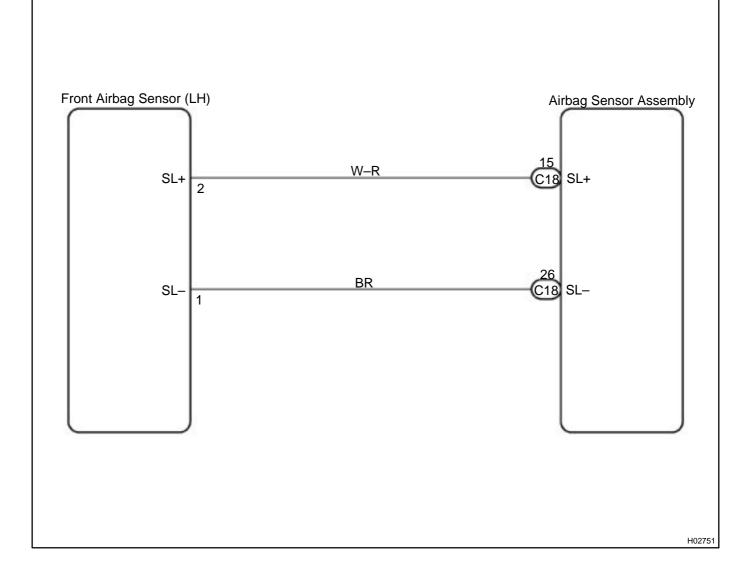
Repair or replace harness or connector between airbag sensor assembly and engine room main wire harness.

DI4LB-01

DTC

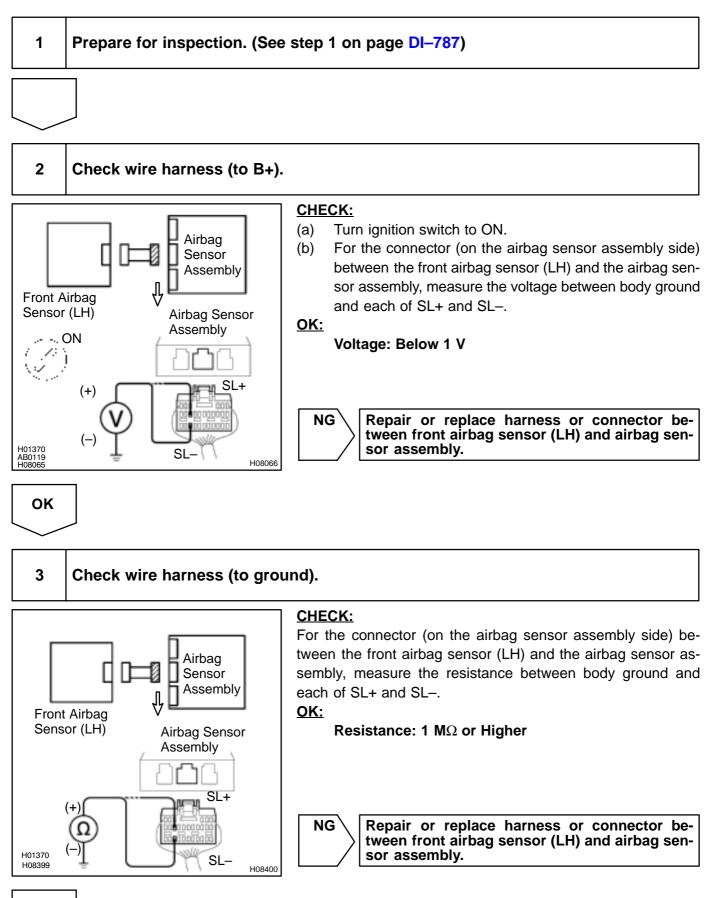
B1158/B1159/16

Front Airbag Sensor (LH) Malfunction

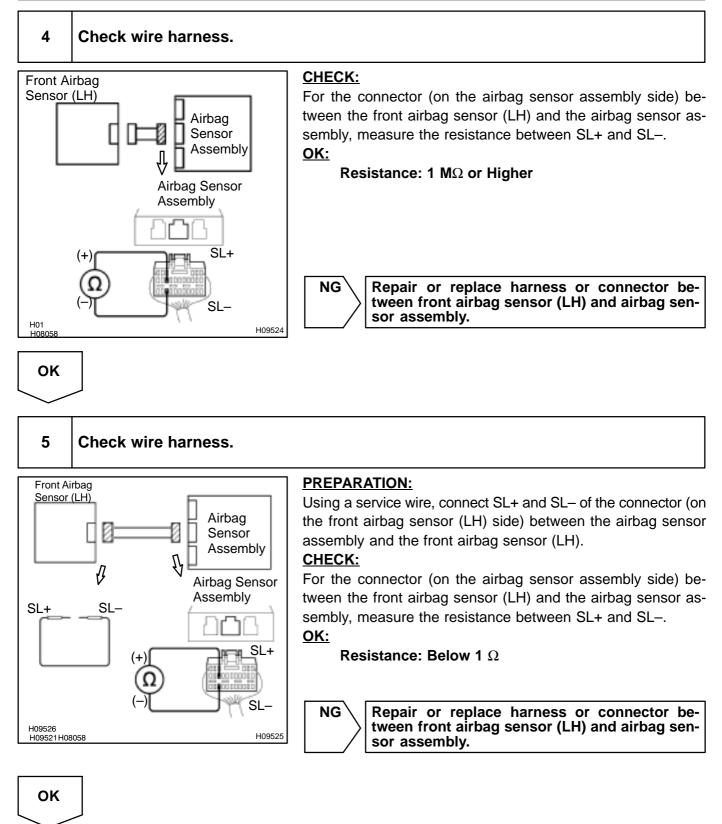

CIRCUIT DESCRIPTION

The front airbag sensor (LH) circuit consists of the airbag sensor assembly and front airbag sensor (LH). For details of the function of each component, see OPERATION on page RS-2.

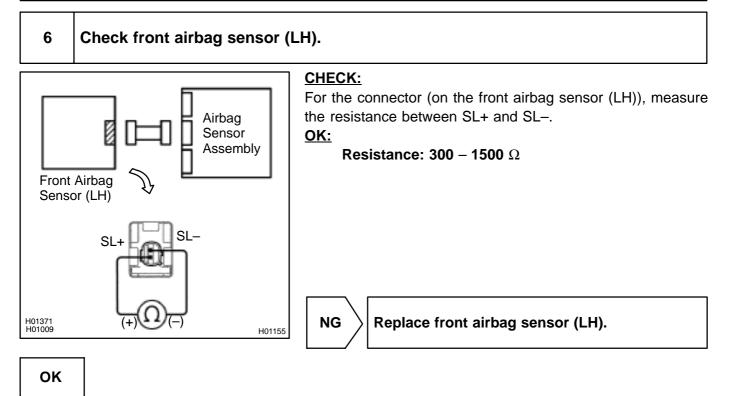
DTC B1158/B1159/16 is recorded when malfunction is detected in the front airbag sensor (LH) circuit.

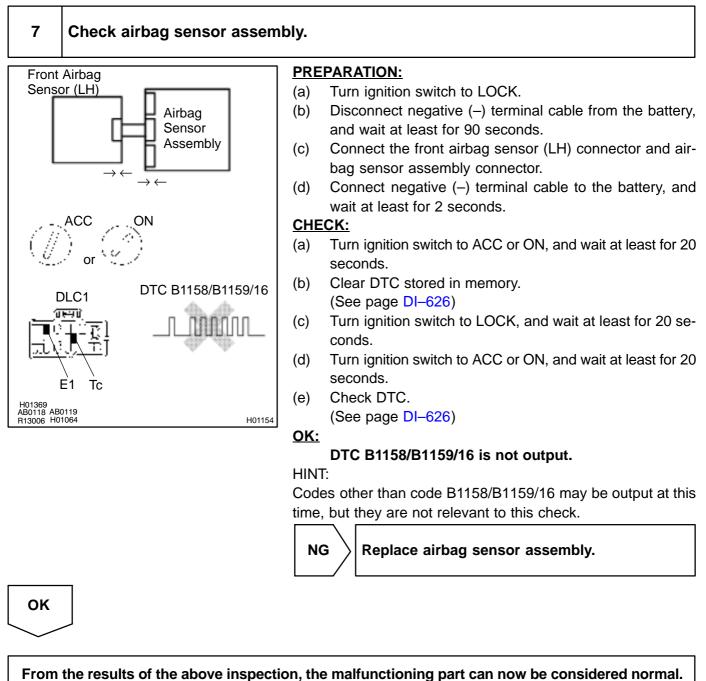

DTC No.	DTC Detecting Condition	Trouble Area
		●Front airbag sensor (LH)
B1158/B1159/16	 Front airbag sensor (LH) malfunction 	●Wire harness
		 Airbag sensor assembly

WIRING DIAGRAM



INSPECTION PROCEDURE


OK



DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

DIAGNOSTICS – SUPPLEMENTAL RESTRAINT SYSTEM

To make sure of this, use the simulation method to check.

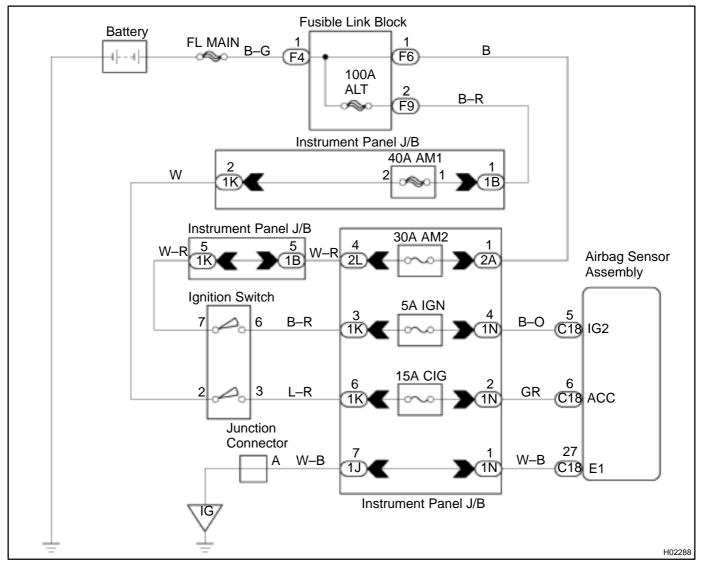
DTC

Normal

Source Voltage Drop

CIRCUIT DESCRIPTION

The SRS is equipped with a voltage–increase circuit (DC–DC converter) in the airbag sensor assembly in case the source voltage drops.


When the battery voltage drops, the voltage-increase circuit (DC-DC converter) functions to increase the voltage of the SRS to normal voltage.

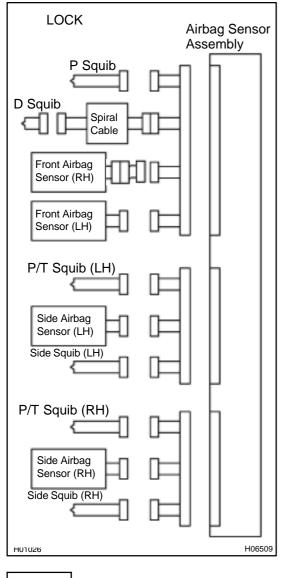
The diagnosis system malfunction display for this circuit is different from other circuits that is when the SRS warning light remains lit up and the DTC is a normal code, source voltage drop is indicated.

Malfunction in this circuit is not recorded in the airbag sensor assembly, and the source voltage returns to normal, the SRS warning light automatically goes off.

DTC No.	Diagnosis
(Normal)	Source voltage drop

WIRING DIAGRAM

Date :


DI-787

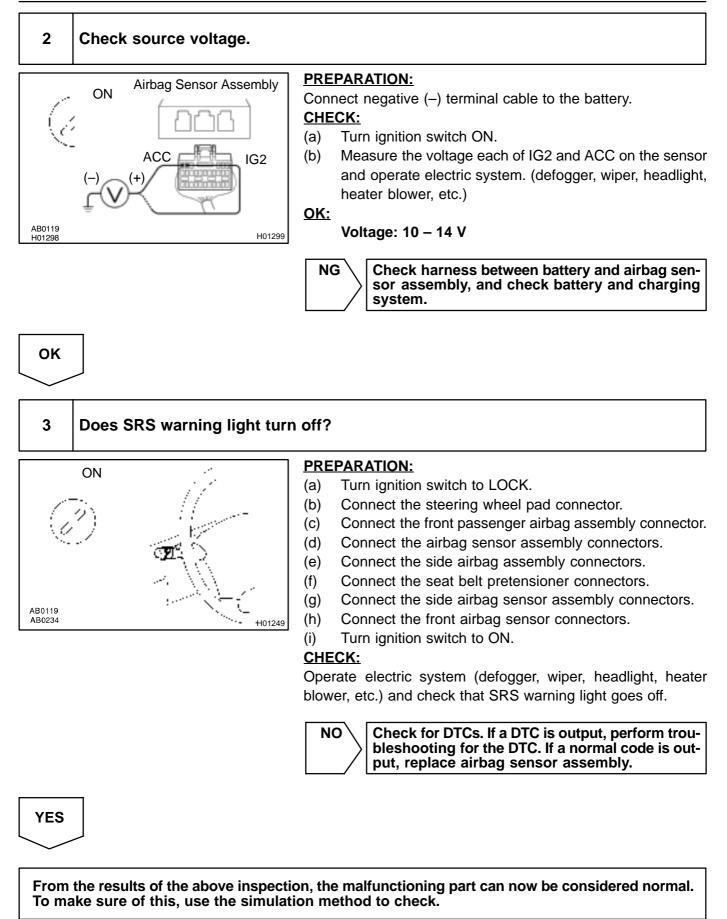
DI1BN-08

INSPECTION PROCEDURE

1

Prepare for inspection.

PREPARATION:


- (a) Disconnect negative (–) terminal cable from the battery, and wait at least for 90 seconds.
- (b) Remove the steering wheel pad. (See page SR-11)
- (c) Disconnect the connector of the front passenger airbag assembly. (See page RS-28)
- (d) Disconnect the connector of the side airbag assembly RH and LH. (See page RS-40 and RS-52)
- (e) Disconnect the connector of the seat belt pretensioner RH and LH. (See page BO–126)
- (f) Disconnect the connectors of the airbag sensor assembly.

(See page RS-59)

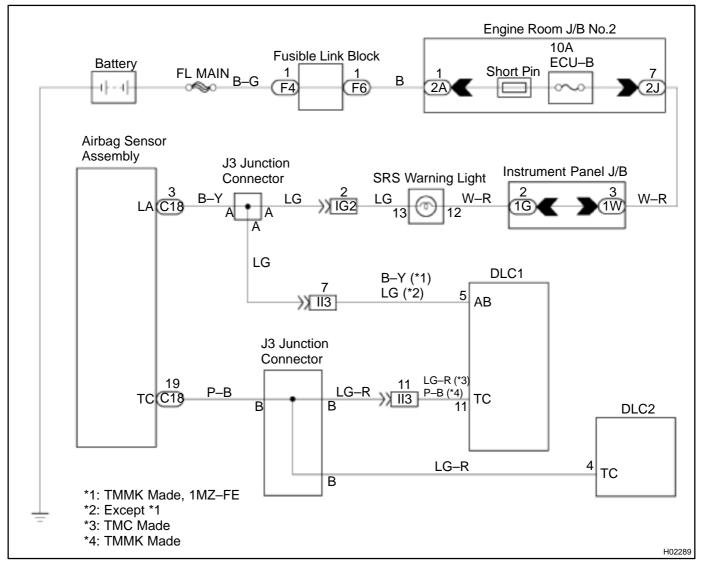
- (g) Disconnect the connector of the front airbag sensor LH and RH. (See page RS-64)
- (h) Disconnect the connector of the side airbag sensor assembly RH and LH. (See page RS-69)

CAUTION:

Store the steering wheel pad with the front surface facing upward.

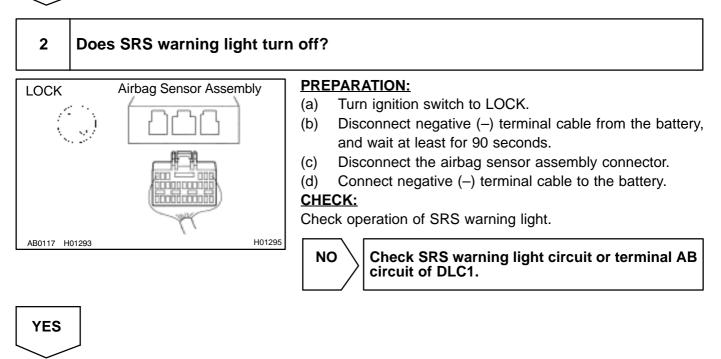
DI1BO-08

SRS Warning Light Circuit Malfunction (Always lights up, when ignition switch is in LOCK position.)


CIRCUIT DESCRIPTION

The SRS warning light is located on the combination meter.

When the SRS is normal, the SRS warning light lights up for approx. 6 seconds after the ignition switch is turned from the LOCK position to ACC or ON position, and then turns off automatically.


If there is a malfunction in the SRS, the SRS warning light lights up to inform the driver of the abnormality. When terminals Tc and E1 of the DLC1 are connected, the DTC is displayed by blinking the SRS warning light.

WIRING DIAGRAM

INSPECTION PROCEDURE

1 Prepare for inspection. (See step 1 on page DI–787)

Replace airbag sensor assembly.

Author :

DI-791

DI1BP-08

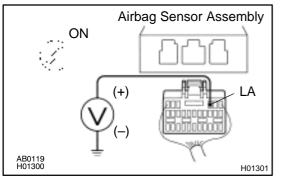
SRS Warning Light Circuit Malfunction (Does not light up, when ignition switch is turned to ACC or ON.)

CIRCUIT DESCRIPTION

The SRS warning light is located on the combination meter.

When the SRS is normal, the SRS warning light lights up for approx. 6 seconds after the ignition switch is turned from LOCK position to ACC or ON position, and then turns off automatically.

If there is a malfunction in the SRS, the SRS warning light lights up to inform the driver of the abnormality. When terminals Tc and E1 of the DLC1 are connected, the DTC is displayed by blinking the SRS warning light.


WIRING DIAGRAM

See page DI-790.

INSPECTION PROCEDURE

1	Check ECU–B Fuse.
	Fuse Fuse
ОК	
2	Prepare for inspection. (See step 1 on page DI–787)

3 Check SRS warning light circuit.

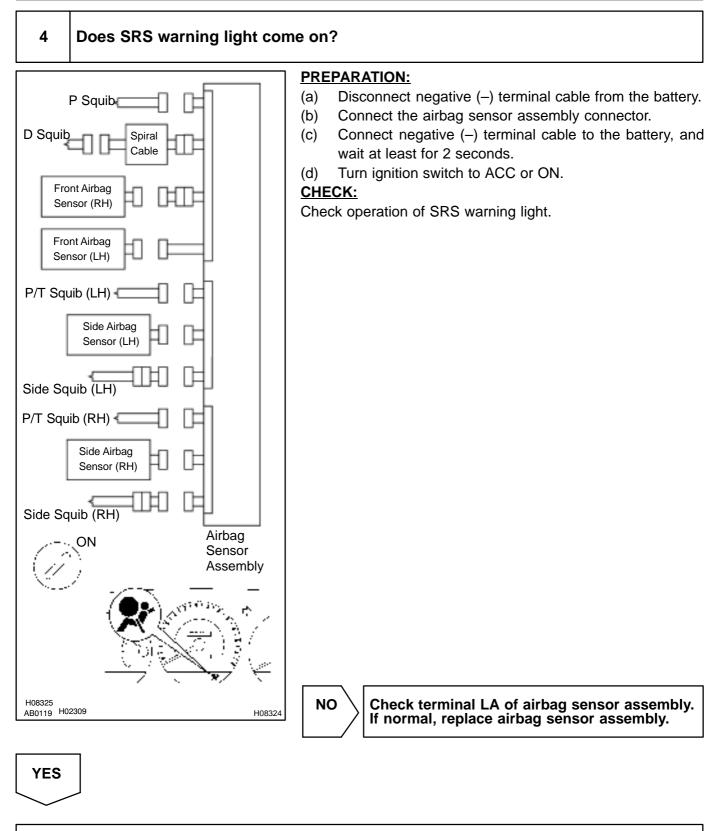
PREPARATION:

(a) Connect negative (–) terminal cable to the battery.

(b) Turn ignition switch to ACC or ON.

CHECK:

Measure the voltage LA terminal of the harness side connector of the airbag sensor assembly.


<u>OK:</u>

Voltage: 10 – 14 V

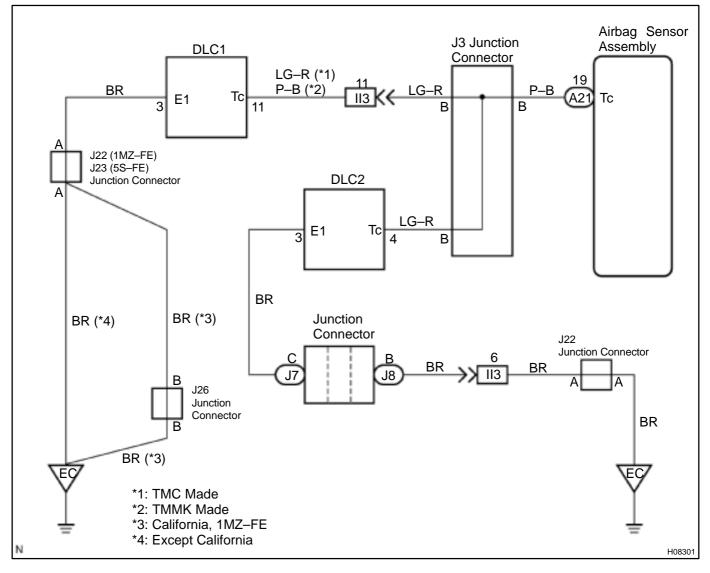
Check SRS warning light bulb or repair SRS warning light circuit.

OK

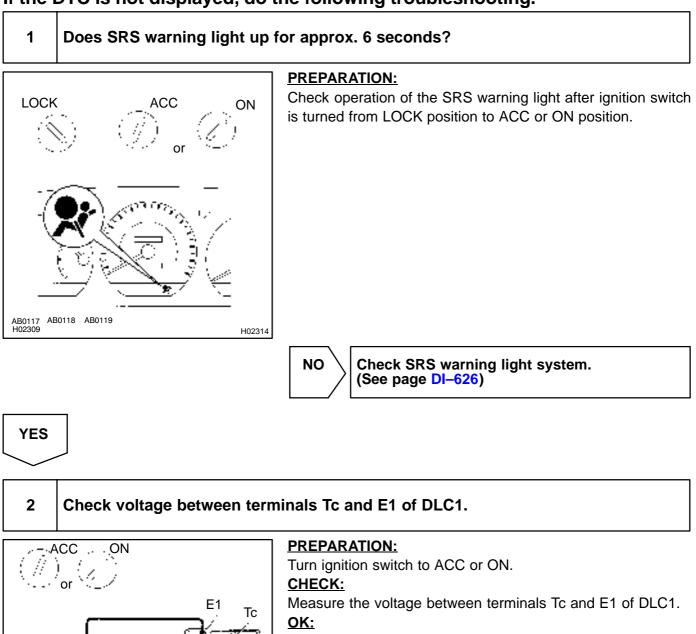
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use simulation method to check.

5 Is new ECU–B fuse burnt out again? NO Using simulation method, reproduce malfunction symptoms. (See page IN–21) YES

Check harness between ECU–B fuse and SRS warning light.


DI1BQ-08

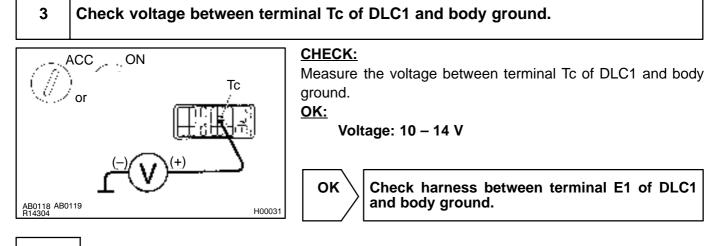
Tc Terminal Circuit


CIRCUIT DESCRIPTION

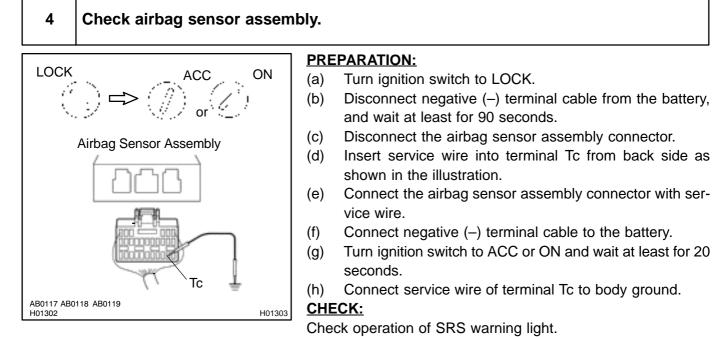
By connecting terminals Tc and E1 of the DLC1 the airbag sensor assembly is set in the DTC output mode. The DTCs are displayed by blinking the SRS warning light.

WIRING DIAGRAM

INSPECTION PROCEDURE If the DTC is not displayed, do the following troubleshooting.


Voltage: 10 – 14 V

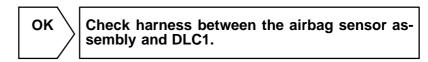
H00030


OK Go to step 4.

NG

AB0118 AB0119 R14305

NG

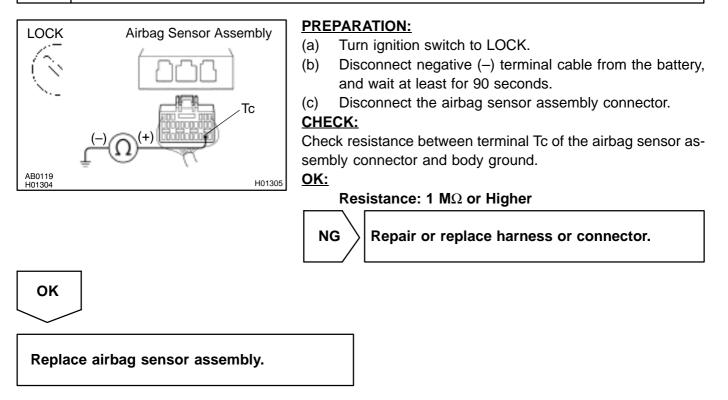


<u>OK:</u>

SRS waning light comes on.

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.

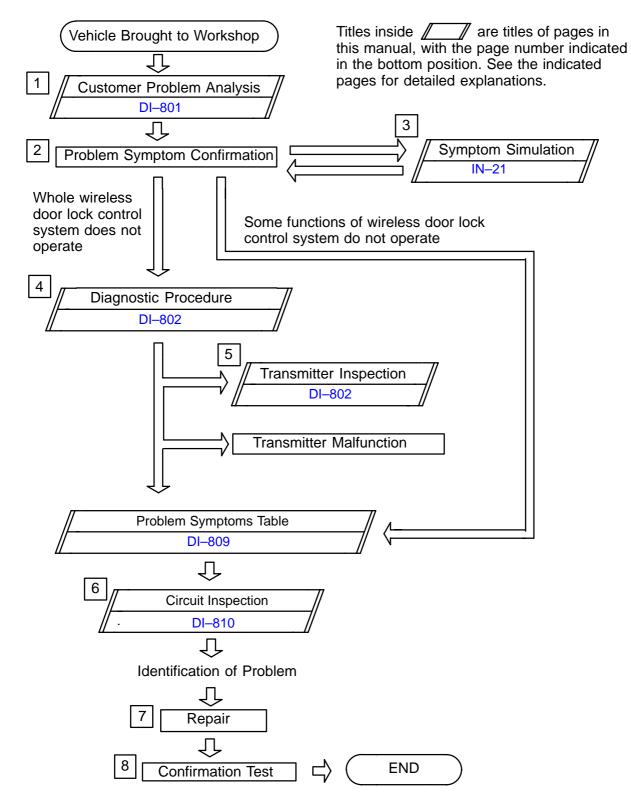


NG

Replace airbag sensor assembly.

If the DTC is displayed without a DTC check procedure, perform the following troubleshooting.

1 Check resistance between terminal Tc of airbag sensor assembly and body ground.



WIRELESS DOOR LOCK CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

Troubleshooting of the wireless door lock control system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the wireless door lock control system, first make certain that the door lock control system is operating normally.

Perform troubleshooting in accodnce with procedure on the following page.

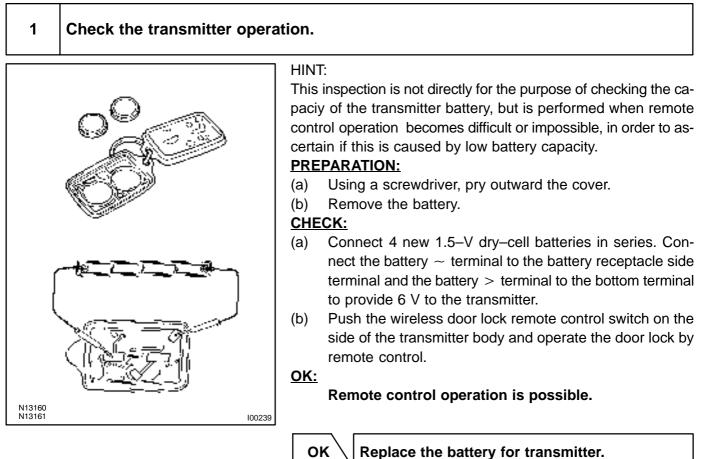
CUSTOMER PROBLEM ANALYSIS CHECK

WIRELESS DOOR LOCK CONTROL System Check Sheet

Inspector's Name

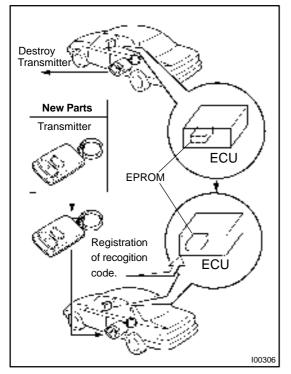
			Registration No.		
Customer's Name			Registration Year	1	1
		Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading		km Miles

Date Problem First Occurred		1 1
Frequency Problem Occurs		 Constant Sometimes (times per day, month) Once only
Weather Conditions	Weather	□ Fine □ Cloudy □ Rainy □ Snowy □ Various/Others
When Problem Oc- curred	Outdoor Temperature	□ Hot □ Warm □ Cool □ Cold (Approx. °F (°C))
	Place	Everywhere Specific Locality()
Date Transmitter Battery Last Replaced		1 1


Problem Symptom

Whole wireless door lock control system does not operate.				
Only door unlock operation is not possible.				
Only door lock operation is not possible.				
Only key confinement prevention function is not possible.				
Wireless door lock function operates even each door is opened.				
Only PANIC operation is not possible.				
 Wireless door lock functions incorrectly. (Although one door is unlocked, when the transmitter switch is pressed, all doors become unlocked.) 	 When Front RH door is unlocked When Front LH door is unlocked When Rear RH door is unlocked When Rear LH door is unlocked 			
□ Others				

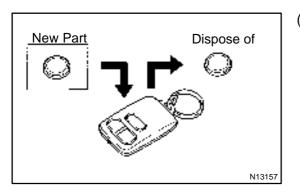
1036


(See page DI-802)

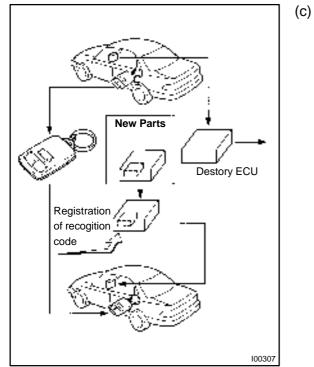
PRE-CHECK 1. INSPECT TRANSMITTER

NG

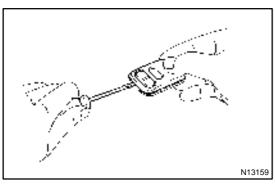
Replace transmitter and registration of recognition code. (See page DI-802) DI05N-03


2. REPLACE WIRELESS DOOR LOCK ECU AND TRANS-MITTER

HINT:


Disassembly and assembly of the transmitter includes details of spare parts and replacement procedure for detective parts found through troubleshooting.

Each part is a precision electronic component so handle with care.


- (a) Spare parts and replacement procedure for malfunctioning parts (transmitter malfunction):
 - (1) Prepare a new transmitter.
 - (2) Registration of recogition code.
 - (3) Check that door lock remote control operation works.

- (b) Spare parts and replacement procedure for malfunctioning parts (battery malfunction):
 - (1) Prepare a new battery.
 - (2) Remove the battery from transmitter.
 - (3) Install a new battery into transmitter.

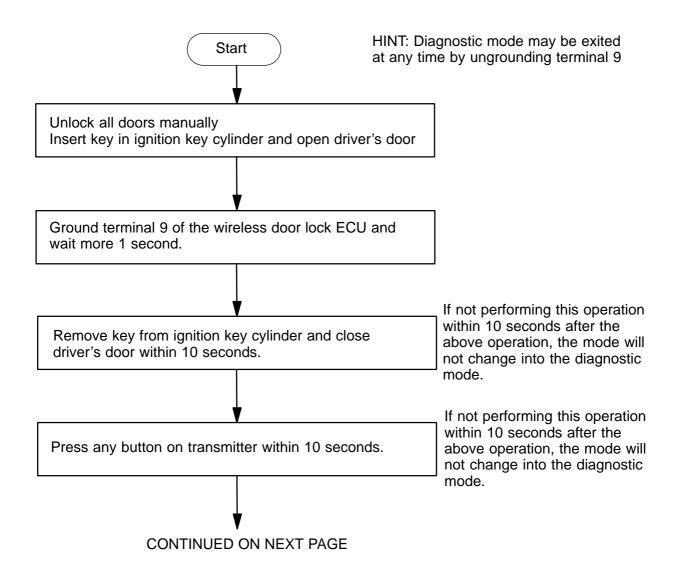
- c) Spare parts and replacement procedure for malfunctioning parts (ECU malfunction):
 - (1) Prepare a new ECU.
 - (2) Remove the ECU from the vehicle.
 - (3) Install a new ECU in the vehicle.
 - (4) Registration of recogition code.

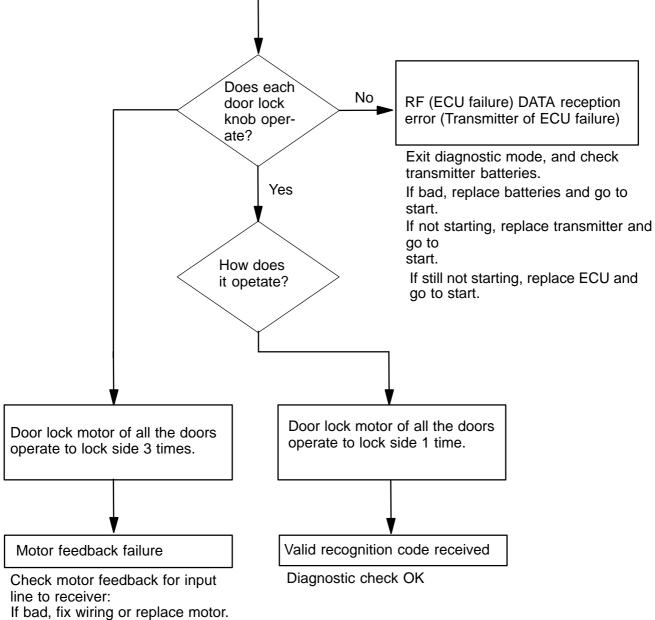
- (d) Replace the battery for transmitter.
 - (1) Using a screwdriver, pry outward the cover.


- (2) Remove the battery.
- (3) Set a new battery into the transmitter.
- (4) Install the cover to the transmitter.

3. **REGISTRATION OF RECOGNITION CODE**

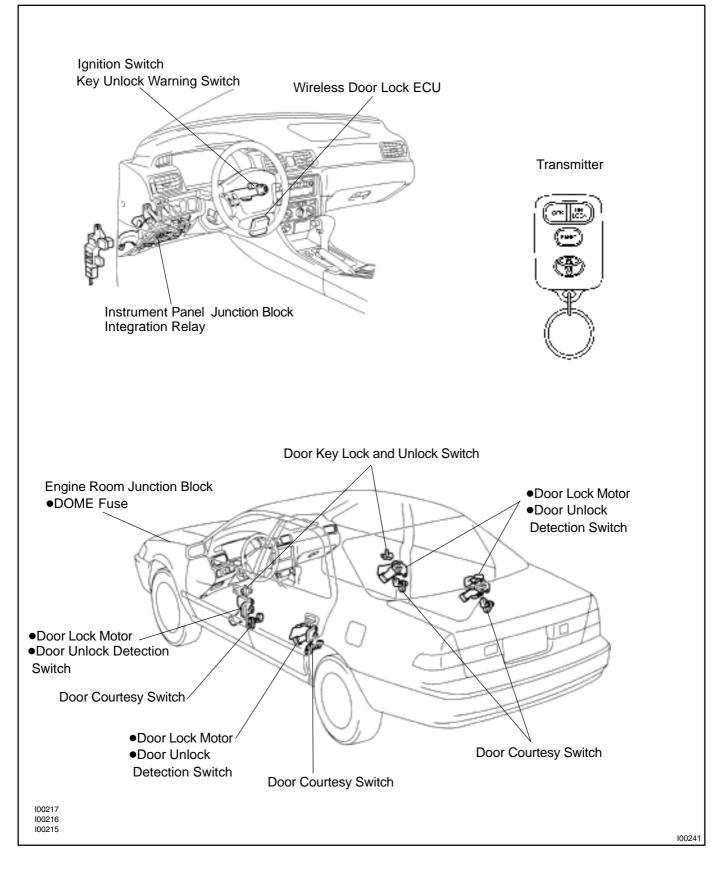
The recognition code of the transmitter is electronically registered (written to and stored) in an EEPROM contained in the wireless door lock ECU. This makes it possible to register up to 2 different codes in the EEPROM.

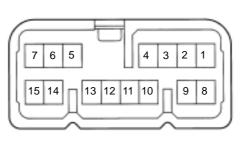

New recognition codes can be registered after all previous codes have been erased. A transmitter code can be registered into the EEPROM by following the steps numbered (1) to (5).


(1) The wireless door lock ECU and remote control mirror switch are connected to each other via a PRG terminal, and the GND terminal of the remote control mirror switch connector is grounded to body. Remove the connector from the remote control mirror switch, and use a test lead to short the PRG and GND connector together. As a result, the PRG terminal of the wireless door lock ECU will be grounded to body and will cause all transmitter recognition codes previously registered in the EE-PROM to be erased. At the same time, the ECU will respond by operating once the lock and unlock functions of all the doors, and the open function of the trunk lid.

- (2) A transmitter recognition code is registered by pressing any single button of the transmitter to be registered. Once the code is registered, the ECU responds again by operating once the lock and unlock functions of all the doors.
- (3) To register the recognition code of an additional transmitter, follow the procedure shown in (2).
- (4) After completing the registration of the codes, remove the test lead from the remote control mirror switch connector terminals to allow the system to revert to the normal operation.
- (5) Using the registered transmitter, verify that the system operates properly.

4. DIAGNOSTIC PROCEDURE




Other wise, replace receiver and go to start.

DI050-03

PARTS LOCATION

TERMINALS OF ECU

100227

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
1 – Ground (GND – Ground)	W – B	Always.	Below 1 V
		TAIL lamps "ON"	Below 1 V
4 – Ground (TAIL – Ground)	G – R	TAIL lamps "OFF"	10 – 14 V
		Always.	4 – 6 V
5 – Ground (PINI – Ground)	LG	Push the PANIC switch.	Below 1.5 V
		Door key lock and unlock switch "UNLOCK". (Driver's Door)	Below 1.5 V
7 – Ground (UL3 – Ground)	R – G	Door key lock and unlock switch "OFF" or "LOCK". (Driver's Door)	8 – 10 V
8 – 1 (+B – E)	R	Always.	10 – 14 V
9 – Ground (PRG – Ground)	V	Ignition switch "ON"	10 – 14 V
10 – Ground (KSW – Ground)	L–B	Key unlock warning switch "ON". (Key is inserted into key cylinder)	Below 1 V
		Key unlock warning switch "OFF".	10 – 14 V
	L-R	Door unlock detection switch "ON". (Driver's Door)	Below 1 V
11 – Ground (LSWD – Ground)		Door unlock detection switch "OFF". (Driver's Door)	10 – 14 V
		Door unlock detection switch "ON". (Passenger's Door)	Below 1 V
12 – Ground (LSWP – Ground)	Y	Door unlock detection switch "OFF". (Passenger's Door)	10 – 14 V
	Ground) L – Y	Door unlock detection switch "ON". (Either Rear Door)	Below 1 V
13 – Ground(LSWR – Ground)		Door unlock detection switch "OFF". (All Rear Doors)	10 – 14 V
		Door courtesy switch "ON"	Below 1 V
14 – Ground (CTY – Ground)	R – W	Door courtesy switch "OFF"	10 – 14 V
		Door key lock and unlock switch "LOCK"	Below 1 V
15 – Ground (L – Ground)	L - W	Door key lock and unlock switch "OFF" or "UNLOCK"	8 – 10 V

DI1KR-03

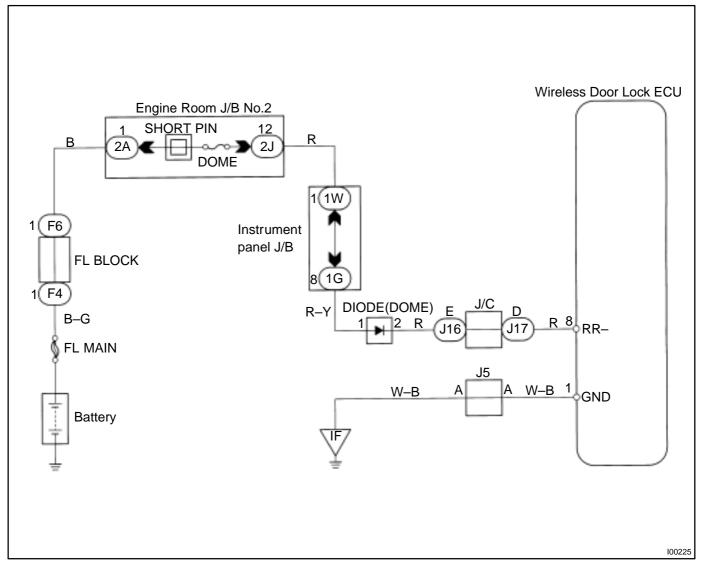
PROBLEM SYMPTOMS TABLE

Perform troubleshooting of the circuit for the applicable problem symptom in the order given in the chart below. Proceed to the page located for each circuit.

- HINT:
- Troubleshooting of the wireless door lock control system is based on the premise that the door lock control system and theft deterrent system are operating normally. Accordingly, before troubleshooting the wireless door lock control system, first make certain that the door lock control system and theft deterrent system are operating normally.
- If the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- If the trouble still reappears even through there are no abnormalities in any of the other circuits, check and replace the Wireless Door Lock ECU as the last step.

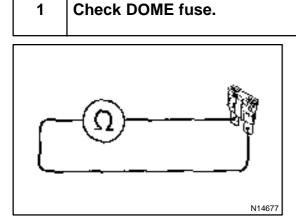
Symptom	Suspect Area	See page
All functions of wireless door lock control system do no operate.	 ECU Power Source Circuit. Door Courtesy Switch Circuit. Door Key Lock and Unlock Switch Circuit. (Unlock Side) Door Key Lock and Unlock Switch Circuit. (Lock Side) Key Unlock Warning Switch Circuit. Wireless Door Lock ECU. 	DI-810 DI-821 DI-815 DI-817 DI-819 IN-31
Only door unlock operation is not possible (Lock operation is possible).	 Door Key Lock and Unlock Switch Circuit (Unlock Side) Door Unlock Detection Switch Circuit Wireless Door Lock ECU. 	DI-815 DI-819 IN-31
Only door lock operation is not possible (Unlock operation is possible).	 Door Key Lock and Unlock Switch Circuit (Lock Side) Wireless Door Lock ECU 	DI-817 IN-31
Only key confinement prevention function is not possible.	 Key Unlock Warning Switch Circuit Wireless Door Lock ECU 	DI–819 IN–31
 Wireless door lock function operates even when each door is opened. Automatic lock function operates even if any door is opened within 30 seconds after all doors are unlocked by wireless door lock control system. 	 Door Courtesy Switch Circuit Wireless Door Lock ECU 	DI-821 IN-31
Wireless door lock functions incorrectly. (Although one door is unlocked, when the transmitter switch is pressed, all doors are unlocked.)	 Door Unlock Detection Switch Circuit Wireless Door Lock ECU 	DI-813 IN-31
Warning operation will not be performed even if the panic button is pressed.	 Panic Circuit Wireless Door Lock ECU 	DI-823 IN-31

DI05Q-03


CIRCUIT INSPECTION

ECU Power Source Circuit

CIRCUIT DESCRIPTION

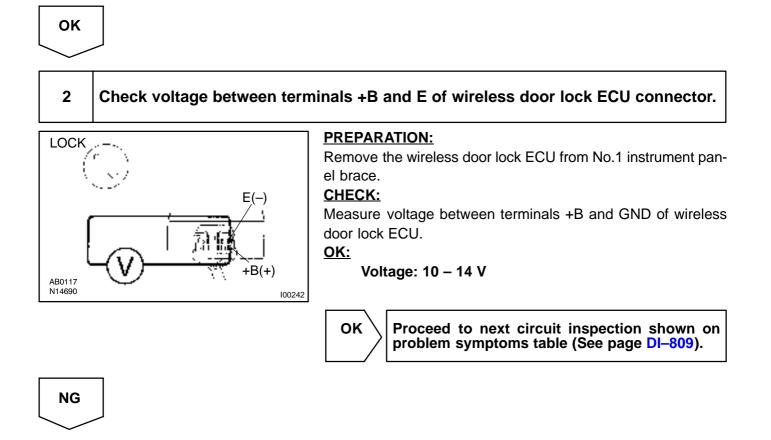

Battery positive voltage is always applied to the terminal +B of the wireless door lock ECU.

WIRING DIAGRAM

DI05R-03

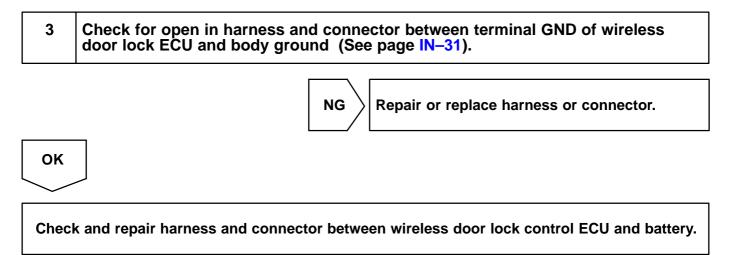
INSPECTION PROCEDURE

PREPARATION:


Remove DOME fuse from engine room junction block. <u>CHECK:</u> Check continuity of DOME fuse.

<u> 0K:</u>

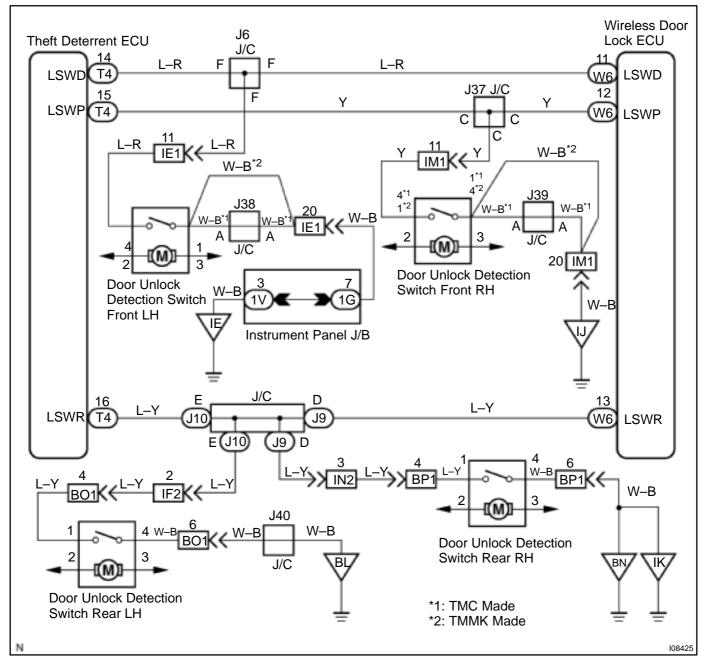
Below 1.0 Ω or continuity



Check for short in all the harness and components connected to DOME fuse. (See attached wiring diagram.)

Date :

Author :

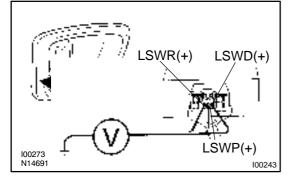

Door Unlock Detection Switch Circuit

CIRCUIT DESCRIPTION

The door unlock detection switch is built into the door lock motor assembly. The switch is OFF when the door lock knob is in Lock position, and is ON When the Knob is in Unlock position.

Furthermore, the door unlock detection switch circuit has terminal +B connected inside the theft deterrent ECU, when the door unlock detection switch is OFF, battery positive voltage is applied to the terminal of the door unlock detection switch circuit of the wireless door lock ECU.

WIRING DIAGRAM



DI05S-03

INSPECTION PROCEDURE

1

Check voltage between terminals LSWD, LSWP and LSWR of wireless door lock ECU connector and body ground.

PREPARATION:

Remove the wireless door lock ECU from No.1 instrument panel brace.

CHECK:

Measure voltage between each of terminals LSWD, LSWP and LSWR of wireless door lock ECU connector and body ground, when the respective door lock knobs involved are pushed to the lock side.

<u>OK:</u>

Voltage 10 – 14 V

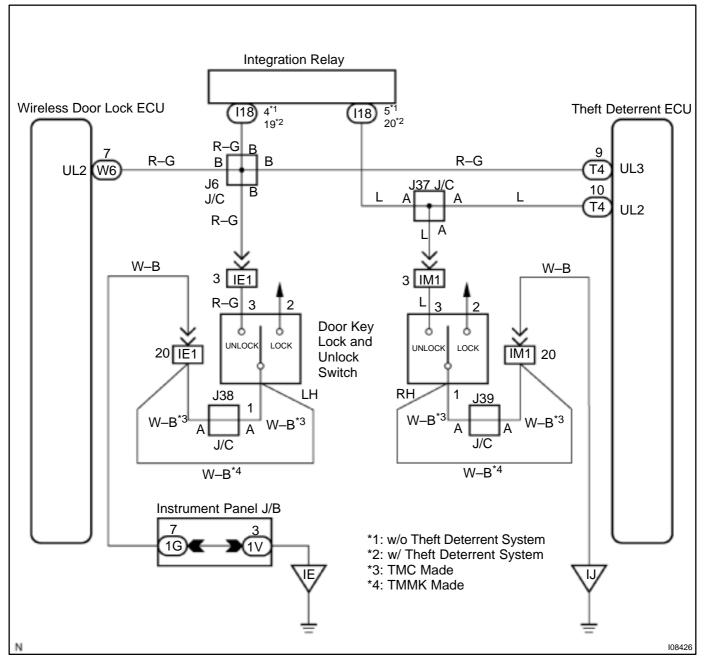
Proceed to next circuit inspection shown on problem symptoms table (See page DI-809).

NG

Check and repair harness and connector between wireless door lock ECU and door unlock detection switch.

DI05T-03

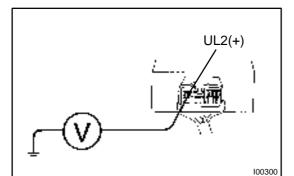
Door Key Lock and Unlock Switch Circuit (Unlock Side)


CIRCUIT DESCRIPTION

The Key–operated switch is built into the door key cylinder. When the key is turned to the lock side, the lock terminal of the switch is grounded, and when the key is turned to the unlock side the unlock terminal is grounded.

Furthermore, the door key lock and unlock switch circuit has terminal +B connected inside the theft deterrent ECU, when neither the lock nor unlock terminal of the key lock and unlock switch are grounded, battery positive voltage is applied to the door key lock and unlock switch circuit of the wireless door lock ECU.

(Tr inside the ECU coming ON causes the wireless door lock ECU to output a signal to unlock all the doors.)


WIRING DIAGRAM

NG

INSPECTION PROCEDURE

1 Check voltage between terminals UL2 of wireless door lock ECU connector and body ground.

PREPARATION:

Remove the wireless door lock ECU from No.1 instrument panel brace.

CHECK:

Measure voltage between terminal UL2 of wireless door lock ECU connector and body ground.

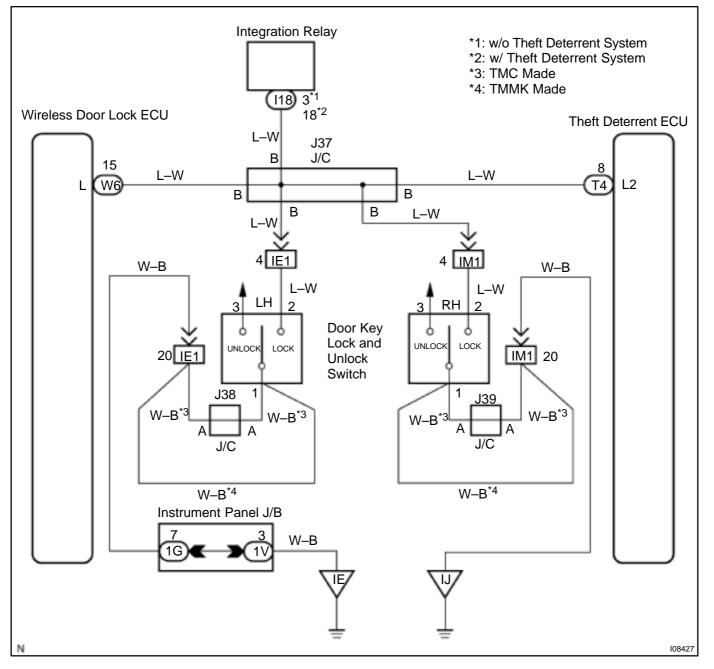
<u>OK:</u>

Voltage: 10 – 14 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI-809).

Check and repair harness and connector between wireless door lock ECU and door key lock and unlock switch.

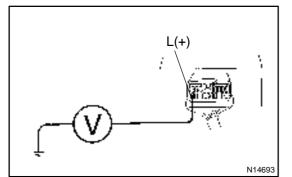
DI05U-03


Door Key Lock and Unlock Switch Circuit (Lock Side)

CIRCUIT DESCRIPTION

Refer to page DI-815.

Tr inside the wireless door lock ECU coming ON causes the theft deterrent ECU to output a signal to lock all the doors.


WIRING DIAGRAM

NG

INSPECTION PROCEDURE

1	Check voltage between terminal L of wireless door lock ECU connector and
	body ground.

PREPARATION:

Remove the wireless door lock ECU from No.1 instrument panel brace.

CHECK:

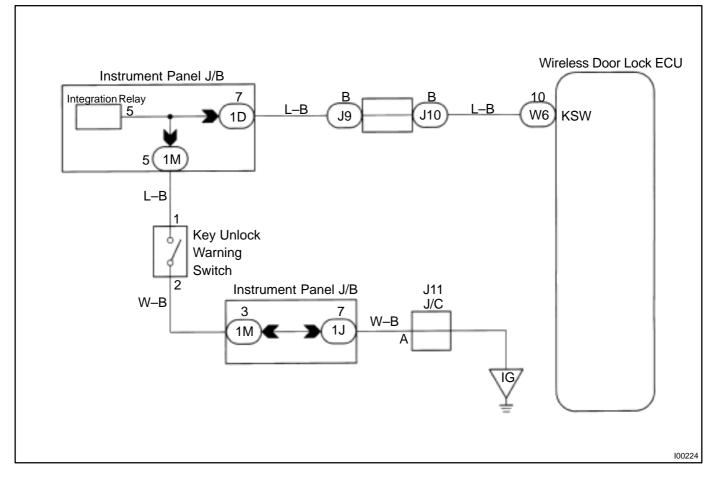
Measure voltage between terminal L of wireless door lock ECU connector and body ground.

<u>OK:</u>

Voltage 10 – 14 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI-809).

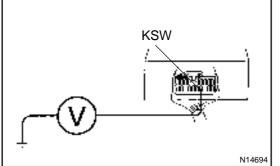
Check and repair harness and connector between wireless door lock ECU and door key lock and unlock switch.


Key Unlock Warning Switch Circuit

CIRCUIT DESCRIPTION

When the key is inserted in the ignition key cylinder, the key unlock warning switch comes ON, and when the key is not inserted the switch is OFF.

When the key unlock warning switch is ON, the ECU operates the key confinement prevention function.


WIRING DIAGRAM

NG

INSPECTION PROCEDURE

Check voltage between terminal KSW of wireless door lock ECU connector and
body ground.

PREPARATION:

Remove the wireless door lock ECU from No.1 instrument panel brace.

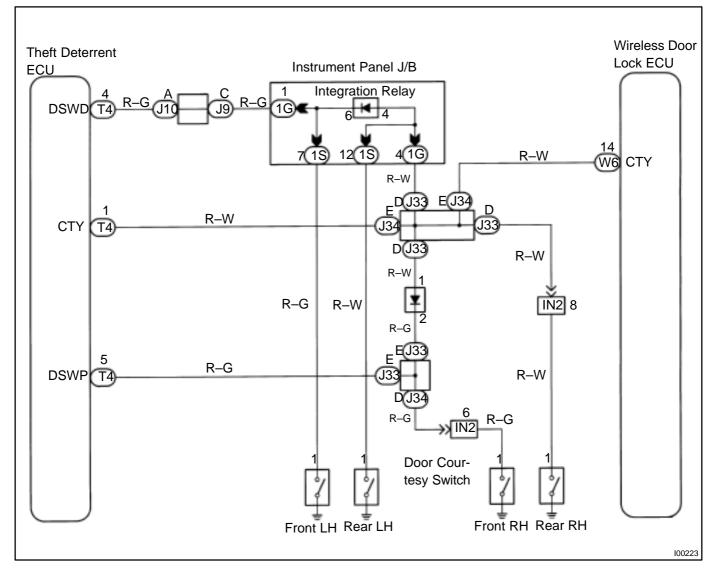
CHECK:

Measure voltage between terminal KSW of wireless door lock ECU connector and body ground, when key plate is not inserted in the key cylinder.

<u>OK:</u>

Voltage: 10 – 14 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI-809).


Check and repair harness and connector between wireless door lock ECU and key unlock warning switch.

Door Courtesy Switch Circuit

CIRCUIT DESCRIPTION

The door courtesy switch comes ON when the door is opened and goes OFF when door is closed. Furthermore. the door courtesy switch circuit has terminal +B connected inside the theft deterrent ECU. Battery positive voltage is applied to terminal DSWD of the theft deterrent ECU when all doors are closed, i.e., when the door courtesy switches of all doors are OFF.

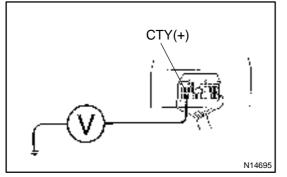
WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check operation of open door warning light.

CHECK:


Check that open door warning light comes ON when each door is opened, and goes OFF when all doors are closed.

Check open door warning light circuit

2 Check voltage between terminal CTY of wireless door lock ECU connector and body ground.

PREPARATION:

Remove the wireless door lock ECU from No.1 instrument panel brace.

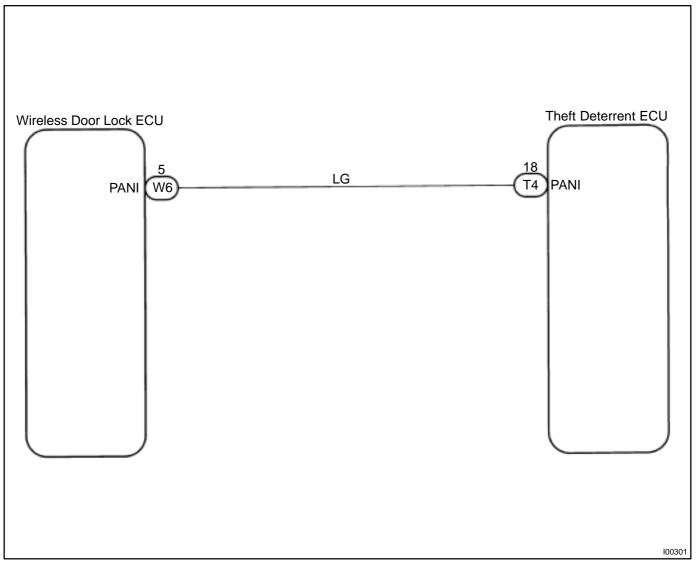
CHECK:

Measure voltage between terminal CTY of wireless door lock ECU connector and body ground, when all doors are closed. **OK:**

Voltage: 10 – 14 V

OK Proceed to next circuit inspection shown on problem symptoms table (See page DI-809).

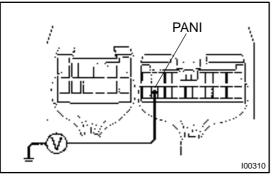
NG


Check and repair harness and connector between wireless door lock ECU and door courtesy switch.

Panic Circuit

CIRCUIT DESCRIPTION

This circuit will transmit a panic signal from a wireless door lock ECU to a theft deterrent ECU. When the key is not inserted in the ignition key cylinder and the theft deterrent ECU receives the panic signal from the wireless door lock ECU, warning operation will be performed.

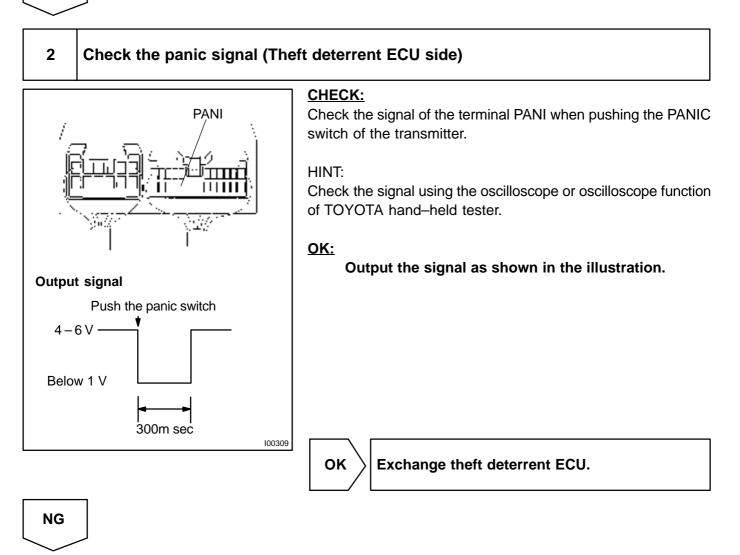

WIRING DIAGRAM

DI05X-04

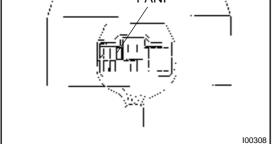
INSPECTION PROCEDURE

Check voltage between terminal PANI of theft deterrent ECU connector and body
ground.

CHECK:


Measure voltage between terminal PANI of theft deterrent ECU connector and body ground.

<u>OK:</u>



OK Exchange theft deterrent ECU.

NG

Check the panic signal (Wireless door lock ECU side) 3 **CHECK:** PANI

ΟΚ

Check the signal of the terminal PANI when pressing the PANIC switch of the transmitter.

<u>OK:</u>

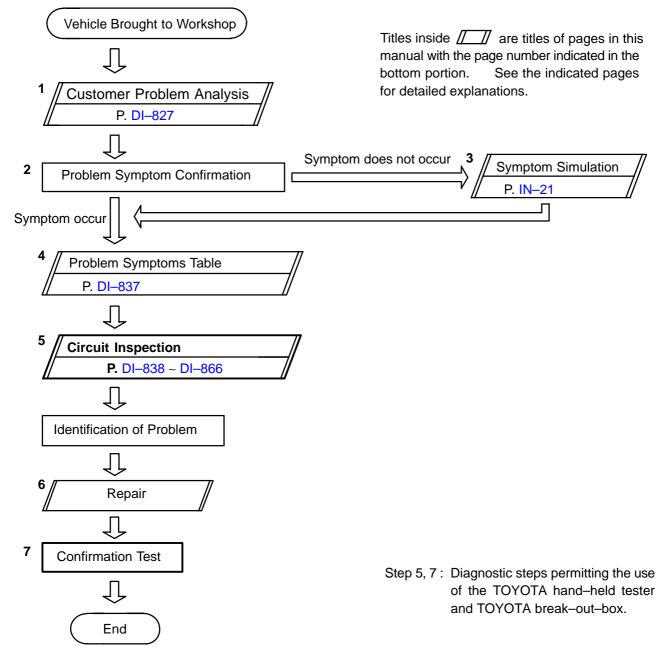
Output the signal shown on the previous page.

Proceed to next circuit inspection shown on problem symptoms table (See page DI-809).

Check and repair harness and connector between wireless door lock ECU and theft deterrent ECU.

THEFT DETERRENT SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

DI06M-04


HINT:

Troubleshooting of the theft deterrent system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the theft deterrent system, first make certain that the door lock control system is operating normally.

For troubleshooting use a volt/ohm meter.

Be sure to use troubleshooting procedure appropriate to the diagnostic tool being used.

Perform troubleshooting in accordance with the procedure on the following page.

CUSTOMER PROBLEM ANALYSIS CHECK

THEFT DETERRENT SYSTEM Check Sheet

Inspector's name:

			Registration No.	
Customer's Name			Registration Year	
			Frame No.	
Date of Vehicle Brought in	/	/	Odometer Reading	km Mile

Date Problem First Occurred		/ /
Frequency Problem (Occurs	 Constant Sometimes (Times per day, month) Once only
Weather Conditions	Weather	 Fine Cloudy Rainy Snowy Various/Others
When Problem Occurred Outdoor temperature		 Hot Warm Cool Cold (Approx. °F (°C))

Problem Symptom

 Indicator light does not flash (It stays on or does not light) 	when the theft deterrent system at all.)	n is set.	
 Theft deterrent system does not operate. 	 When unlocked using the door lock knob. When the engine hood is opened. 	MalfunctionHorns onlyTheft deterrent horn onlyHeadlights onlyTaillights onlyStarter cut onlyDoor lock operation only	
 System cannot be canceled once set. 	 When door is unlocked using key or wireless door lock control system. When the key is inserted in the ignition key cylinder and turned to ACC or ON position. (However, only when the system has never operated) When the luggage compartment door is opened with the key. 		
 System cannot be canceled during warning operation. 	 When door is unlocked using key or wireless door lock control system. When the key is inserted in the ignition key cylinder and turned to ACC or ON position. 		
 Warning operation starts wh the key. 	en the system is set and the doo	or or luggage compartment door is opened with	
• Others.			

1062

DI06N-05

PRE-CHECK

1. Active arming mode: SETTING THE THEFT DETERRENT MODE

The system will be automatically set to the theft deterrent mode about 30 seconds after the setting processes listed below are performed.

Setting Processes: (do processes $(1) \sim (4)$ in the order)

- (1) Remove the ignition key from the key cylinder.
 - (2) Close all entry points (door, hood and luggage compartment door).
 - (3) Use any one of the following methods to lock all the doors depending on a given condition.
 - □ Use the key to lock the driver or passenger side door. (as a result, all the doors(including the engine hood and luggage compartment door) will be closed and locked), or
 - Use the remote control to lock any door (as a result, all the doors(including the engine hood and luggage compartment door) will be closed and locked), or
 - □ If the front right or left door is unlocked when both the rear doors are already locked, lock and close the remaining unlocked door by hand (as a result, all the doors(including the engine hood and luggage compartment door) will be closed and locked).
 - Close all doors and lock with the engine hood or luggage compartment door opened, and close the engine hood or all the doors(including the engine hood and luggage compartment door).
 - (4) About 30 seconds after the above process (3), the theft deterrent mode will automatically start.

HINT:

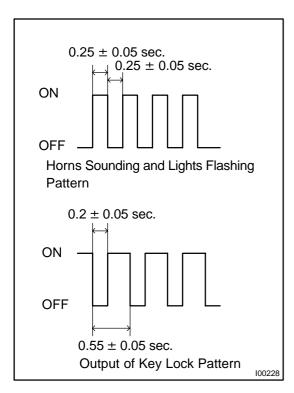
The closing/locking of all the entry points (doors, hood and luggage) must remain unchanged for about 30 seconds, the system will start the theft deterrent mode.

2. Passive arming mode:

SETTING THE THEFT DETERRENT MODE

The system will be automatically set to the theft deterrent mode about 30 seconds after the setting processes listed below are performed.

Setting Processes:


- (1) Remove the ignition key from the key cylinder.
- (2) Open and close any entry points (door, hood and luggage compartment door).

Now, all the entry points are closed.

(3) About 30 seconds after the process–(2), on the previous page the Theft Deterrent mode will automatically start.

HINT:

If, while following above steps, you use the key or the remote control to lock the door, the system will be set to ACTIVE ARM-ING MODE.

3. THEFT DETERRENT OPERATION

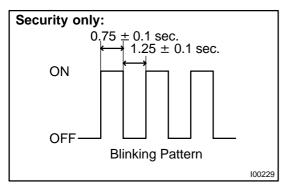
When the system is set to the theft deterrent mode and any of the following conditions are met, the system sounds the horns and flashes the headlights and the taillights for about 1 minute. At the same time locks all doors (If all doors are not locked at once, the system repeats door locking operation every 0.55 seconds during the one-minute alarm time). Condition

(1) Any of th

- Any of the doors (Including the engine hood and luggage compartment door) is unlocked or opened without the key. *1
- (2) The battery terminal is disconnected and reconnected. *2
- (3) The system receives panic signal from remote keyless entry. *3

*1: Only active arming mode.

*2: When the ignition key is not inserted in the key cylinder.


4. CANCELLATION OF THEFT DETERRENT OPERA-TION OR MODE

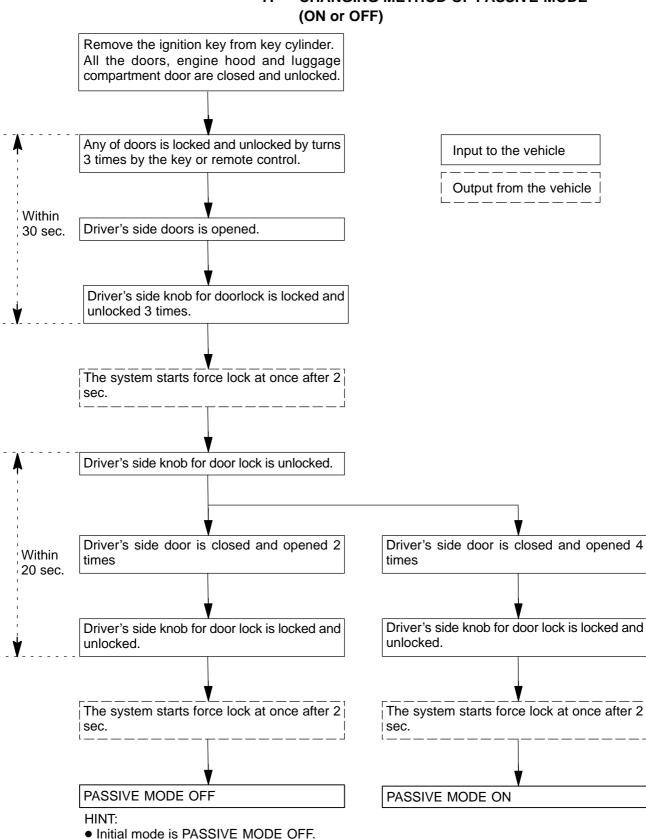
The theft deterrent operation of mode can be cancelled when any of the following conditions is met.

No.	Condition	Cancel of Operation	Cancel of Mode
1	Unlock front doors with the key	Effective	Effective
2	Unlock doors with remote keyless entry	Effective	Effective
3	Insert key into ignition key cylinder and turn it to ACC or ON position	Effective	Effective
4	About 1 minute passes after theft deterrent operation begins	Automatic stop *1	-
5	Unlock the luggage compartment door with the key or keyless entry.	Uneffective	Effective
6	Unlock the luggage compartment door with the keyless entry.	Uneffective	Effective
7	If the system receives panic signal again or unlock signal when the system is activated by panic signal	Effective *2	Uneffective
6	If the system receives unlock signal when the system is activated by panic signal	Effective	Effective

*1: The system is set to the theft deterrent mode again in about 2 seconds after the operation stops, if all doors are closed.

*2: The alarm caused by the panic signal malces the system in the previous condition.

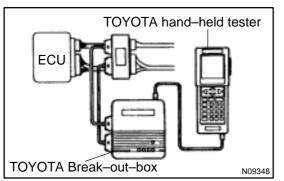
5. INDICATOR LIGHT (LED)


The indicator light functions as shown below according to the system condition in the theft deterrent mode. It remains OFF in the initial state.

System Condition	Indicator Light
During set preparation time	ON
When the mode is set*	OFF
When alarm is activated	ON
When the system is temporally cancelled*	OFF

*: The indicator flashes with the output from the immobiliser.

6. KEEPING POWER SUPPLY FUNCTION IN CASE OF DOME FUSE OPEN

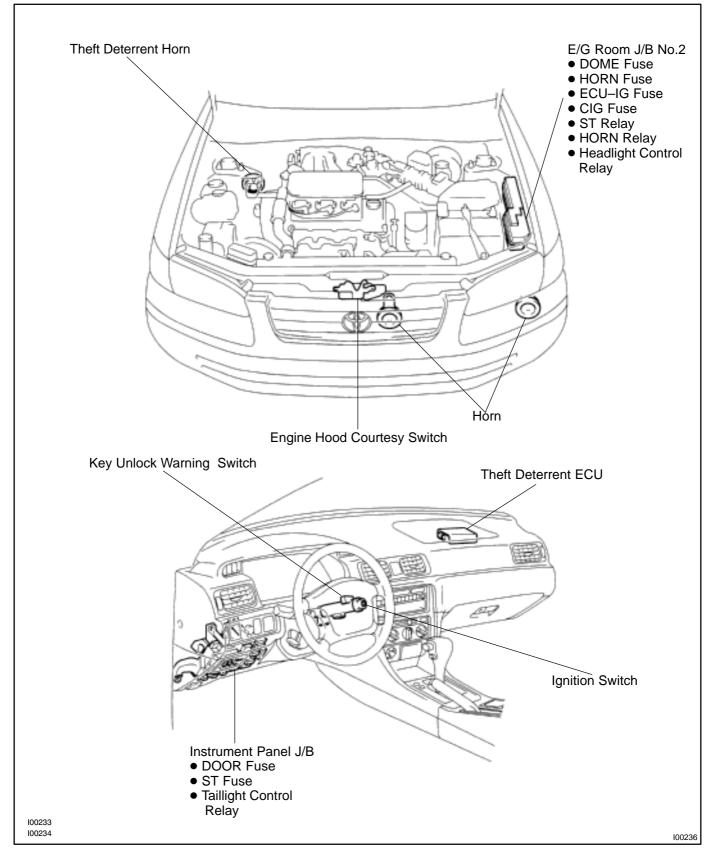

Even if the dome fuse blows open on the theft deterrent mode, the system will keep working on the theft deterrent mode.

7. CHANGING METHOD OF PASSIVE MODE

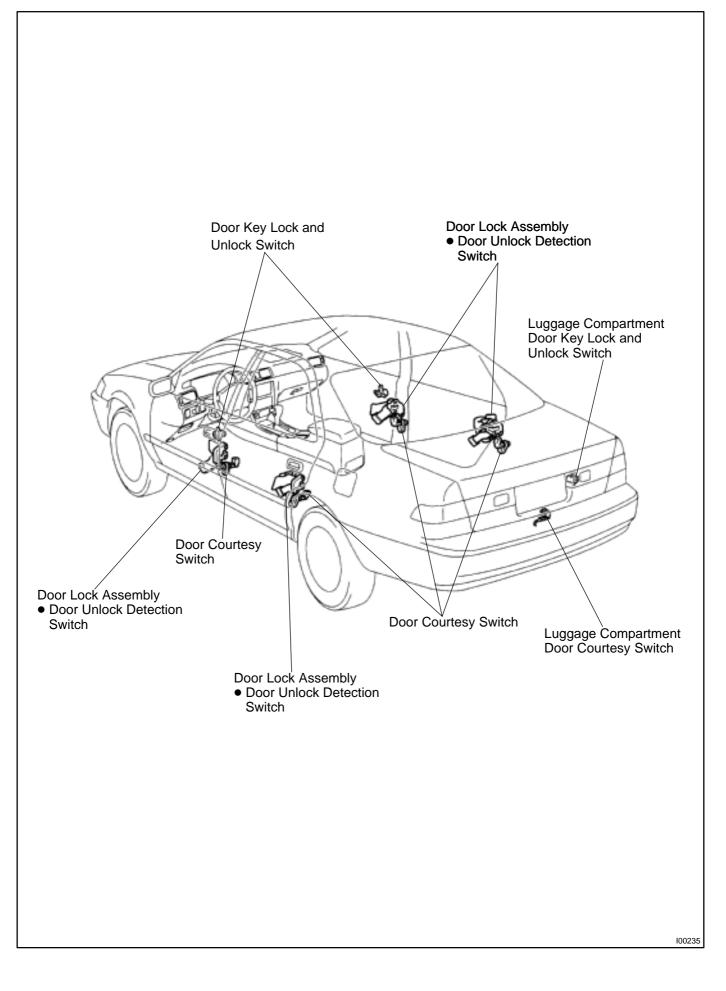
• If there is a different signal in the middle of changing, it is invalied.

1066

- 8. ECU TERMINAL VALUES MEASUREMENT BY USING TOYOTA BREAK-OUT-BOX AND TOYOTA HAND-HELD TESTER
- (a) Hook up the TOYOTA break-out-box and TOYOTA hand-held tester to the vehicle.
- (b) Read the ECU input/ output values by following the prompts on the tester screen.

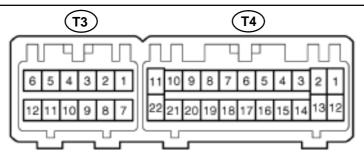

HINT:

TOYOTA hand-held tester has a "Snapshot" function.


This records the measured values and is effective in the diagnosis of intermittent problems.

Please refer to the TOYOTA hand-held tester / TOYOTA break-out-box operator's manual for further details.

PARTS LOCATION



DI06P-05

DI1KV-03

TERMINALS OF ECU

101920

Symbols (Terminals No.)	Wiring Color	Condition	STD Value
CTY ↔ E		Door courtesy switch "ON" (Rear door opened)	Below 1 Ω
(T4−1 ↔ T3−7)	$R\text{-}W\leftrightarrowW\text{-}B$	Door courtesy switch "OFF" (Rear door closed)	1 M Ω or higher
DSWL ↔ E		Luggage compartment door courtesy switch "ON" (Luggage compartment door opened)	Below 1 Ω
(T4−2 ↔ T3−7)	$R-Y \leftrightarrow W-B$	Luggage compartment door courtesy switch "OFF" (Luggage compartment door closed)	1 M Ω or higher
DSWH ↔ E		Engine hood courtesy switch "ON" (Engine hood opened)	Below 1 Ω
(T4–3 ↔ T3–7)	$B \leftrightarrow W\text{-}B$	Engine hood courtesy switch "OFF" (Engine hood closed)	1 M Ω or higher
DSWD ↔ E		Door courtesy switch "ON" (Driver's door opened)	Below 1 Ω
(T4–4 ↔ T3–7)	$R-G \leftrightarrow W-B$	Door courtesy switch "OFF" (Driver's door Closed)	1 M Ω or higher
$DSWP \leftrightarrow E$		Door courtesy switch "ON" (Passenger's door opened)	Below 1 Ω
(T4–5 ↔ T3–7)		Door courtesy switch "OFF" (Passenger's door closed)	1 M Ω or higher
KSW ↔ E	L–B ↔ W–B	Key unlock warning switch "ON" (Key inserted)	Below 1 Ω
(T4–6 ↔ T3–7)		Key unlock warning switch "OFF" (Key removed)	1 M Ω or higher
$LUG \leftrightarrow E$		Luggage compartment door key lock and unlock switch "ON"	Below 1 Ω
$(T4-7 \leftrightarrow T3-7)$	$G-W \leftrightarrow W-B$	Luggage compartment door key lock and unlock switch "OFF"	1 M Ω or higher
$L2 \leftrightarrow E$		Door key lock and unlock switch "LOCK" (Driver's and passenger's doors)	Below 1 Ω
(T4–8 ↔ T3–7)	$L-W \leftrightarrow W-B$	Door key lock and unlock switch "UNLOCK" (Driver's and passenger's doors)	1 M Ω or higher
UL3 ↔ E		Door key lock and unlock switch "UNLOCK" (Driver's door)	Below 1 Ω
(T4–9 ↔ T3–7)	7) $R-G \leftrightarrow W-B$	Door key lock and unlock switch "LOCK" (Driver's door)	1 M Ω or higher
$UL2 \leftrightarrow E$		Door key lock and unlock switch "UNLOCK" (passenger's door)	Below 1 Ω
(T4–10 ↔ T3–7)	$L \leftrightarrow W - B$	Door key lock and unlock switch "LOCK" (passenger's door)	1 M Ω or higher

DI-836

DIAGNOSTICS – THEFT DETERRENT SYSTEM

+B1 \leftrightarrow Body ground (T4–12 \leftrightarrow Body ground)	$R \leftrightarrow W\text{-}B$	Always	10 – 14 V
$\begin{array}{c} IG\leftrightarrowE\\ (T413\leftrightarrowT37) \end{array}$	$B–R\leftrightarrow W–B$	Ignition switch is turned to "ON" position	10 – 14 V
$LSWD \leftrightarrow E$		Door unlock detection switch "ON" (Driver's door)	Below 1 Ω
(T4–14 ↔ T3–7)	$L-R \leftrightarrow W-B$	Door unlock detection switch "OFF" (Driver's door)	1 M Ω or higher
$LSWP \leftrightarrow E$		Door unlock detection switch "ON" (Passenger's door)	Below 1 Ω
(T4–15 ↔ T3–7)	$Y \leftrightarrow W - B$	Door unlock detection switch "OFF" (Passenger's door)	1 M Ω or higher
$LSWR \leftrightarrow E$		Door unlock detection switch "ON" (Rear door)	Below 1 Ω
(T4–16 ↔ T3–7)		Door unlock detection switch "OFF" (Rear door)	1 M Ω or higher
PANI ↔ E		It is receiving panic signal from remote keyless entry	Below 1 Ω
$(T4-18 \leftrightarrow T3-7)$	$LG \leftrightarrow WB$	Except above mention	1 M Ω or hegher
+B2 ↔ Body ground (T3–1 ↔ Body ground)	$L-W \leftrightarrow Body$ ground	Always	10 – 14 V
$ \begin{array}{l} IND \leftrightarrow E \\ (T3-6 \leftrightarrow T3-7) \end{array} $	$R\text{-}Y\leftrightarrowW\text{-}B$	During set preparation	3 – 5 V
$E \leftrightarrow Body \text{ ground}$ (T3–7 $\leftrightarrow Body \text{ ground}$)	W–B ↔ Body ground	Always	10 – 14 V
$\begin{array}{c} SH\leftrightarrowE\\ (T3-9\leftrightarrowT3-7) \end{array}$	$W – L \leftrightarrow W – B$	Always	10 – 14 V
HEAD \leftrightarrow E (T3–10 \leftrightarrow T3–7)	$RB\leftrightarrowWB$	Light control switch "HEAD"	10 – 14 V
TAIL ↔ E (T3–11 ↔ T3–7)	$G–R\leftrightarrow W–B$	Light control switch "TAIL" or "HEAD"	10 – 14 V
HORN ↔ E (T3–12 ↔ T3–7)	$G–B\leftrightarrow W–B$	Horn switch "OFF"	10 – 14 V

PROBLEM SYMPTOMS TABLE

Proceed to the reference page shown in the matrix chart below for each malfunction symptom and troubleshoot for each circuit.

HINT:

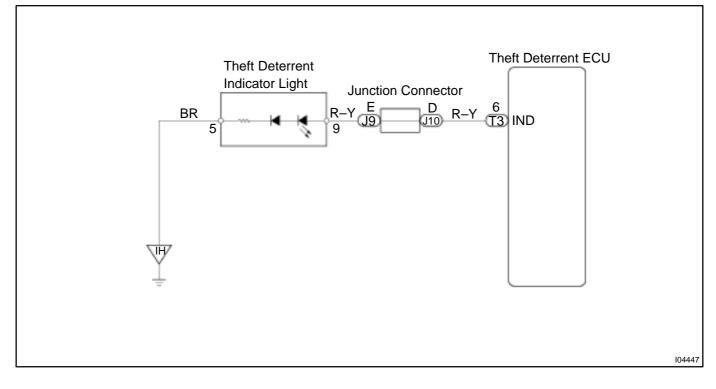
Troubleshooting of the theft deterrent system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the theft deterrent system, first make certain that the door lock control system is operating normally.

		Details of Problem		Inspecting Circuit*1	See page
			1. Indicator light circuit	DI-838	
			2. ECU power source circuit	DI-840	
			3. Key unlock warning switch circuit	DI-853	
				 Luggage compartment door key lock and unlock switch circuit 	DI855
The theft dete	errent sy	stem cannot be set		5. Luggage compartment door courtesy switch circuit	DI-858
				6. Door key lock and unlock switch circuit	DI855
				7. Door courtesy switch circuit	DI-864
				8. Door unlock detection switch circuit	DI-862
				9. Engine hood courtesy switch circuit	DI-866
The indicator	light doe	es not blink when system is set		Indicator light circuit	DI-838
	When the rear doors are unlocked			Door unlock detection switch circuit	DI-862
When the system is set	When by a m	the luggage compartment door is opened ethod other than the key	The system does not operate	Luggage compartment door courtesy switch circuit	DI-858
	When	the engine hood is opened	Engine hood courtesy switch circuit	DI-866	
	•	Horns do not sound	Horn relay circuit	DI-845	
		Theft deterrent horn does not sound		Theft deterrent horn circuit	DI-843
While the sys	tem is	Headlights do not flash	Headlight control relay circuit	DI-847	
in warning op	eration	Taillights do not flash		Taillight control relay circuit	DI-849
		The door lock is not locked in unlock condition	Door unlock detection switch circuit	DI-862	
When the	It is no ACC o	ot canceled when the ignition key is turned to or ON position		Ignition switch circuit	DI-851
system is set		perates when the luggage compartment door is d with the key	Luggage compartment door key lock and unlock switch circuit	DI-855	
System is still set even when a rear door is open		Door courtesy switch circuit	DI-864		
		Horns sound		Horn relay circuit	DI-845
Even when th		Theft deterrent horn sounds	Theft deterrent horn circuit	DI-843	
system is not set		Headlights stay on	Headlight control relay circuit	DI-847	
		Taillights stay on	Taillight control relay circuit	DI-849	

*1: If numbers are given to the circuit proceed with troubleshooting in the order indicated by those numbers.

DI06R-06

DI06S-04


CIRCUIT INSPECTION

Indicator Light Circuit

CIRCUIT DESCRIPTION

When the theft deterrent system is preparing to set, this circuit lights up the indicator light. When the system has been set, it continuously turns the indicator light on for 1 second and turns it off for 1 second, thus blinking the indicator light.

WIRING DIAGRAM

INSPECTION PROCEDURE

1	Check indicator light.
---	------------------------

PREPARATION:

Remove combination meter.

CHECK:

Connect the positive (+) lead from the battery to terminal C9 and the negative (-) lead to terminal B16 of combination meter connector then check indicator light comes ON.

(See combination meter on page BE-46)

NG

Replace combination meter.

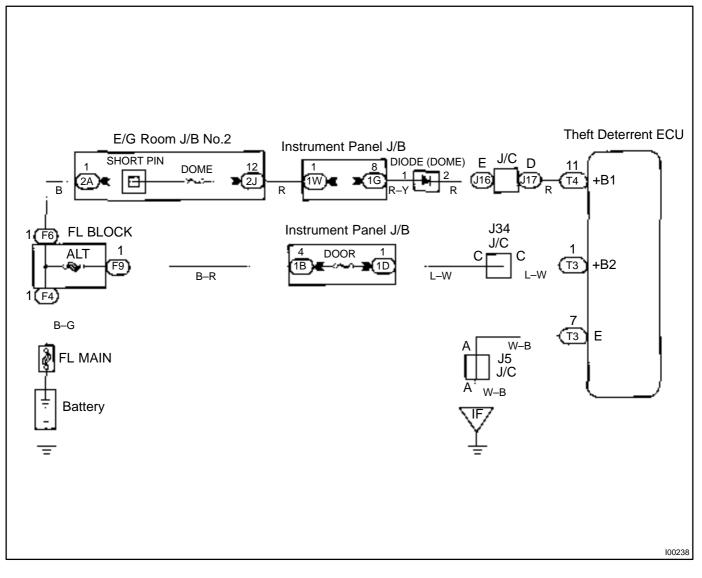
ΟΚ

- 2 Check harness and connector between theft deterrent ECU and indicator light, indicator light and body ground (See page IN-31).
- Check and replace theft deterrent ECU.*1

ΟΚ

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI-837).

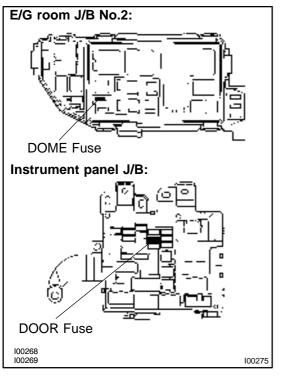
Author :


DI-839

ECU Power Source Circuit

CIRCUIT DESCRIPTION

This circuit provides power to operate the theft deterrent ECU.


WIRING DIAGRAM

DI06T-06

Check DOME and DOOR fuses.

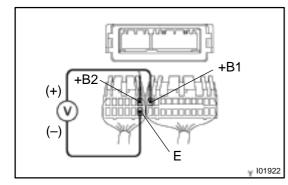
PREPARATION:

Continuity

- (a) Remove DOME fuse from engine room junction block No.2.
- (b) Remove DOOR fuse from instrument panel junction block No.1.

CHECK:

OK:


Check continuity of DOME and DOOR fuses.

NG \

Check for short in all the harness and components connected to the DOME and DOOR fuses (See attached wiring diagram).

ок

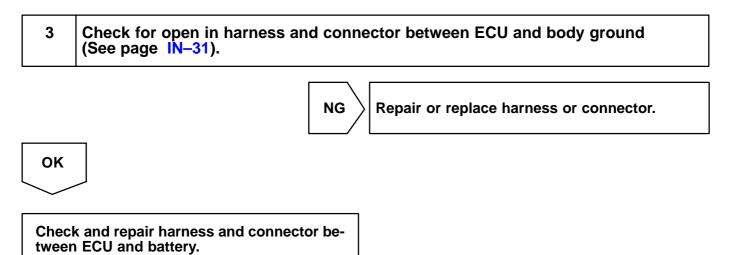
2 Check voltage between terminals each of +B1 and +B2 and E of theft deterrent ECU connector.

PREPARATION:

Disconnect the theft deterrent ECU connector.

CHECK:

Measure voltage between terminals each of +B1 and +B2 and E of theft deterrent ECU connector.


<u>OK:</u>

Voltage: 10 – 14 V

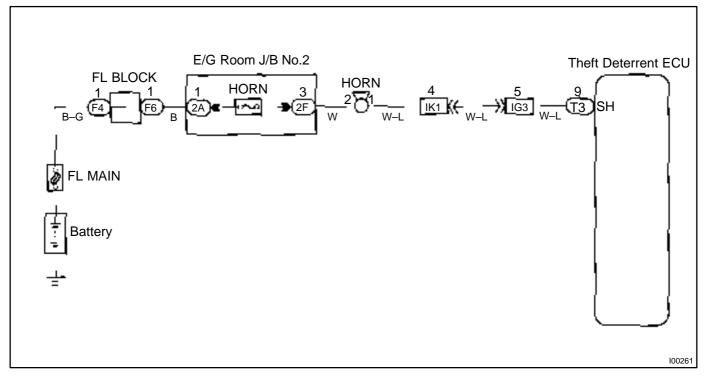
OK

Proceed to next circuit inspection shown on problem symptoms table (See page DI–837).

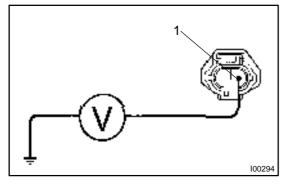
NG

Author :

Theft Deterrent Horn Circuit


CIRCUIT DESCRIPTION

When the theft deterrent system is activated, the relay in the ECU turns ON and OFF cycles of approximately 0.2 sec., causing the theft deterrent horn to blow (See the wiring diagram below).


In this condition, if any of the following operations is done, the relay in the ECU turns OFF, thus stopping the theft deterrent horn from blowing:

- (1) Unlock the front LH or RH door with key.
- (2) Turn the ignition switch to ACC or ON position.
- (3) Unlock the doors with the wireless door lock control system.
- (4) Wait for approximately 60 seconds.
- (5) Push the panic switch of the wireless door lock control system.

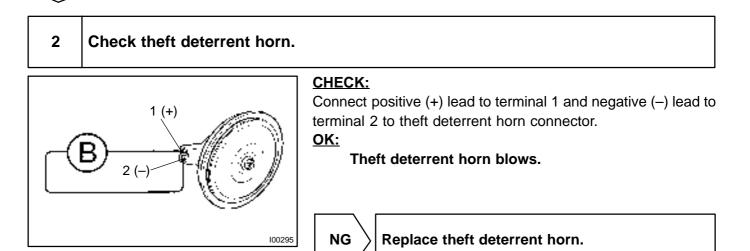
WIRING DIAGRAM

1 Check voltage between terminal 1 of theft deterrent horn connector and body ground.

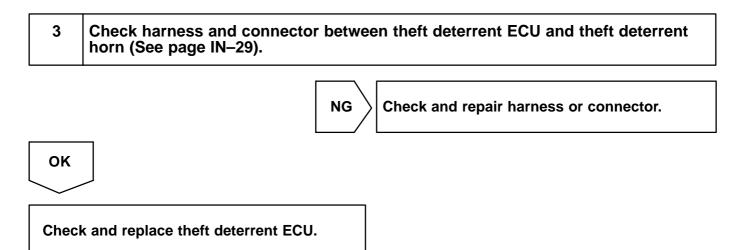
PREPARATION:

Remove the theft deterrent horn and disconnect the connector. **CHECK:**

Measure voltage between terminal 1 of theft deterrent horn connector and body ground.


<u>OK:</u>

Voltage: 10 – 14 V

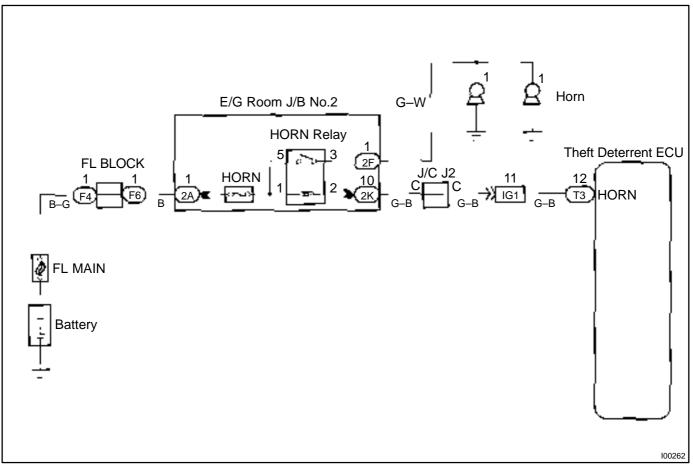


Check and repair harness and connector between HORN fuse and theft deterrent horn.

ОК

ОК

Horn Relay Circuit

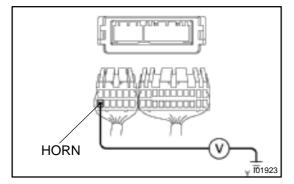

CIRCUIT DESCRIPTION

When the theft deterrent system is activated, it causes the Tr in the ECU to switch ON and OFF in approximately 0.4 sec. cycles. This switches the horn relay ON and OFF, thus the horns blow (See the wiring diagram below).

In this condition, if any of the following operations is done, the Tr in the ECU goes off and the horn relay switches off, thus stopping the horns from blowing:

- (1) Unlock the front LH or RH door with key.
- (2) Turn the ignition switch to ACC or ON position.
- (3) Unlock the doors with the wireless door lock control system.
- (4) Wait for approximately 60 seconds.
- (5) Push the panic switch of the wireless door lock control system.

WIRING DIAGRAM



DI06W-06

HINT:

The flow chart below is based on the premise that the horns blow normally whenever the horn switch is operated. If horn operation is not normal when the horn switch is operated, check the horn switch.

1 Check voltage between terminal HORN of theft deterrent ECU connector and body ground.

PREPARATION:

Disconnect the theft deterrent ECU connectors.

CHECK:

Measure voltage between terminal HORN of theft deterrent ECU connector and body ground.

<u>OK:</u>

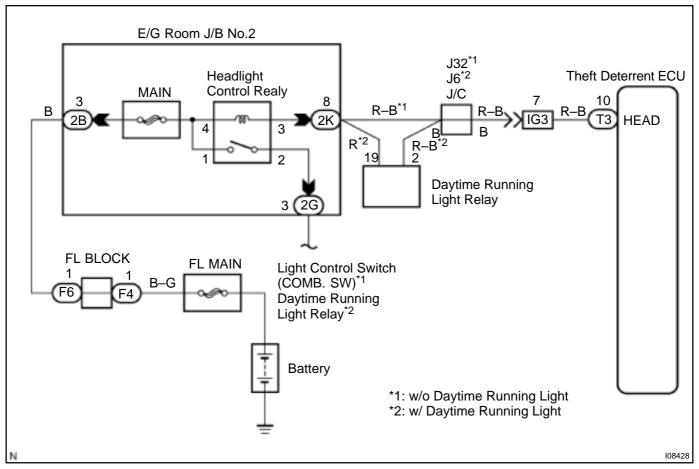
Voltage: 10 – 14 V

NG \

Check and repair harness and connector between theft deterrent ECU and horn relay.

ΟΚ

Check and replace theft deterrent ECU.

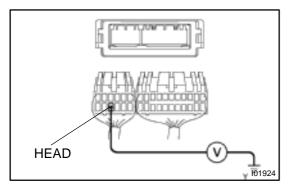

Headlight Control Relay Circuit

CIRCUIT DESCRIPTION

When the theft deterrent system is activated, it causes the Tr in the ECU to switch ON and OFF at approximately 0.4 sec. intervals. This switches the headlight control relay ON and OFF, thus flashing the headlights (See the wiring diagram below).

In this condition, if any of the following operations is done, the Tr in the ECU goes OFF and the headlight control relay switches OFF, thus stopping the headlights flashing:

- (1) Unlock the front LH or RH door with key.
- (2) Turn the ignition switch to ACC or ON position.
- (3) Unlock the doors with the wireless door lock control system.
- (4) Wait for approximately 60 seconds.
- (5) Push the panic switch of the wireless door lock control system.



WIRING DIAGRAM

DI06X-06

HINT: The flow chart below is based on the premise that the headlights light up normally whenever the light control switch is operated. If headlight operation is not normal when the light control switch is operated, proceed to troubleshooting on page BE-2.

1 Check voltage between terminal HEAD of theft deterrent ECU connector and body ground.

PREPARATION:

Disconnect the theft deterrent ECU connector.

CHECK:

Measure voltage between terminal HEAD of theft deterrent ECU connector and body ground.

<u> 0K:</u>

Voltage: 10 – 14 V

Check and repair harness and connector between theft deterrent ECU and headlight control relay (See page IN-31).

ΟΚ

Check and replace theft deterrent ECU.

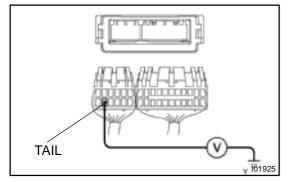
Taillight Control Relay Circuit

CIRCUIT DESCRIPTION

When the theft deterrent system is activated, it causes the Tr in the ECU to switch ON and OFF at approximately 0.4 sec. intervals. This switches the taillight control relay ON and OFF, thus flashing the taillights (See the wiring diagram below).

In this condition, if any of the following operations is done, the Tr in the ECU goes OFF and the taillight control relay switches OFF, thus stopping the taillights flashing:

- (1) Unlock the front LH or RH door with key.
- (2) Turn the ignition switch to ACC or ON position.
- (3) Unlock the doors with the wireless door lock control system.
- (4) Wait for approximately 60 seconds.
- (5) Push the panic switch of the wireless door lock control system.


WIRING DIAGRAM

DI06Y-06

HINT:

The flow chart below is based on the premise that the taillights light up normally whenever the light control switch is operated. If taillight operation is not normal when the light control switch is operated, proceed to troubleshooting on page BE–2.

1 Check voltage between terminal TAIL of theft deterrent ECU connector and body ground.

PREPARATION:

Disconnect the theft deterrent ECU connector.

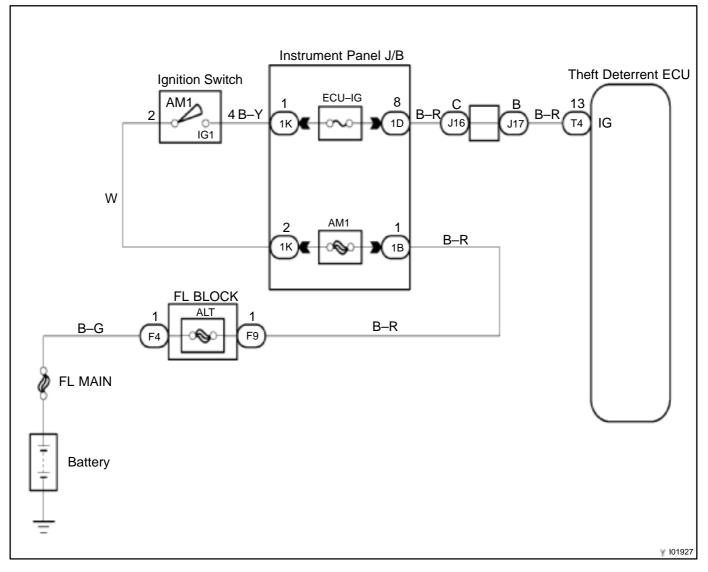
CHECK:

Measure voltage between terminal TAIL of theft deterrent ECU connector and body ground.

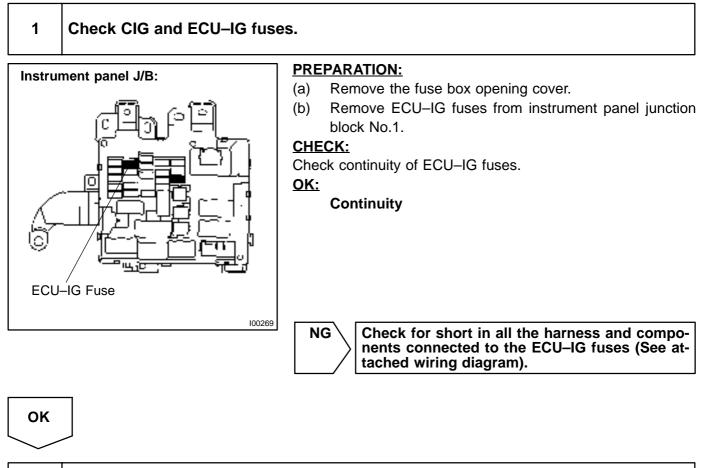
<u>OK:</u>

Voltage: 10 – 14 V

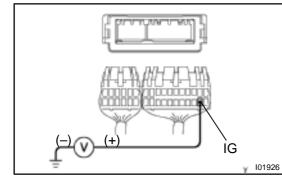
Check and repair harness and connector between theft deterrent ECU and taillight control relay (See page IN-31).


Author :

Ignition Switch Circuit


CIRCUIT DESCRIPTION

When the ignition switch is turned to the ACC position, battery positive voltage is applied to the terminal ACC of the ECU. Also, if the ignition switch is turned to the ON position, battery positive voltage is applied to the terminals ACC and IG of the ECU. When the battery positive voltage is applied to the terminal ACC of the ECU while the theft deterrent system is activated, the warning stops. Furthermore, power supplied from the terminals ACC and IG of the ECU is used as power for the door courtesy switch, and position switch, etc.


WIRING DIAGRAM

DI06Z-06

2 Check voltage between terminal IG of theft deterrent ECU and body ground.

PREPARATION:

(a) Disconnect the theft deterrent ECU connectors.

(b) Turn ignition switch ON.

CHECK:

Measure voltage between terminal IG of theft deterrent ECU connector and body ground.

<u> 0K:</u>

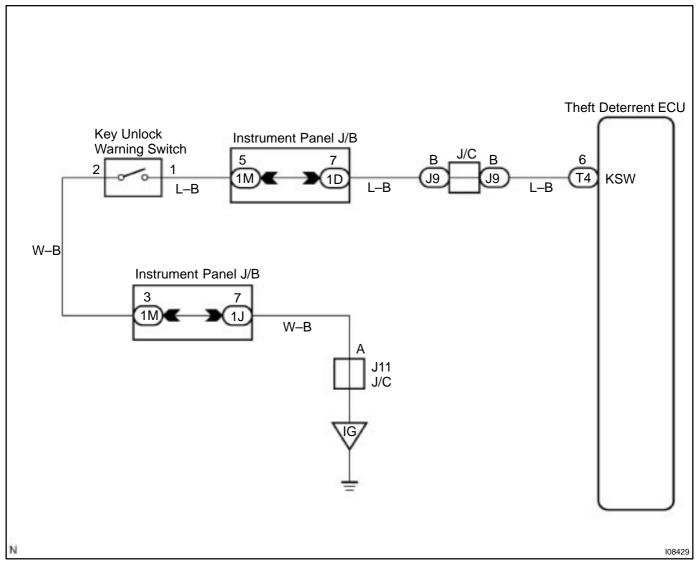
Voltage: 10 - 14 V

NG

Check and repair harness and connector between theft deterrent ECU and battery (See page IN-31).

OK

Check and replace theft deterrent ECU.

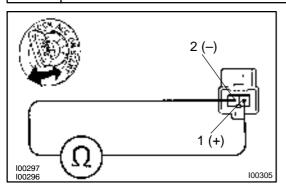

Key Unlock Warning Switch Circuit

CIRCUIT DESCRIPTION

The key unlock warning switch goes ON when the ignition key is inserted in the key cylinder and goes OFF when the ignition key is removed.

The ECU operates the key confinement prevention function while the key unlock warning switch is ON.

WIRING DIAGRAM


Author:

Date :

DI070-06

1

Check key unlock warning switch.

PREPARATION:

Disconnect key unlock warning switch connector. **CHECK:**

Check continuity between terminal 1 and 2 of key unlock warning switch connector, when the key is inserted to the key cylinder or removed.

<u>OK:</u>

Switch position	Tester connection	Specified condition
ON (Key inserted)	1 – 2	Continuity
OFF (Key removed)	_	No continuity

NG

\rangle	Replace	key	unlock	warning	switch.
-----------	---------	-----	--------	---------	---------

2	Check harness and connectors between ECU and key unlock warning switch,
	key unlock warning switch and body ground (See page IN–31).

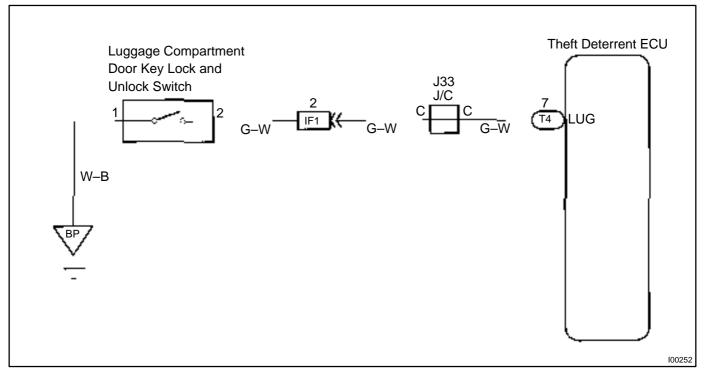
NG

Repair or replace harness or connector.

OK

OK

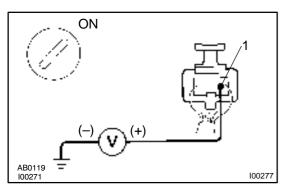
Check and replace theft deterrent ECU.*1


*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI-837).

Luggage Compartment Door Key Lock and Unlock Switch Circuit

CIRCUIT DESCRIPTION

The luggage compartment door key lock and unlock switch goes ON when the luggage compartment door key cylinder is turned to the unlock side with the key.


WIRING DIAGRAM

DI071-04

1

Check voltage between terminal 1 of luggage compartment door key lock and unlock switch connector and body ground.

PREPARATION:

Remove luggage compartment door trim. (a)

(b) Turn ignition switch ON.

CHECK:

Measure voltage between terminal 1 of luggage compartment door key lock and unlock switch connector and body ground, when the key is turned to the unlock side and not turned respectively.

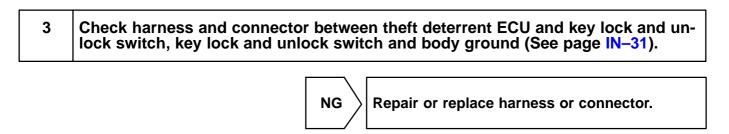
<u>OK:</u>

OK

Key operation	Voltage
Turned to the unlock side	0 V
Not turned	Battery positive voltage

Check and replace theft deterrent ECU.*1

NG


2	Check luggage compartment door key lock and unlock switch.			
		switch connector.	ween terminals 1 an	key lock and unlock d 2, when the key is respectively.
		Key operation	Tester connection	Specified condition
	100270	Turned to unlock	1 – 2	Continuity

Key operation	Tester connection	Specified condition
Turned to unlock	1 – 2	Continuity
Not turned	-	No continuity

NG

Repair or replace luggage compartment door key lock and unlock switch.

OK

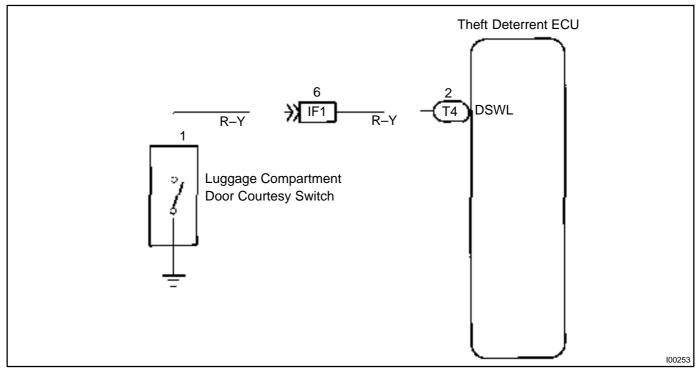
Check and replace theft deterrent ECU.

ΟΚ

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI–837).

Date :

Author :


DI-857

Luggage compartment Door Courtesy Switch Circuit

CIRCUIT DESCRIPTION

The luggage compartment door courtesy switch goes ON when luggage compartment door is opened and goes off when the luggage compartment door is closed.

WIRING DIAGRAM

1

Check operation of luggage compartment door courtesy light.

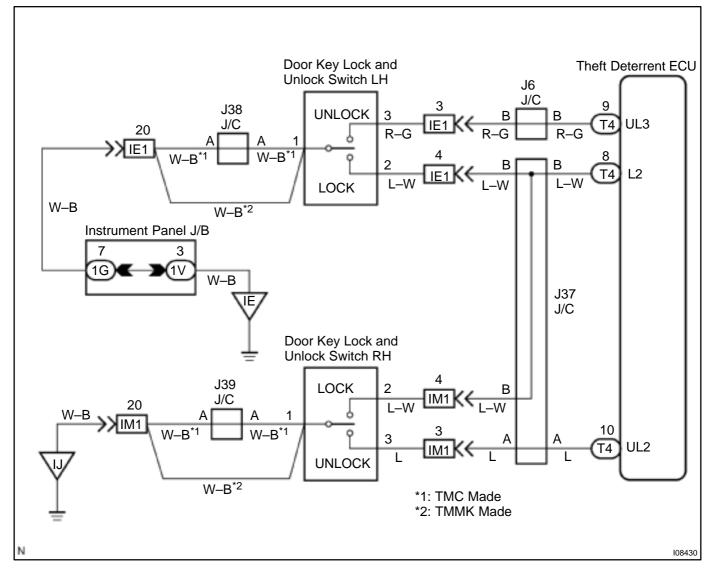
CHECK:

Check that luggage compartment door courtesy light goes OFF when luggage compartment door courtesy switch is pushed, and comes ON when switch is not pushed.

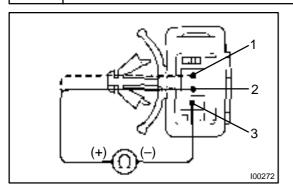
	ок	
-		_

2	Check for open in harness and connector between theft deterrent ECU and lug- gage compartment door courtesy switch (See page IN–31).		
	NG Repair or replace harness or connectors.		
ОК			
Chec	k and replace theft deterrent ECU.*1		

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI-837).


DI073-06

Door Key Lock and Unlock Switch Circuit


CIRCUIT DESCRIPTION

The door key lock and unlock switch is built in the door key cylinder. When the key is turned to the lock side, terminal 1 of the switch is grounded and when the key is turned to the unlock side, terminal 2 of the switch is grounded.

WIRING DIAGRAM

1 Check door key lock and unlock switch.

PREPARATION:

- (a) Remove the door trim and service hole cover.
- (b) Disconnect the door key lock and unlock switch connector.

CHECK:

Check continuity between terminals 1, 2 and 3 of door key lock and unlock switch connector, when each of door key lock and unlock switch is turned to the lock side, unlock side and not turned.

<u>OK:</u>

Switch position	Tester connection	Specified condition			
Lock side	2-3	Continuity			
Unlock side	1 – 3	Continuity			
OFF	-	No continuity			
NG Replace door key lock and unlock switch.					

OK

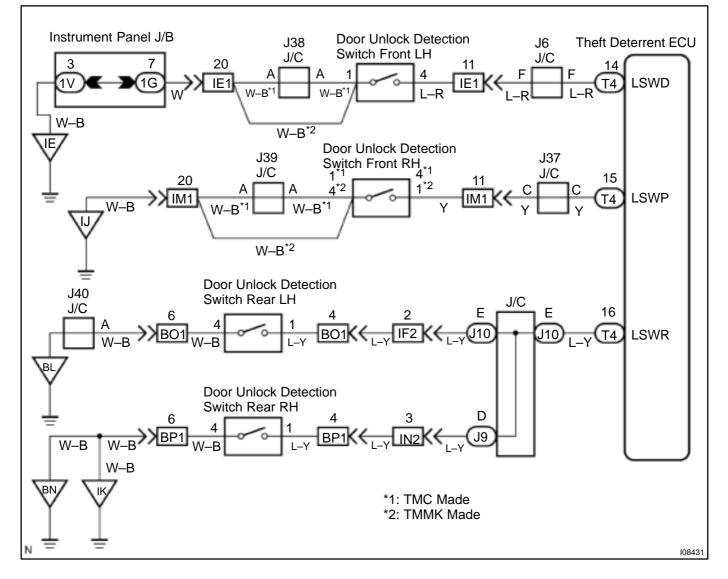
2 Check harness and connectors between ECU and switch, switch and body ground (See page IN-31).

Repair or replace harness or connector.

ΟΚ

Check and replace theft deterrent ECU.*1

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI–837).

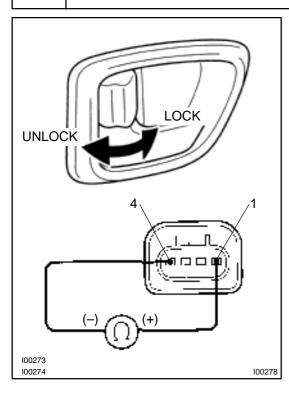

DI074-06

Door Unlock Detection Switch Circuit

CIRCUIT DESCRIPTION

The door unlock detection switch is built in the door lock motor assembly. This switch is ON when the door lock knob is in the unlock position and OFF when the lock knob is in the lock position. The ECU detects the door lock knob conditions in this circuit. It is used as one of the operating conditions for the key confinement prevention function.

WIRING DIAGRAM



1

OK

ΟΚ

Check Door Unlock Detection Switch.

PREPARATION:

(a) Remove the door trim and service hole cover.

(b) Disconnect door unlock detection switch connector.

CHECK:

Check continuity between terminals 1 and 4 of door unlock detection switch connector, when the door lock knob is operated to the lock side and unlock side.

<u>OK:</u>

Switch Condition	Tester connection	Specified condition
Door unlock	1 – 4	Continuity
Door lock	-	No continuity

NG

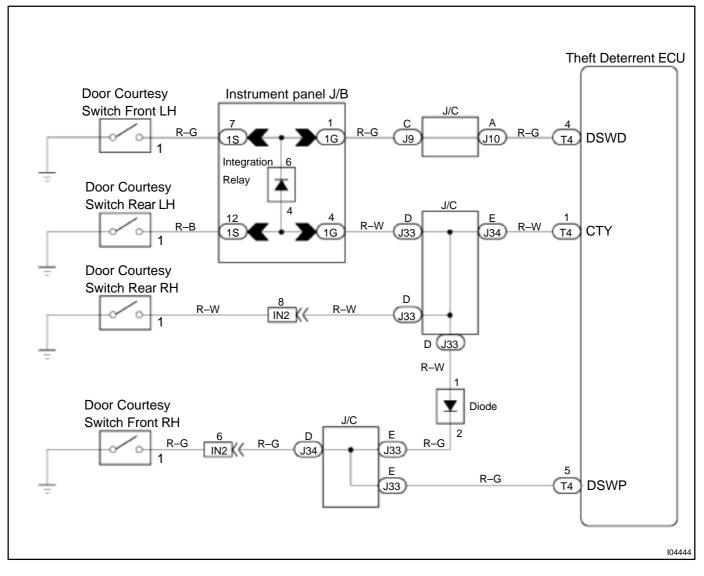
Replace door unlock detection switch.

2 Check harness and connectors between ECU and door unlock detection switch, door unlock detection switch and body ground (See page IN–31).

NG

Repair or replace harness or connector.

Check and replace theft deterrent ECU.*1

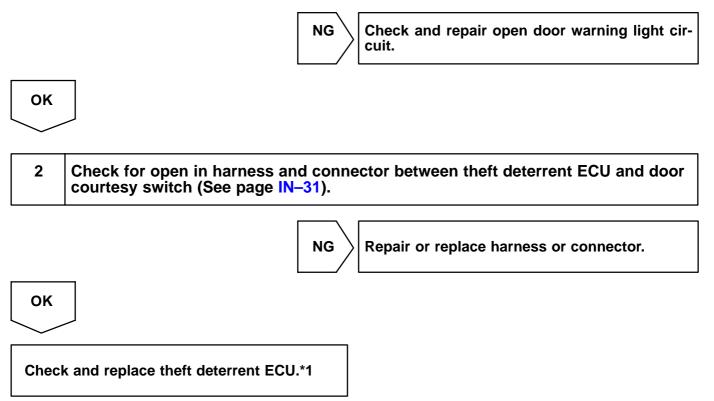

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI-837).

Door Courtesy Switch Circuit

CIRCUIT DESCRIPTION

The door courtesy switch goes ON when the door is opened and goes OFF when the door is closed.

WIRING DIAGRAM

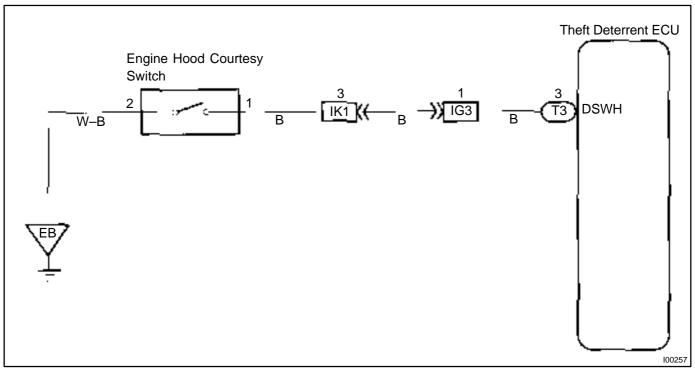

DI075-06

1

Check operation of open door warning light.

CHECK:

Check that open door warning light comes ON when each door is opened, and goes OFF when all doors are closed.

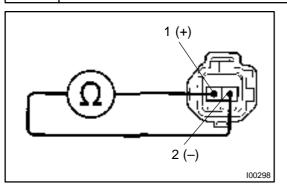

*1: When there is a malfunction that the theft deterrent system cannot be set, proceed to the next numbered circuit inspection shown on problem symptoms table (See page DI-837).

Engine Hood Courtesy Switch Circuit

CIRCUIT DESCRIPTION

The engine hood courtesy switch is built into the engine hood lock assembly and goes ON when the engine hood is opened and goes OFF when the engine hood is closed.

WIRING DIAGRAM




```
DI076-06
```

1

٦

Check engine hood courtesy switch.

PREPARATION:

(a) Remove engine hood lock assembly.

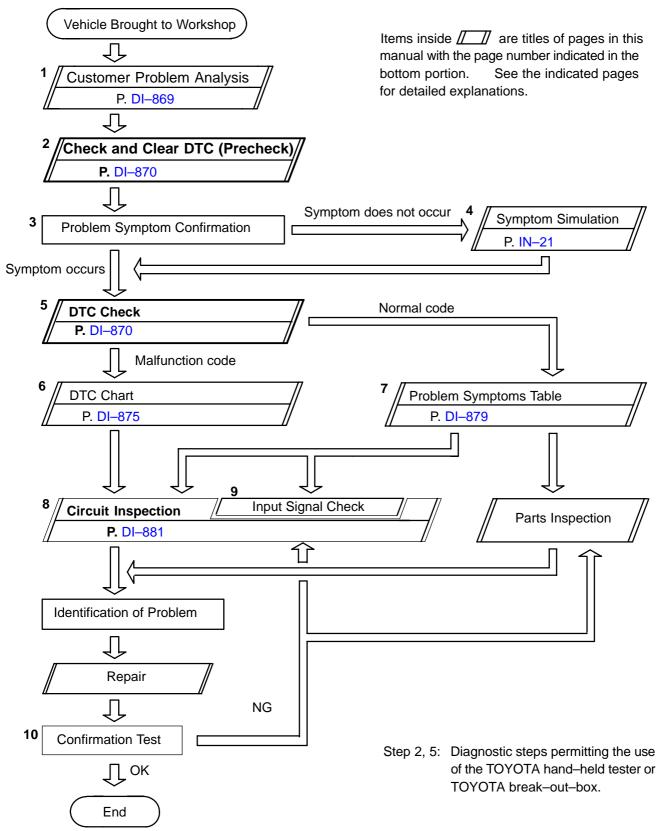
(b) Disconnect engine hood courtesy switch connector.

CHECK:

Check continuity between terminals 1 and 2 when engine hood lock is locked and unlocked.

<u>OK:</u>

Engine hood lock	Tester connection	Specified condition
LOCK	_	No continuity
UNLOCK	1 – 2	Continuity


NG

Replace engine	ne hood courte	sy switch.

ОК	
2	Check harness and connector between theft deterrent ECU and switch, switch and body ground (See page IN-31).
	NG Repair or replace harness or connector.
ОК	
	c and replace theft deterrent ECU bage IN–31).

CRUISE CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

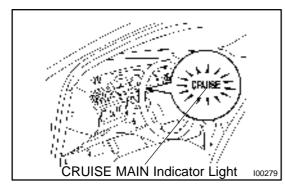
Troubleshoot in accordance with the procedure on the following page.

DI08F-11

CUSTOMER PROBLEM ANALYSIS CHECK

DI08G-08

DI-869


Inspector's name: _____

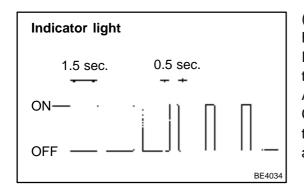
			Registration No.	
Customer's Name			Registration Year	
			Frame No.	
Date Vehicle Brought in	/	/	Odometer Reading	km Mile

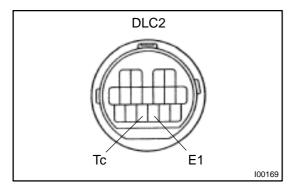
Condition of Problem Occurrence	Date of Problem Occurrence		/	/
	How Often does Problem Occurs	2 Continuous	Intermittent (Times a day)
	Vehicle Speed when Problem Occurred		km Mile	

	Auto cancel occurs	 Driving condition City driving Freeway Up hill Down hill After cancel occurred, did the driver activate cruise control again? Yes No 		
	Cancel does not occur	 With brake ON Except D position shift At 40 km/h (25 mph) or less When control SW turns to CANCEL position 		
Symptoms	Cruise control malfunction	 Slip to acceleration side Slip to deceleration side Hunting occurs O/D cut off does not occur O/D does not return 		
	Switch malfunction			
		□ Remains ON □ Does not light up □ Blinking		

DTC Cheek	1st Time	Normal Code Malfuncti	□ Malfunction Code (Code)
DTC Check	2nd Time	🗆 Normal Code	□ Malfunction Code (Code)

PRE-CHECK

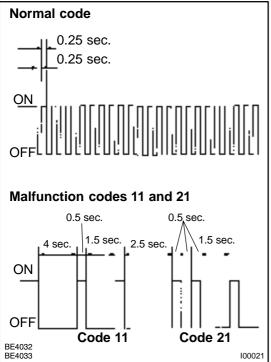

1. DIAGNOSIS SYSTEM

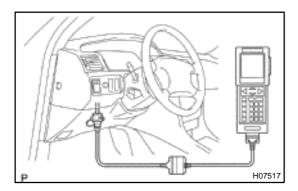

- (a) Check the indicator.
 - (1) Turn the ignition switch ON.
 - (2) Check that the CRUISE MAIN indicator light comes ON when the cruise control main switch is turned ON, and that the indicator light goes OFF when the main switch is turned OFF.

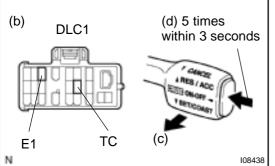
DI1KS-03

HINT:

If the indicator check result is not normal, proceed to troubleshooting (See page BE-2) for the combination meter section.




(b) Check the DTC. HINT:


If a malfunction occurs in the No. 1 vehicle speed sensor or actuator, etc. during cruise control driving, the ECU actuates AUTO CANCEL of the cruise control and turns on and off the

CRUISE MAIN indicator light to inform the driver of a malfunction. At the same time, the malfunction is stored in memory as a DTC.

- (c) Output of DTC using diagnosis check wire.
 - (1) Turn the ignition switch ON.
 - (2) Using SST, connect terminals Tc and E_1 of DLC2.
 - SST 09843-18020
 - (3) Read the DTC on the CRUISE MAIN indicator light.

HINT:

If the DTC is not output, inspect the diagnosis circuit (See page DI–916).

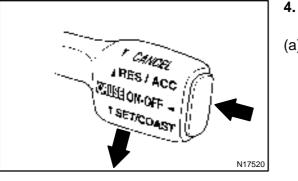
As an example, the blinking patterns for codes; normal, 11 and 21 are shown in the illustration.

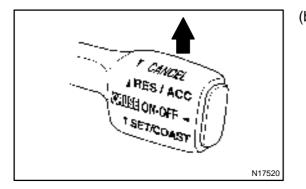
2. USING TOYOTA HAND-HELD TESTER

- (a) Hook up the TOYOTA hand-held tester to the DLC2.
- (b) Monitor the ECU data by following the prompts on the tester screen.

HINT:

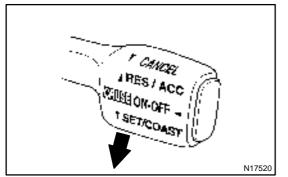
TOYOTA hand-held tester has a "Snapshot" function which records the monitored data.

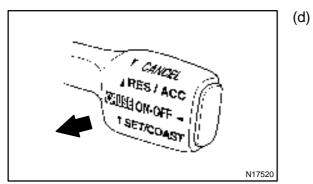

Please refer to the TOYOTA hand-held tester operator's manual for further details.


3. DTC CLEARANCE (ERASE MODE)

HINT:

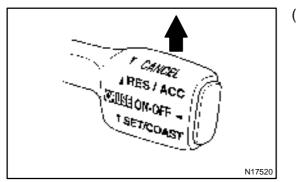
During in the erase mode, diag detection does not work.


- (a) Stop the vehicle.
- (b) Using SST, connect terminals Tc and E1 of DLC1. SST 09843–18020
- (c) Pull the cruise control switch to CANCEL.
- (d) On the above metioned condition, turn on the cruise control main switch 5 times within 3 seconds.

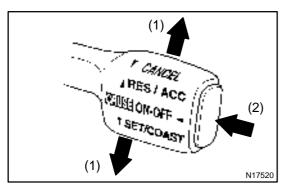


PROBLEM SYMPTOM CHECK (ROAD TEST)

- (a) Inspect the SET switch.
 - (1) Push the main switch ON.
 - (2) Drive at a desired speed (40 km/h (25 mph) or higher).
 - (3) Press the control switch to the SET/COAST.
 - (4) After releasing the switch, check that the vehicle cruises at the desired speed.
- (b) Inspect the ACCEL switch.
 - (1) Push the main switch ON.
 - (2) Drive at a desired speed (40 km/h (25 mph) or higher).
 - (3) Check that the vehicle speed increases while the control switch is turned to RES/ACC, and that the vehicle cruises at the set speed when the switch is released.
 - (4) Momentarily raise the control switch upward to the RES/ACC position and then immediately release it. Check that the vehicle speed increases by approx.
 1.5 km/h (Tap-up function).



- (c) Inspect the COAST switch.
 - (1) Push the main switch ON.
 - (2) Drive at a desired speed (40 km/h (25 mph) or higher).
 - (3) Check that the vehicle speed decreases while the control switch is turned to SET/COAST, and the vehicle cruises at the set speed when the switch is released.
 - (4) Momentarily pull the control switch down to SET/ COAST, and then immediately release it. Check that the vehicle speed decreases by about 1.5 km/h (Tap-down function).


d) Inspect the CANCEL switch.

- (1) Push the main switch ON.
- (2) Drive at a desired speed (40 km/h (25 mph) or higher).
- (3) When operating one of the following operations, check that the cruise control system is cancelled and that the normal driving mode is reset.
 - Depress the brake pedal
 - Depress the clutch pedal (M/T)
 - Shift to except D position (A/T)
 - Push the main switch OFF
 - Pull the cruise control switch to CANCEL

(e) Inspect the RESUME switch.

- (1) Push the main switch ON.
- (2) Drive at a desired speed (40 km/h (25 mph) or higher).
- (3) When operating one of the following operations check that the cruise control system is cancelled and that the normal driving mode is reset.
 - Depress the brake pedal
 - Depress the clutch pedal (M/T)
 - Shift to except D position (A/T)
 - Push the main switch OFF
 - Pull the cruise control switch to CANCEL
- (4) After the control switch is turned to RES/ACC at the driving speed of more than 40 km/h (25 mph), check that the vehicle restores the speed prior to the cancellation.

5. INPUT SIGNAL CHECK

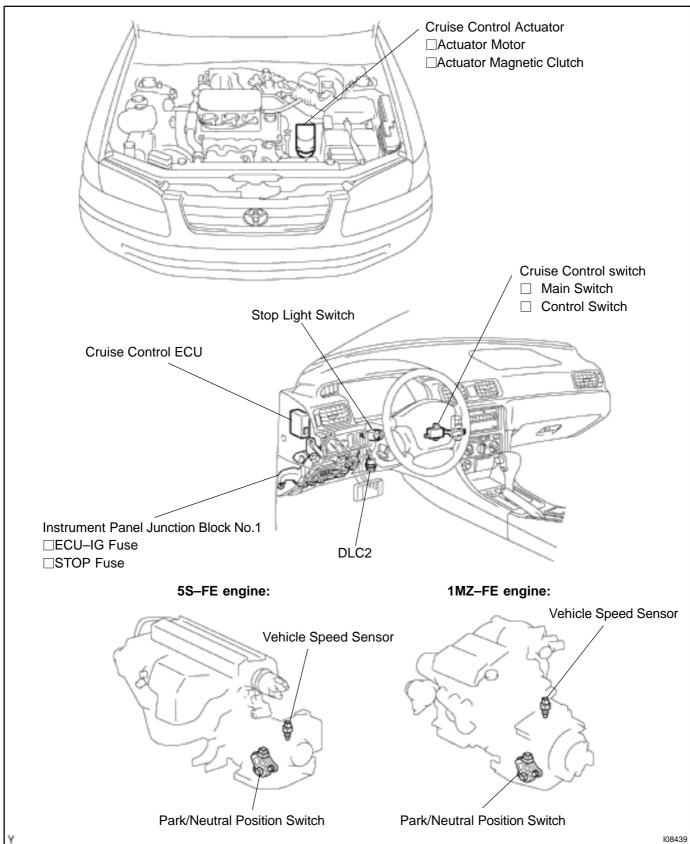
HINT:

- (1) For check No.1 \sim No.3
- Turn ignition switch ON.
- (2) For check No.4
- Jack up the vehicle.
- Start the engine.
- Shift to D position.
- (a) Pull the control switch to SET/COAST or RES/ACC position and hold it down or up (1).
- (b) Push the main switch ON (2).
- (c) Check that the CRUISE MAIN indicator light blinks twice or 3 times repeatedly after 3 seconds.
- (d) Turn the SET/COAST or RES/ACC switch OFF.
- (e) Operate each switch as listed in the table below.
- (f) Read the blinking pattern of the CRUISE MAIN indicator light.
- (g) After performing the check, turn the main switch OFF. HINT:

When 2 or more signals are input to the ECU, the lowest numbered code will be displayed first.

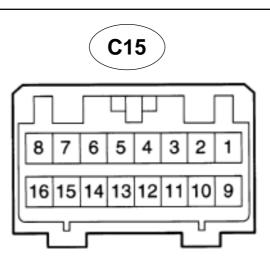
No.	Operation Method	CRUISE MAIN Indicator Light Blinking Pattern	Diagnosis	
1	Turn SET/COAST switch ON	0.25 sec. Light OFF	SET/COAST switch circuit is normal	
2	Turn RES/ACC switch ON		RES/ACC switch circuit is normal	
	Turn CANCEL switch ON	ON Switch OFF	CANCEL switch circuit is normal	
3	Turn stop light switch ON Light Switch ON Depress brake pedal OFF Switch ON	Stop light switch circuit is normal		
	Turn PNP switch OFF (Shift to except D position)	ON	PNP switch circuit is normal	
	Turn clutch switch OFF (Depress clutch pedal)	OFF Switch OFF	Clutch switch circuit is normal	
4	Drive at about 40 km/h (25 mph)or higher		Vehicle Speed Sensor is	
4	Drive at about 40 km/h (25 mph) or below	ON Light OFF	normal	

DIAGNOSTIC TROUBLE CODE CHART


If a malfunction code is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the appropriate page.

DTC No. (See Page)	Circuit Inspection	Trouble Area
11, 15 (DI–881)	Actuator Motor Circuit	 Actuator motor Harness or connector between cruise control ECU and actuator motor Cruise control ECU
12 (DI-883)	Actuator Magnetic Clutch Circuit	•STOP Fuse •Stop light switch •Actuator magnetic clutch •Harness or connector between cruise control ECU and actuator magnetic clutch, actuator magnetic clutch and body ground •Cruise control ECU
14 (DI–886)	Actuator Mechanical Malfunction	Actuator motor (actuator lock: motor, arm) Oruise control ECU
21 (DI-888)	Open in Vehicle Speed Sensor Circuit	 Combination meter Harness or connector between cruise control ECU and combination meter, combination meter and vehicle speed sensor Vehicle speed sensor Cruise control ECU
23 (DI–891)	Vehicle Speed Signal Abnormal	Vehicle speed sensor Cruise control ECU
32 (DI892)	Control Switch Circuit	 Cruise control switch Harness or connector between cruise control ECU and cruise control switch, cruise control switch and body ground Cruise control ECU
41	Cruise control ECU	•Cruise control ECU
42	Source voltage drop	Power source
51 (DI–895)	Idle Signal Circuit	 Throttle position sensor Harness or connector between ECM and throttle position sensor Harness or connector between cruise control ECU and ECM Cruise control ECU

Author:


PARTS LOCATION

1111

DI08J-08

TERMINALS OF ECU

100293

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$STP-\leftrightarrow GND$		Depress brake pedal	10 – 16 V
$(C152\leftrightarrow C1516)$	$G\text{-}W\leftrightarrowW\text{-}B$	Release brake pedal	Below 1 V
		Shift to positions except D	Below 1 V
$D \leftrightarrow GND (C15-3 \leftrightarrow C15-16)$	$B-R \leftrightarrow W-B$	Shift to D position	10 – 16 V
		Ignition switch ON Cruise control main switch ON	Below 1.2 V
$PI \leftrightarrow GND \ (C154 \leftrightarrow C1516)$	O ↔ W–B	Ignition switch ON Cruise control main switch OFF	10 – 16 V
		Ignition switch ON	10 – 16 V
$\begin{array}{c} TC \leftrightarrow GND \\ (C155 \leftrightarrow C1516) \end{array}$	$LG-R\leftrightarrowW-B$	Ignition switch ON Connect terminals Tc and E1 of diagnostic check connector	Below 1 V
$ECT \leftrightarrow GND$	L–B ↔ W–B	During driving Gear position 3rd	10 – 16 V
$(C15-6\leftrightarrow C15-16)$		During driving Gear position O/D	Below 1 V
$MC \leftrightarrow GND$	R–B ↔ W–B	During cruise control driving COAST switch held ON	9 – 15 V
$(C15-7\leftrightarrow C15-16)$		During cruise control driving ACC switch held ON	Below 1 V
$L \leftrightarrow GND$		During cruise control driving	9 – 15 V
$(C158\leftrightarrow C1516)$	$G-B \leftrightarrow W-B$	Except during cruise control driving	Below 1 V
B ↔ GND (C15–9 ↔ C15–16)	$B–R\leftrightarrow W–B$	Ignition switch ON	10 – 16 V
		Ignition switch ON	10 – 16 V
CCS ↔ GND (C15–10 ↔ C15–16)	$W \leftrightarrow W\text{-}B$	Ignition switch ON CANCEL switch held ON	4.2 – 8.8 V
		Ignition switch ON SET/COAST switch held ON	2.5 – 6.3 V
		Ignition switch ON RES/ACC switch held ON	0.8 – 3.7 V

DI1KT-06

DI-878

DIAGNOSTICS - CRUISE CONTROL SYSTEM

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
$CMS \leftrightarrow GND$		Ignition switch ON Main switch OFF	10 – 16 V
(C15–11 ↔ C15–16)	$W-L \leftrightarrow W-B$	Ignition switch ON Main switch ON	Below 0.5 V
$SPD \leftrightarrow GND$	$V – W \leftrightarrow W – B$	Engine start Car stoppage.	Below 1.5 V or 4.7 – 16 V
(C15–12 ↔ C15–16)		During driving (Pulse generated).	3 – 7 V
IDL \leftrightarrow GND (C15–13 \leftrightarrow C15–16)	L–R ↔ W–B	Ignition switch ON Throttle valve fully opened.	10 – 16 V
		Ignition switch ON Throttle valve fully closed.	Below 1.5 V
$OD \leftrightarrow GND$ (C15–14 \leftrightarrow C15–16)	Y–B ↔ W–B	During cruise control driving OD switch ON.	10 – 16 V
		During cruise control driving OD switch OFF (3rd driving)	Below 1 V
$\begin{array}{l} MO\leftrightarrowGND\\ (C1515\leftrightarrowC1516) \end{array}$	$R-G \hookrightarrow W-B$	During cruise control driving ACC switch hold ON	9 – 15 V
		During cruise control driving COAST switch hold ON	Below 1 V
$GND \leftrightarrow Body Ground$ (C15–16 $\leftrightarrow Body Ground$)	$W-B \leftrightarrow Body$ Ground	Constant	Below 1 V

PROBLEM SYMPTOMS TABLE

DI-879

Symptom	Suspect AreaSuspect Area	See pageSee page
SET not occourring or CANCEL occurring. (DTC is Normal)	 Main Switch Circuit (Cruise control switch) Vehicle Speed Sensor Control Switch Circuit (Cruise control switch) Stop Light Switch Circuit Park/Neutral Position Switch Circuit Clutch Switch Actuator Motor Circuit Cruise Control Cable Cruise Control ECU 	DI-912 DI-888 DI-892 DI-898 DI-904 DI-907 DI-881 DI-918 IN-31
SET not occurring or CANCEL occurring.	1. ECU Power Source Circuit	DI-909
(DTC dose not output) Actual vehicle speed deviates above or below the set speed.	 Cruise Control ECU Cruise Control Cable Vehicle Speed Signal Abnormal Electronically Controlled Transmission Communication Circuit Actuator Motor Circuit Idle Signal Circuit (Main throttle position sensor) Cruise Control ECU 	IN-31 DI-918 DI-891 DI-901 DI-881 DI-895 IN-31
Gear shifting frequent between 3rd O/D when driving on uphill road. (Hurting)	 Electronically Controlled Transmission Communication Circuit Cruise Control ECU 	DI–901 IN–31
Cruise control not cancelled, even when brake pedal is depressed.	 Cruise Control Cable Stop Light Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI-918 DI-898 DI-881 IN-31
Cruise control not cancelled, even when transmission is shifted to "N" postion.	 Cruise Control Cable Park/Neutral Position Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI-918 DI-904 DI-881 IN-31
Cruise control not cancelled, even when clutch pedal is depressed.	 Cruise Control Cable Clutch Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI-918 DI-907 DI-881 IN-31
Control switch does not operate. (SET/COAST, ACC/RES, CANCEL not possible)	 Cruise Control Cable Control Switch Circuit Actuator Motor Circuit Cruise Control ECU 	DI-918 DI-892 DI-881 IN-31
SET possible at 40 km/h (25 mph) or less, or CANCEL does not operate at 40 km/h (25 mph) or less.	 Cruise Control Cable Vehicle Speed Signal Abnormal Actuator Motor Circuit Cruise Control ECU 	DI–918 DI–891 DI–881 IN–31
Poor response is in ACCEL and RESUME modes.	 Cruise Control Cable Electronically Controlled Transmission Communication Circuit Actuator Motor Circuit Cruise Control ECU 	DI-918 DI-901 DI-881 IN-31
O/D does not resume, even though the road is not uphill.	 Electronically Controlled Transmission Communication Circuit Cruise Control ECU 	DI–901 IN–31

DIAGNOSTICS - CRUISE CONTROL SYSTEM

DTC memory is erased.	1. Cruise Control ECU	IN-31
DTC is not output, or is output when should not be.	 Diagnosis Circuit Cruise Control ECU 	DI–916 IN–31
Cruise MAIN indicator light remains ON or falls to light up.	1. Cruise MAIN Indicator Light Switch Circuit	DI-914

DI-881

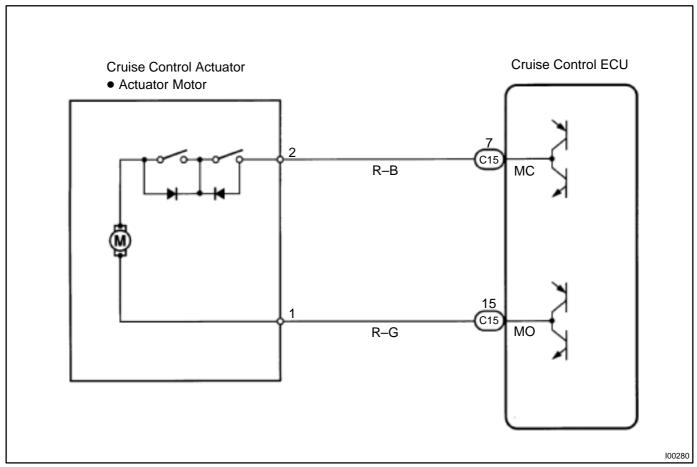
DI08M-12

CIRCUIT INSPECTION

	DTC	11, 15	Actuator Motor Circuit
--	-----	--------	------------------------

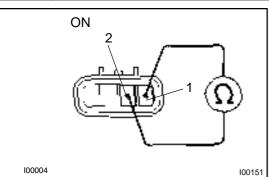
CIRCUIT DESCRIPTION

The actuator motor is operated by signals from the ECU. Acceleration and deceleration signals are transmitted according to changes in the Duty Ratio (See below).


Duty Ratio

The duty ratio is the ratio of the period of continuity in one cycle. For example, if A is the period of continuity in one cycle, and B is the period of non–continuity.

Duty Ratio =
$$\frac{A}{A + B} \times 100$$
 (%)
OFF $\int \frac{A}{B} = \frac{B}{1 \text{ cycle}}$


DTC No.	Detection Item	Trouble Area
11	Short in actuator motor circuit.	Actuator motor Harness or connector between cruise control ECU and actuator motor Cruise control ECU
15	Open in actuator motor circuit.	Actuator motor

WIRING DIAGRAM

Check resistance between terminals MO and MC of actuator motor.

PREPARATION:

(a) Turn ignition switch ON.

(b) Disconnect the actuator connector.

CHECK:

Measure resistance between terminals 1 and 2.

HINT:

If control plate is in fully opened or fully closed positions, resistance can not be measured.

<u>OK:</u>

Resistance: more than 4.2 Ω

Replace cruise control actuator.

2 Check for open and short in harness and connectors between cruise control ECU and actuator motor (See page IN-31).

NG

Repair or replace harness or connector.

OK

OK

Check and replace cruise control ECU. (See page IN-31).

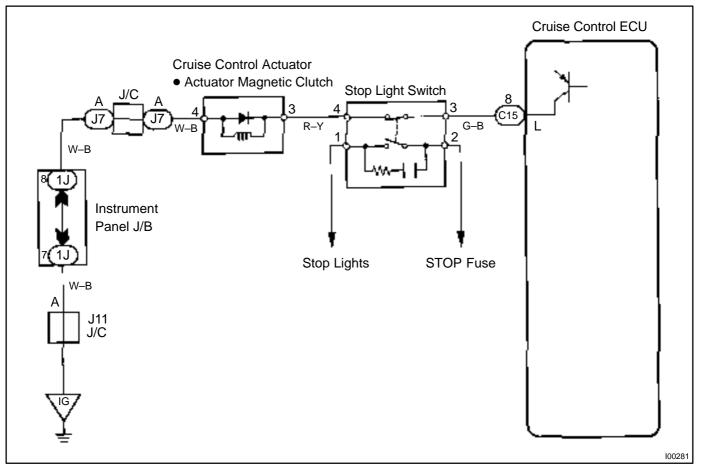
DI08N-12

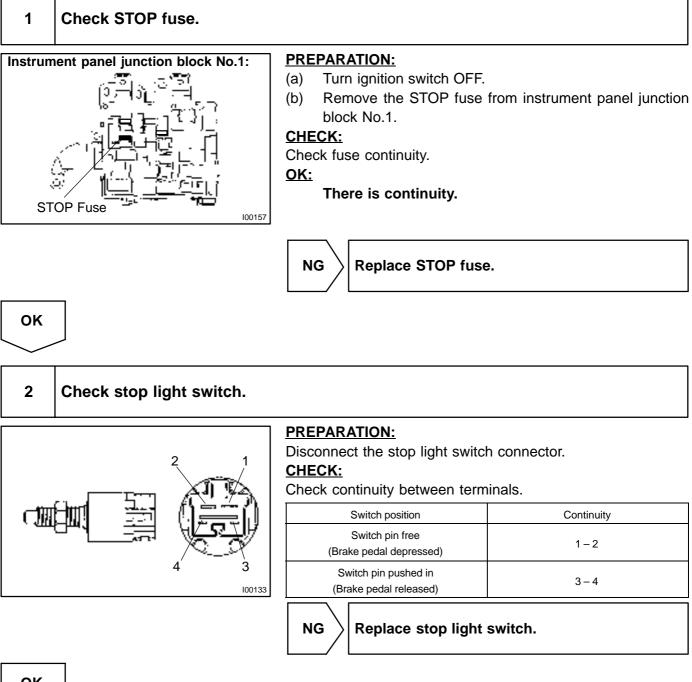
DTC

12

Actuator Magnetic Clutch Circuit

CIRCUIT DESCRIPTION


This circuit turns on the magnetic clutch inside the actuator during cruise control operation according to the signal from the ECU. If a malfunction occurs in the actuator or speed sensor, etc. during cruise control operation, the rotor shaft between the motor and control plate is released.


When the brake pedal is depressed, the stop light switch turns on, supplying electrical power to the stop light. Power supply to the magnetic clutch is mechanically cut and the magnetic clutch is turned OFF.

When driving downhill, if the vehicle speed exceeds the set speed by 15 km/h (9 mph), the ECU turns the safety magnet clutch OFF. If the vehicle speed later drops to within 10 km/h (6 mph), cruise control at the set speed is resumed.

DTC No.	Detection Item	Trouble Area
12	Short in actuator magnetic clutch circuit. Open (0.8 sec.) in actuator magnetic clutch circuit.	 STOP Fuse Stop light switch Actuator magnetic clutch Harness or connector between cruise control ECU and actuator magnetic clutch, actuator magnetic clutch and body ground Cruise control ECU

WIRING DIAGRAM

ΟΚ

3

(a) (b) OK: 100311

Check resistance between terminals L and GND of actuator magnetic clutch.

PREPARATION:

Turn ignition switch OFF.

Disconnect the actuator connector.

CHECK:

Measure resistance between terminals 3 and 4.

Resistance: 34.65 – 42.35 Ω.

Replace cruise control actuator.

Check for open and short in harness and connectors between cruise control 4 ECU and actuator magnetic clutch, actuator magnetic clutch and body ground (See page IN-31).

NG

Repair or replace harness or connector.

ΟΚ

OK

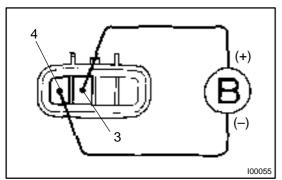
Check and replace cruise control ECU (See page IN-31).

DTC	14	Actuator Mechanical Malfunction
-----	----	---------------------------------

CIRCUIT DESCRIPTION

The circuit detects the rotation position of the actuator control plate and sends a signal to the ECU.

DTC No.	Detection Item	Trouble Area
		 Actuator lock: (motor, arm)
14	Cruise control actuator mechanical malfunction.	Actuator motor
		Cruise control ECU


WIRING DIAGRAM

See page DI-881.

INSPECTION PROCEDURE

1

Check cruise control actuator arm locking operation

PREPARATION:

(a) Turn ignition switch OFF.

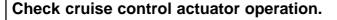
(b) Disconnect the actuator connector.

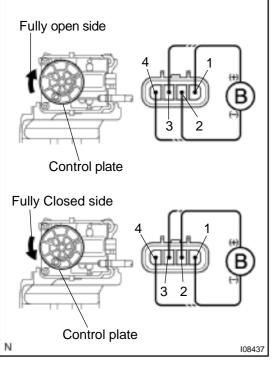
CHECK:

Connect the positive (+) lead from the battery to the terminal 3 of actuator and the negative (-) lead to terminal 4. **NOTICE:**

Do not connect the high tension cables to the wrong battery terminal. The cruise control actuator will be damaged. Move the control plate by hand.

<u>OK:</u>


Control plate doesn't move.



ΟΚ

DI080-12

2

PREPARATION:

(a) Turn ignition switch OFF.

(b) Disconnect the actuator connector.

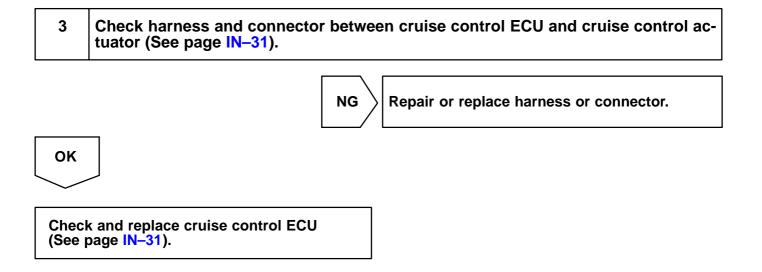
CHECK:

Connect the positive (+) lead from the battery to terminals 1 and 3 of actuator, connect the negative (–) lead to terminals 2 and 4 of actuator.

<u>OK:</u>

Control arm moves to fully open side

CHECK:

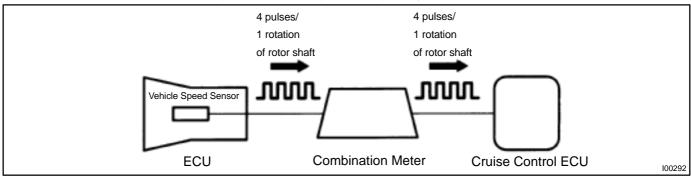

Connect the positive (+) lead from the battery to terminals 2 and 3 of actuator, connect the negative (-) lead to terminals 1 and 4 of actuator.

<u>OK:</u>

Control arm moves to fully colsed side

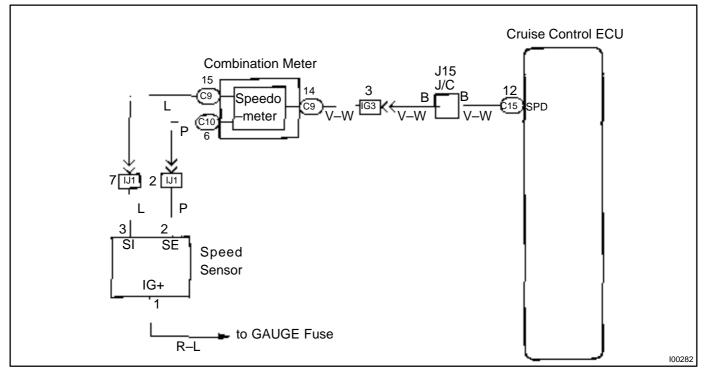
Replace cruise control actuator.

OK


DTC 21 Open in Vehicle Speed Sensor Circuit	
---	--

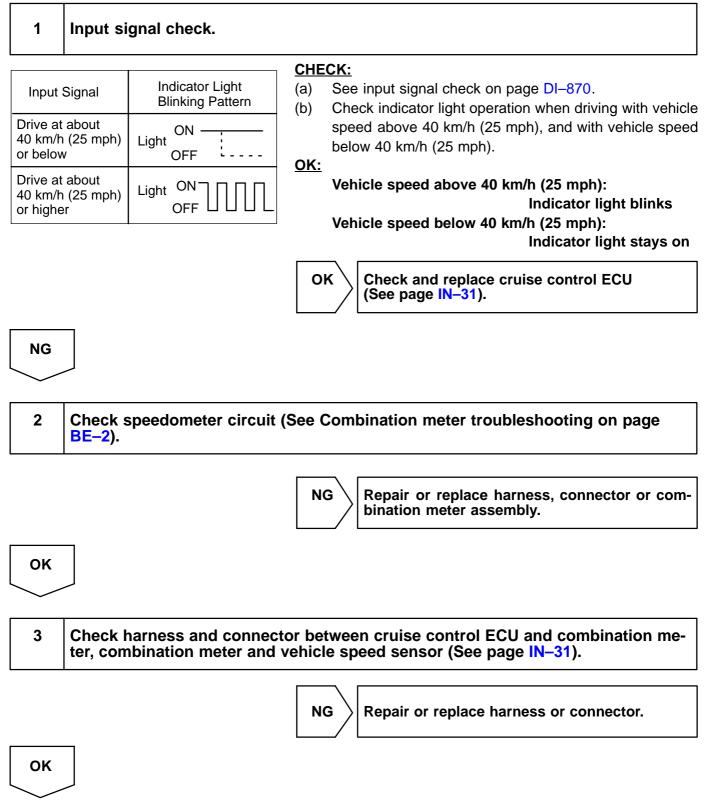
CIRCUIT DESCRIPTION

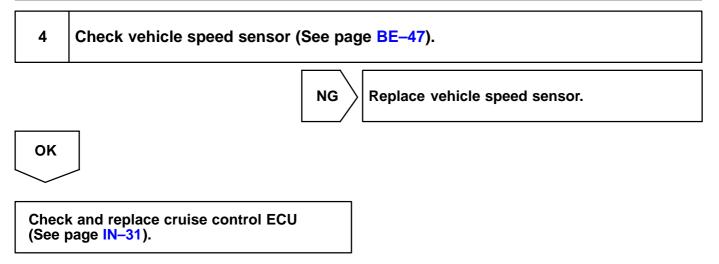
The signal from the vehicle speed sensor circuit is sent to cruise control ECU as vehicle speed signal. The rotor shaft is driven by the gear of the transmission.


For each rotation of the shaft, the vehicle speed sensor sends a 4–pulse signal through the combination meter to the cruise control ECU (See the following installation).

This signal is converted inside the combination meter and sent as a 4–pulse signal to the cruise control ECU. The ECU calculates the vehicle speed from this pulse frequency.

DTC No.	Detection Item	Trouble Area
21	Speed signal is not input to the cruise control ECU while cruise control is set.	 Combination meter Harness or connector between cruise control ECU and combination meter, combination meter and vehicle speed sensor Vehicle speed sensor Cruise control ECU


WIRING DIAGRAM



DI08P-12

DIAGNOSTICS - CRUISE CONTROL SYSTEM

INSPECTION PROCEDURE

Vehicle Speed Signal Abnormal

CIRCUIT DESCRIPTION

23

See page DI-888.

DTC

DTC No.	Detection Item	Trouble Area
23	Vehicle speed sensor pulse is abnormal.	Vehicle speed sensor Cruise control ECU

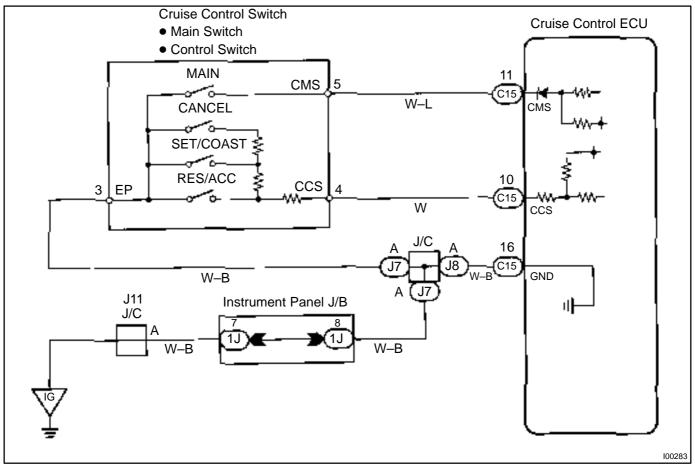
WIRING DIAGRAM

See page DI-888.

INSPECTION PROCEDURE

1	Check vehicle speed sensor (See page BE–47).
	NG Replace vehicle speed sensor.
ОК	
Check (See p	and replace cruise control ECU bage IN–31).

DI08R-12


DTC	32	Control Switch Circuit (Cruise Control Switch)
		· · · · · · · · · · · · · · · · · · ·

CIRCUIT DESCRIPTION

This circuit carries the SET/COAST, RESUME/ACCEL and CANCEL signals (each voltage) to the ECU.

DTC No.	Detection Item	Trouble Area
32	Short in control switch circuit.	Cruise control switch Harness or connector between cruise control ECU and cruise control switch, cruise control switch and body ground Cruise control ECU

WIRING DIAGRAM

Date :

	1	

Input signal check.

Input Signal	Indicator Light Blinking Pattern
SET/COAST switch	ON 2 Pulses
RESUME/ACCEL switch	ON 3 Pulses
CANCEL switch	ON SW OFF OFF SW ON

PREPARATION:

See input signal check on page DI-870.

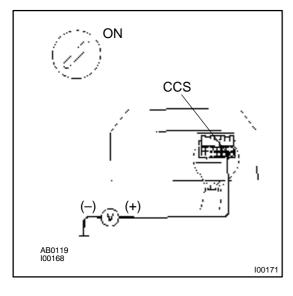
CHECK:

<u>OK:</u>

Check the indicator light operation when each of the SET/ COAST, RESUME/ACCEL and CANCEL is turned on.

SET/COAST, RESUME/ACCEL switch

The signals shown in the table on the left should be output when each switch is ON. The signal should disappear when the switch is turned OFF.


CANCEL switch

The indicator light goes off when the cancel switch is turned ON.

NG

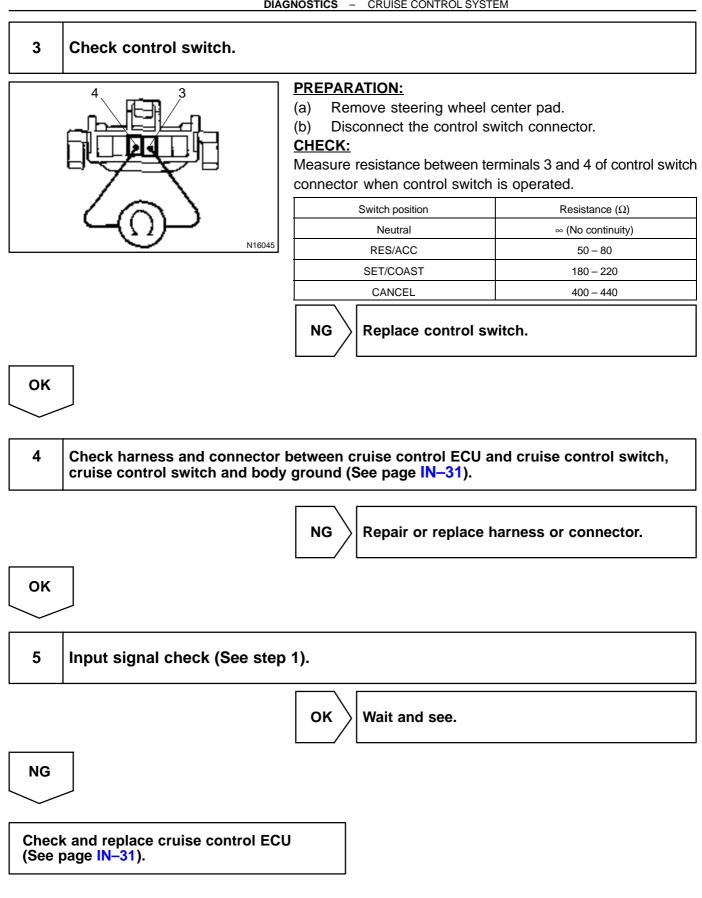
2 Check voltage between terminals CCS of cruise control ECU connector and body ground.

PREPARATION:

- (a) Remove the ECU with connector still connected.
- (b) Turn ignition switch ON.

CHECK:

Measure voltage between terminals 18 of ECU connector and body ground, when each of the SET/COAST, RESUME/AC-CEL and CANCEL is turned ON.


Switch position	Resistance (V)
Neutral	10 – 16 V
RES/ACC	0.8 – 3.7 V
SET/COAST	2.5 – 6.3 V
CANCEL	4.2 – 8.8 V

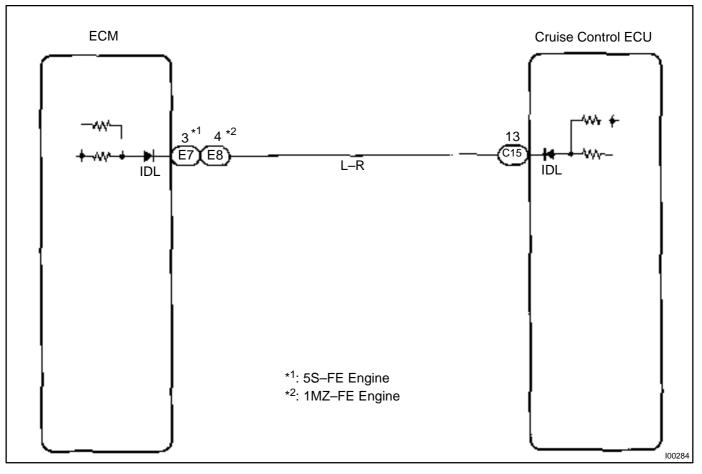
NG

	Proceed	to	next	circuit	inspectior	ו shown	C
2	problem	syn	npton	ns table	e (See page	e DI-879)	-

OK

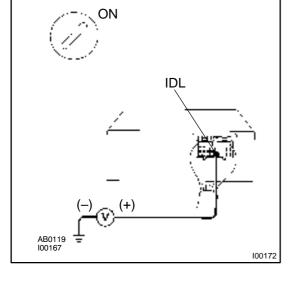
on

DTC	51	Idle


dle Signal Circuit

CIRCUIT DESCRIPTION

When the idle switch is turned ON, a signal is sent to the ECU. The ECU uses this signal to correct the discrepancy between the throttle valve position and the actuator position sensor value to enable accurate cruise control at the set speed. If the idle switch is malfunctioning, problem symptoms also occur in the engine, so also inspect the engine.


DTC No.	Detection Item	Trouble Area
		 Harness or connector between ECM and throttle position
		sensor
51	Short in idle signal circuit.	Throttle position sensor
		•Harness or connector between cruise control ECU and ECM
		Cruise control ECU

WIRING DIAGRAM

DI08S-10

1	Check voltage between terminal IDL of cruise control ECU connector and body
	ground.

PREPARATION:

- (a) Remove the ECU with connector still connected.
- (b) Disconnect the ECM connector.
- (c) Turn ignition switch ON.

CHECK:

Measure voltage between terminal IDL of ECU connector and body ground when the throttle valve is fully closed and fully opened.

<u> 0K:</u>

Throttle valve position	Voltage
Fully opened	10 – 14 V
Fully closed	Below 2 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI-879).

NG

2 Check harness and connector between ECM and throttle position sensor (See page IN–31).

 \rangle Repair or replace harness or connector.


 OK

 3
 Check throttle position sensor circuit (See page DI-243).

 NG
 Replace throttle position sensor.

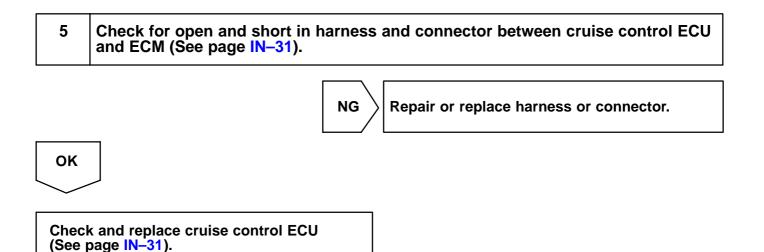
 OK

4 Check throttle position sensor.

PREPARATION:

Disconnect the throttle position sensor connector.

CHECK:


Measure resistance between terminals 3 and 4 of throttle position sensor connector when the throttle valve is fully closed and fully opened.

<u> 0K:</u>

Throttle valve position	Resistance
Fully opened	1 M Ω or higher
Fully closed	Below 2.3 kΩ

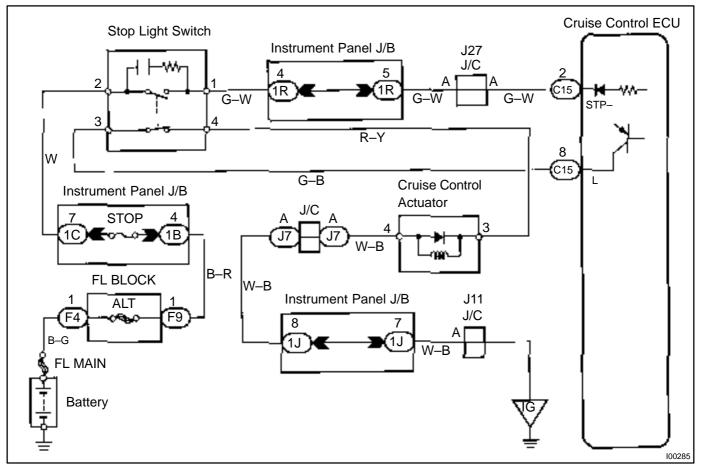
ΟΚ

Stop Light Switch Circuit

CIRCUIT DESCRIPTION

When the brake pedal is depressed, the stop light switch sends a signal to the ECU. When the ECU receives this signal, it cancels the cruise control.

A fail-safe function is provided so that the cancel functions normally, even if there is a malfunction in the stop light signal circuit.

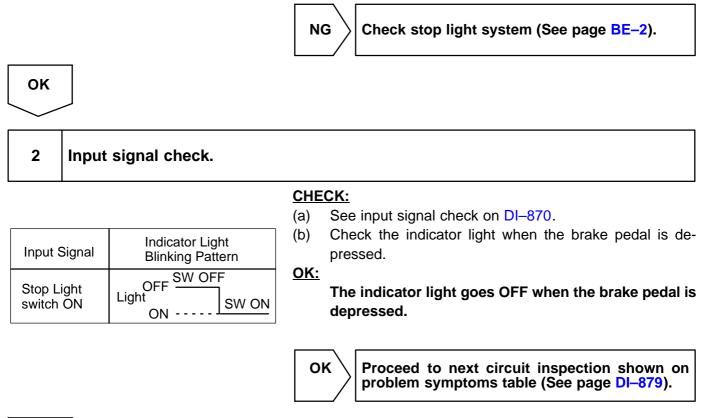

The cancel conditions are: Battery positive voltage at terminal STP-

When the brake is ON, battery positive voltage normally is applied through the STOP fuse and stop light switch to terminal STP– of the ECU, and the ECU turns the cruise control OFF.

If the harness connected to terminal STP- has an open circuit, terminal STP- will have battery positive voltage and the cruise control will be turned OFF.

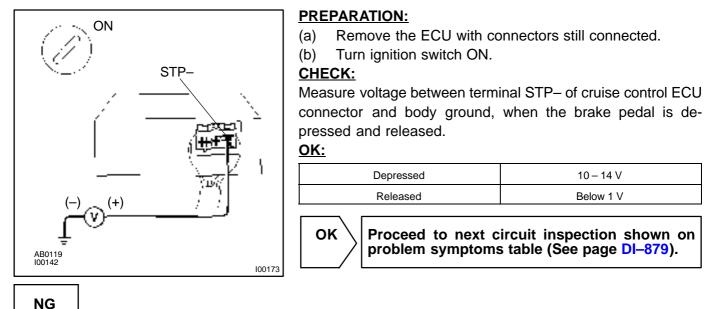
Also, when the brake is ON, the magnetic clutch circuit is cut mechanically by the stop light switch, turning the cruise control OFF. (See page DI-883 for operation of the magnetic clutch)

WIRING DIAGRAM

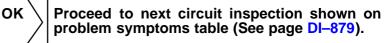

DI08T-11

Check operation of stop light.

CHECK:


Check that stop light comes ON when brake pedal is depressed, and turns OFF when brake pedal is released.

NG


Turn ignition switch ON.

Check voltage between terminal STP- of cruise control ECU connector and 3 body ground.

<u>OK:</u>	
Depressed	10 – 14 V
Released	Below 1 V

Remove the ECU with connectors still connected.

4 Check for open in harness and connectors between terminal STP- of cruise control ECU and stop light switch (See page IN-31).

NG

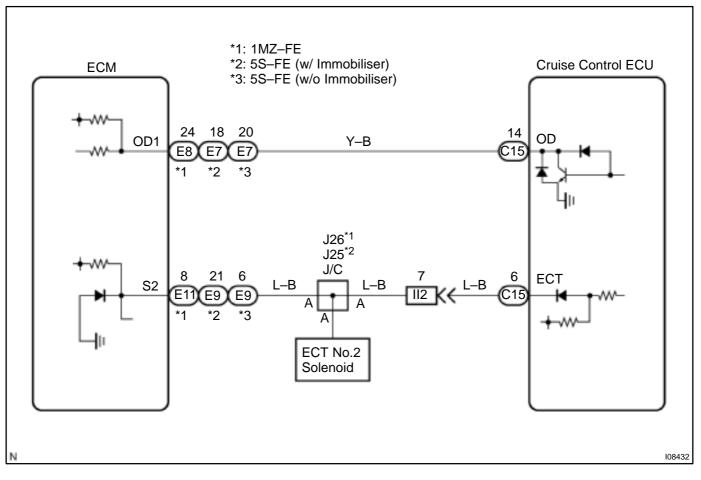
Repair or replace harness or connector.

OK

Check and replace cruise control ECU (See page IN-31).

DI08U-11

Electronically Controlled Transmission Communication Circuit


CIRCUIT DESCRIPTION

When driving uphill under the cruise control, in order to reduce shifting due to ON–OFF overdrive operation and to provide smooth driving, when down shifting in the electronically controlled transmission occurs, a signal to prevent upshift until the end of the uphill slope is sent from the cruise control ECU to the electronically controlled transmission.

Terminal ECT of the cruise control ECU detects the shift change signal (output to electronically controlled transmission No. 2 solenoid) from the ECM.

If the vehicle speeds down, also when terminal ECT of the cruise control ECU receives down shifting signal, it sends a signal from terminal OD to ECM to cut overdrive until the end of the uphill slope, and the gear shifts are reduced and gear shift points in the electronically controlled transmission are changed.

WIRING DIAGRAM

INSPECTION PROCEDURE

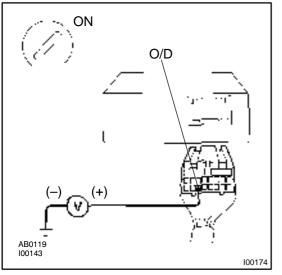
1

Check operation of overdrive.

PREPARATION:

Test drive after engine warms up.

CHECK:


Check that overdrive $ON \leftrightarrow OFF$ occurs by operation of OD switch ON-OFF.

Check and repair electronically controlled transmission (See page DI–389).

2 Check voltage between terminal OD of harness side connector of cruise control ECU and body ground.

PREPARATION:

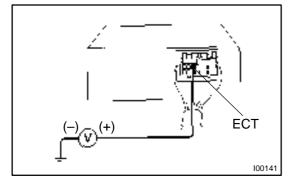
- (a) Remove the ECU with connector still connected.
- (b) Turn ignition switch ON.
- (c) Disconnect the ECU connector.

CHECK:

Measure voltage between terminal OD of harness side connector of ECU and body ground.

<u>OK:</u>

NG


```
Voltage: 10 – 14 V
```

Go to step 5.

ΟΚ

3

Check voltage between terminal ECT of cruise control ECU connector and body ground (On test drive).

PREPARATIO	JN:

(a) Connect the ECU connector.

(b) Test drive after engine warms up.

CHECK:

Check voltage between terminal ECT of ECU connector and body ground when OD switch is ON and OFF.

<u>OK:</u>

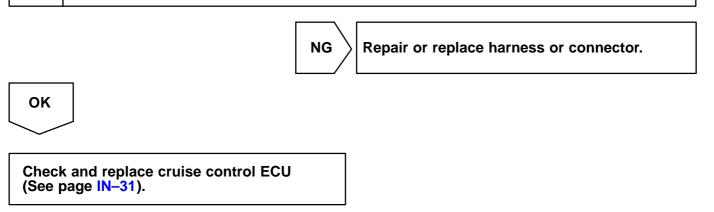
OD switch position	Voltage
ON	8 – 14 V
OFF	Below 0.5 V

ок

l	Proceed	to	next	circuit	inspection	shown	on
l	problem	syı	mptor	ns table	e (See page	DI-879)	

4 Check harness and connector between terminal ECT of cruise control ECU and electronically controlled transmission solenoid (See page IN–31).

NG

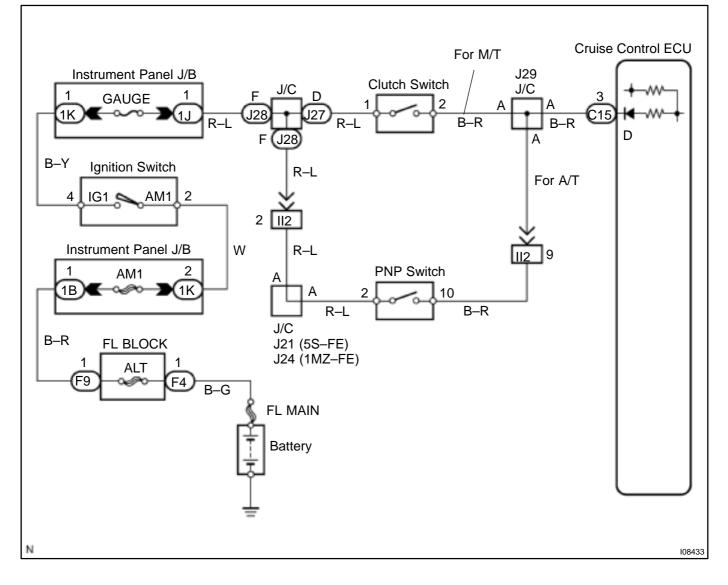

Repair or replace harness or connector.

OK

NG

Check and replace cruise control ECU.

5 Check harness and connector between terminal OD of cruise control ECU and terminal OD1 of ECM (See page IN–31).


DI08V-11

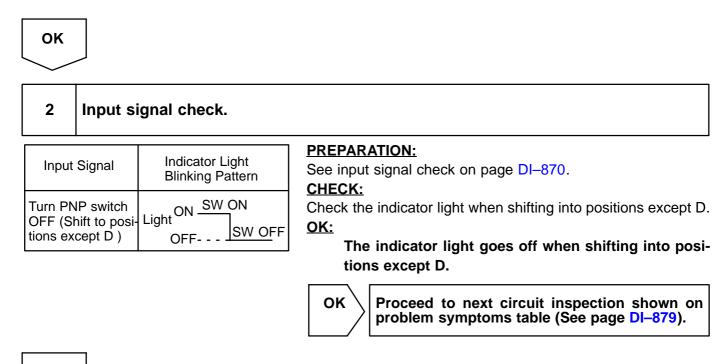
Park/Neutral Position Switch Circuit

CIRCUIT DESCRIPTION

When the shift position is except D, a signal is sent from the park/neutral position switch to the ECU. When this signal is input during cruise control driving, the ECU cancels the cruise control.

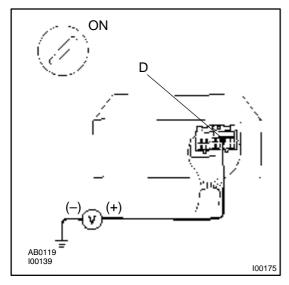
WIRING DIAGRAM

INSPECTION PROCEDURE


Check starter operation.

CHECK:

Check that the starter operates normally and that the engine starts.


Proceed to engine troubleshooting. (5S–FE: See page ST–1) (1MZ–FE: See page ST–1).

NG

3

Check voltage between terminal D of cruise control ECU connector and body ground.

PREPARATION:

Turn ignition switch ON. CHECK:

Measure voltage between terminal D of ECU connector and body ground when shifting into D position and other positions. **OK:**

Shift Position	Voltage
D position	10 – 14 V
Other positions	Below 1 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–879).

NG

4 Check harness and connector between cruise control ECU and park/neutral position switch (See page IN-31).

Repair or replace harness or connector.

ΟΚ

Check and replace cruise control ECU (See page IN-31).

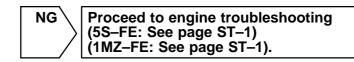
Clutch Switch Circuit

CIRCUIT DESCRIPTION

When the clutch pedal is depressed, the clutch switch sends a signal to the cruise control ECU. When the signal is input to the cruise control ECU during cruise control driving, the cruise control ECU cancels cruise control.

WIRING DIAGRAM

Refer to PNP switch circuit on page DI-904.


INSPECTION PROCEDURE

1

Check starter operation.

CHECK:

Check that the starter operates normally and that the engine starts.

OK

2 Input signal check.

Input Signal	Indicator Light Blinking Pattern	
Clutch switch OFF (Depress clutch pedal)	Light ON SW ON SW OFF	

PREPARATION:

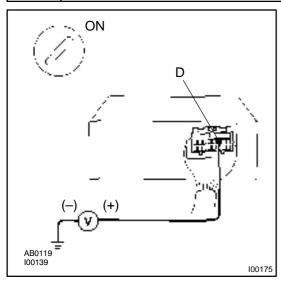
See input signal check on page DI-870.

CHECK:

Check the indicator lights when clutch pedal is depressed. **OK:**

The indicator light goes off when shifting into clutch pedal is depressed.

OK Proceed problem


Proceed to next circuit inspection shown on problem symptoms table (See page DI-879).

NG

DI08W-04

3

Check voltage between terminal D of cruise control ECU and body ground.

PREPARATION: Turn ignition switch ON.

CHECK:

Measure voltage between terminal D of cruise control ECU connector and body ground when clutch pedal is depressed and pushed in.

<u>OK:</u>


Shift Position	Voltage
Clutch pedal depressed	10 – 14 V
Clutch pedal pushed in	Below 1 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–879).

NG

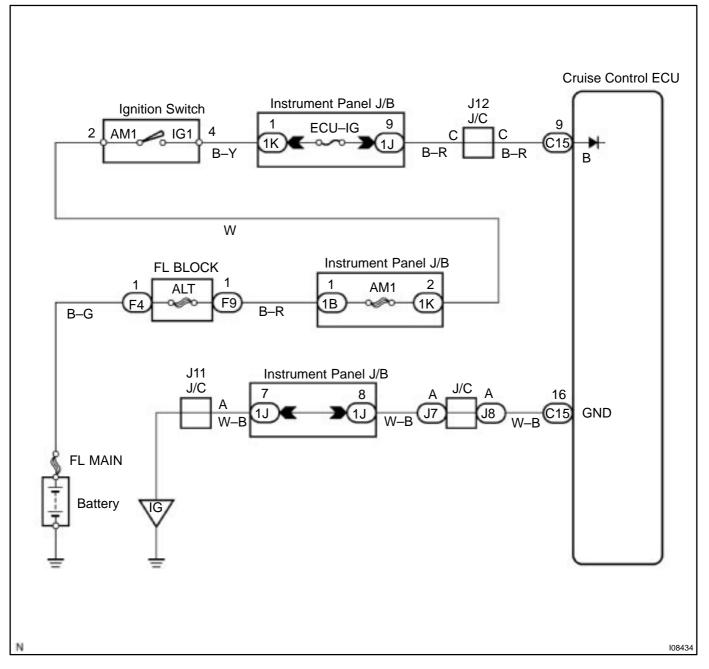
4 Check for open in harness and connector between ECU and GAUGE fuse (See page IN-31).

Repair or replace harness or connector.

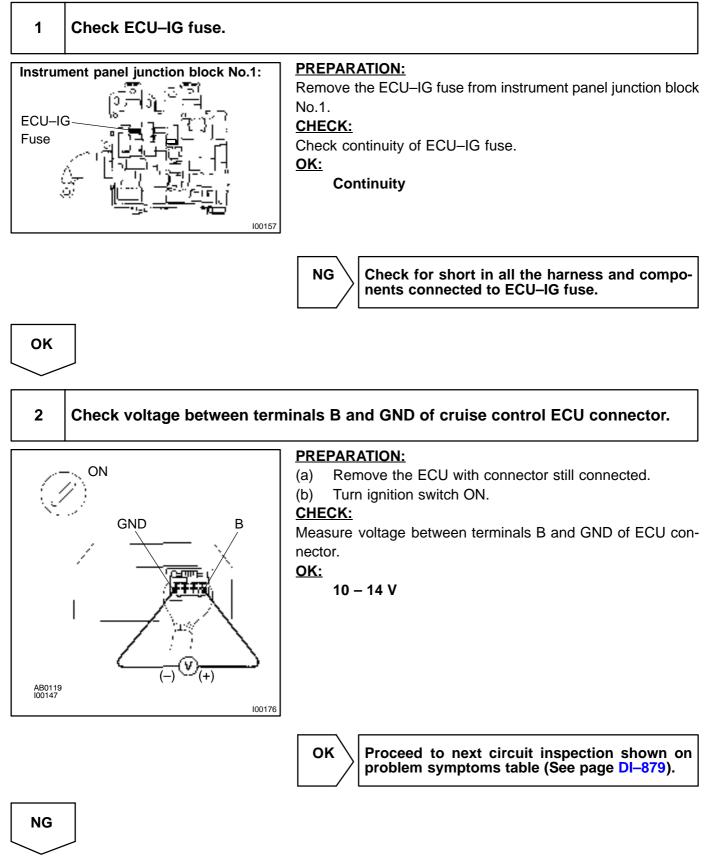
OK

Check and replace cruise control ECU (See page IN-31).

DI-909

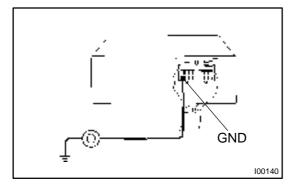

DI08X-11

ECU Power Source Circuit


CIRCUIT DESCRIPTION

The ECU power source supplies power to the actuator and sensors, etc, when terminal GND and the cruise control ECU case are grounded.

WIRING DIAGRAM



INSPECTION PROCEDURE

3

Check resistance between terminal GND of cruise control ECU connector and body ground.

CHECK:

Measure resistance between terminal GND of ECU connector and body ground.

<u>OK:</u>

Resistance: Below 1 Ω

Repair or replace harness or connector.

οк

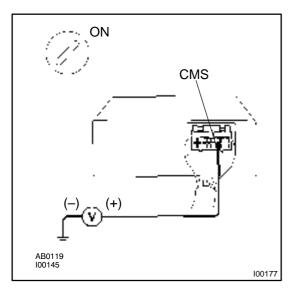
Check and repair harness and connector between cruise control ECU and battery (See page IN–31).

DI08Z-16

Main Switch Circuit (Cruise Control Switch)

CIRCUIT DESCRIPTION

When the cruise control main switch is turned OFF, the cruise control does not operate.


WIRING DIAGRAM

See page DI-892.

INSPECTION PROCEDURE

Check voltage between terminal CMS of cruise control ECU connector and body ground.

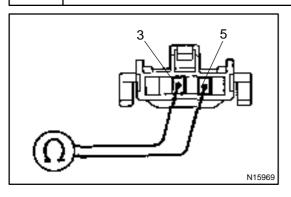
PREPARATION:

(a) Remove the ECU with connector still connected.

(b) Turn ignition switch ON.

CHECK:

Measure voltage between terminal CMS of cruise control ECU connector when main switch is held ON and OFF. <u>OK:</u>


Main switch	Voltage
OFF	10 – 14 V
ON	Below 0.5 V

Proceed to next circuit inspection shown on problem symptoms table (See page DI–879).

NG

2 Check main switch continuity.

Remove steering wheel center pad. (See page SR-11) (a)

Disconnect the control switch connector. (b)

CHECK:

Check continuity between terminals 3 and 5 of control switch connector when main switch is held ON and OFF.

OK:

Switch position	Tester connection	Specified condition
OFF	3 – 5	No continuity
Hold ON	3 – 5	Continuity

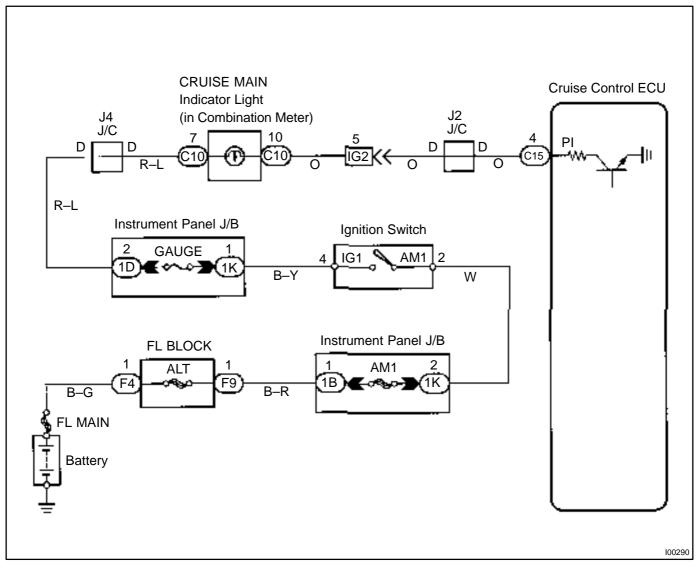
NG

Replace control switch.

ΟΚ

ΟΚ

3	Check harness and connector between cruise control ECU and main switch (See page IN-31).				
	NG Repair or replace harness or connector.				

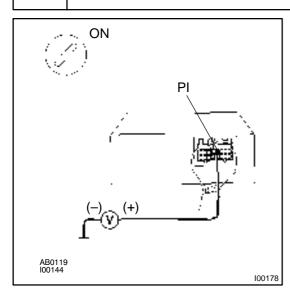

Check and replace cruise control ECU (See page IN-31).

CRUISE MAIN Indicator Light Circuit

CIRCUIT DESCRIPTION

When the cruise control main switch is turned ON, CRUISE MAIN indicator light lights up.

WIRING DIAGRAM



DI090-17

INSPECTION PROCEDURE

1

Check voltage between terminals PI and GND of cruise control ECU connector.

PREPARATION:

Tun ignition switch ON. CHECK:

Measure voltage between terminals PI and GND of cruise control ECU connector when main switch is ON and OFF. <u>OK:</u>

Switch position	Voltage
OFF	10 – 16 V
ON	Below 1.2 V

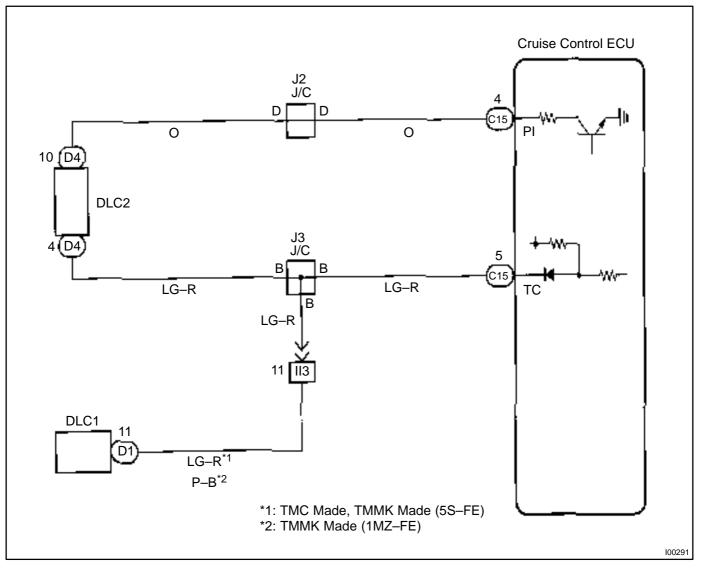
Proceed to next circuit inspection shown on problem symptoms table (See page DI-879).

NG

Check combination meter (See page BE–2).

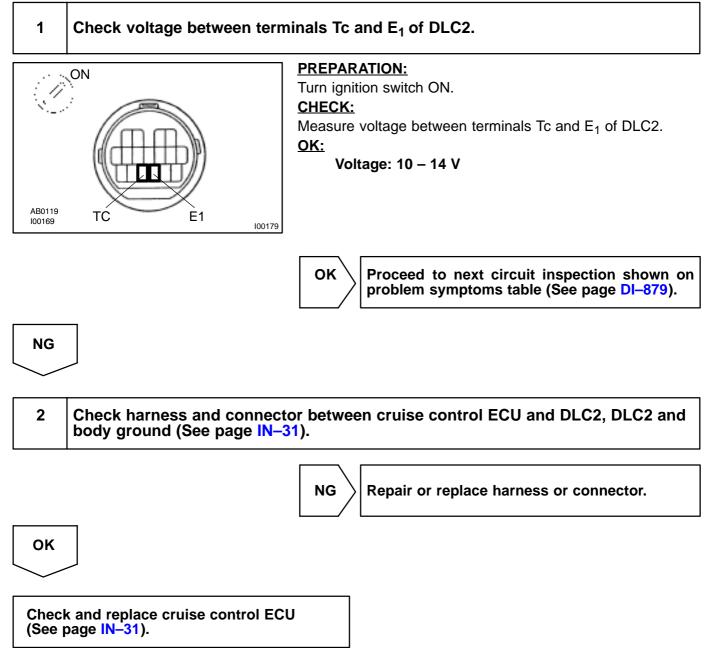
Replace combination meter.

OK


Check and replace cruise control ECU (See page IN-31).

Diagnosis Circuit

CIRCUIT DESCRIPTION


This circuit sends a signal to the ECU that outputs DTC.

WIRING DIAGRAM

DI091-11

INSPECTION PROCEDURE

Actuator Control Cable

INSPECTION PROCEDURE

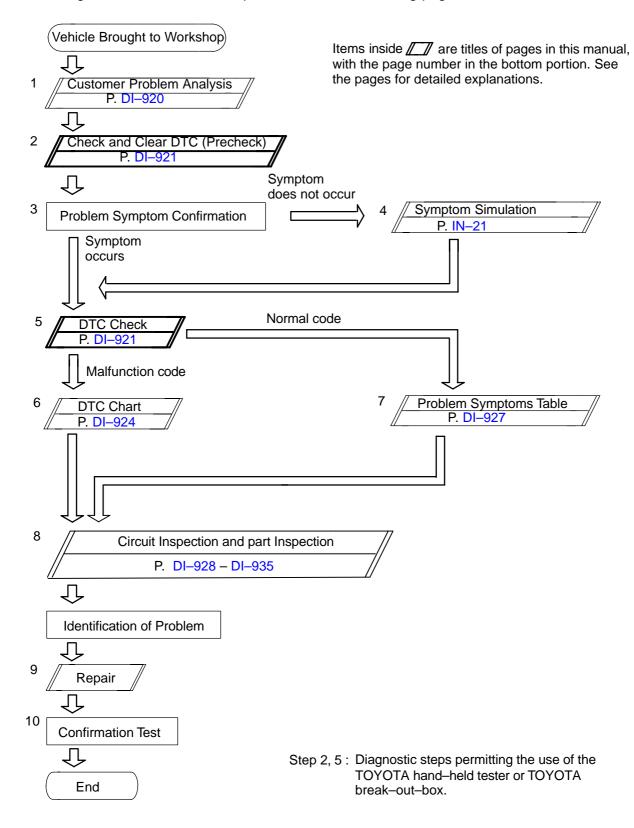
1	

Actuator control cable inspection

<u>OK:</u>

- (a) Check that the actuator and control cable throttle link are properly installed and that the cable and link are connected correctly.
- (b) Check that the actuator and bell crank operate smoothly.
- (c) Check that the cable is not loose or too tight.

<u>OK:</u>


Freeplay: less than 10 mm

HINT:

- If the control cable is very loose, the vehicle's loss of speed going uphill will be large.
- If the control cable is too tight, the idle RPM will become high.

ENGINE IMMOBILISER SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

Troubleshooting in accordance with the procedure on the following pages.

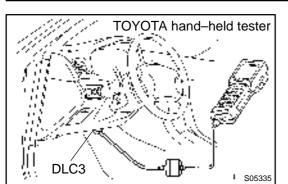
DI1KE-04

1154

CUSTOMER PROBLEM ANALYSIS CHECK

ENGINE IMMOBLISER Check Sheet

Inspector's

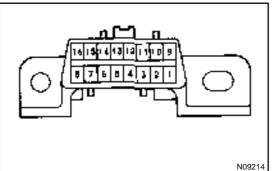

Name

			Registration No.			
Customer's Name			Registration Year	1	1	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

Date Problem First Occurred		1	1	
Frequency Problem Occurs	Continuous		Intermittent (times a day)

Sumatomo	Immobiliser is not set. (Engine starts with key codes other than the registered key code.)
Symptoms	Engine does not start.

	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)



PRE-CHECK

1. DIAGNOSIS SYSTEM

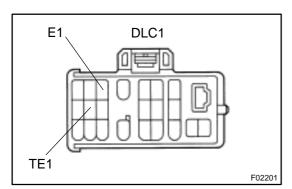
(a) Description

ECM controls the function of immobiliser on this vehicle. Data of the immobiliser or DTC can be read form DLC3 of the vehicle. When a trouble occurs in immobiliser, MIL does not light ON but DTC inspection is performed. Therefore when there seems to be a trouble with immobiliser, use TOYOTA hand-held tester or SST to check and troubleshoot it.

(b) DLC3 INSPECTION

The vehicle's ECM uses ISO 9141–2 for communication. The terminal arrangement of DLC3 complies with SAEJ1962 and matches the ISO 9141–2 format.

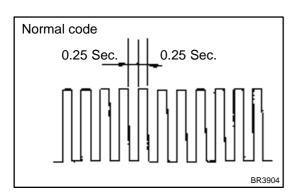
Tester connection	condition	Specified condition
7 (Bus \sim Line) – 5 (Signal ground)	During communication	Pulse generation
4 (chassis Ground) – Body	Always	1 Ω or less
5 (Signal Ground) – Body	Always	1 Ω or less
16 (B+) – Body	Always	9 – 14 V

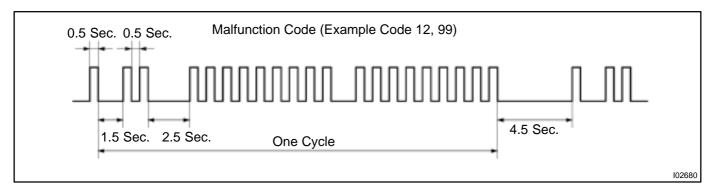

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of OBD II scan tool or TOY-OTA hand-held tester to DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- (1) If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- (2) If communication is still impossible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

DI1KG-04


- 2. INSPECT DIAGNOSIS
- (a) Check the DTC (Using TOYOTA hand-held tester)
 - (1) Prepare the OBD II scan tool (complying with SAEJ 1978) or TOYOTA hand-held tester.
 - (2) Connect the OBD II scan tool or TOYOTA handheld tester to DLC3 under the instrument panel lower pad.
 - (3) Turn the ignition switch ON and turn the OBD II scan tool or TOYOTA hand-held tester switch ON.
 - (4) Use the OBD II scan tool or TOYOTA hand-held tester to check the DTCs and freeze frame data; note them down. (For operating instructions, see the OBD II scan tool's instruction book.)
 - (5) See page DI–924 to confirm the details of the DTCs.


- (b) Check the DTC (Using diagnosis check wire)
 - (1) Turn ignition switch ON.
 - Using SST, connect between terminals 8 (TE1) and 3 (E1) of DLC1.SST 09843–18040
 - (3) Read the diagnostic trouble code from malfunction indicator lamp.

HINT:

- If a diagnostic trouble code is not output, check the Tc terminal circuit.
- ECM controls the immobiliser function on this vehicle, DTC is out put with DTC of engine.

As an example, the blinking patterns for codes; normal, 12 and 99 are as shown in the illustration.

- (4) When DTC "99" is output, there is a trouble with immobiliser. Start troubleshooting referring to PROBLEM SYMPTOM TABLE.
- (5) After completing the check, disconnect terminals 13(TC) and 4 (CG) and turn OFF the display.

HINT:

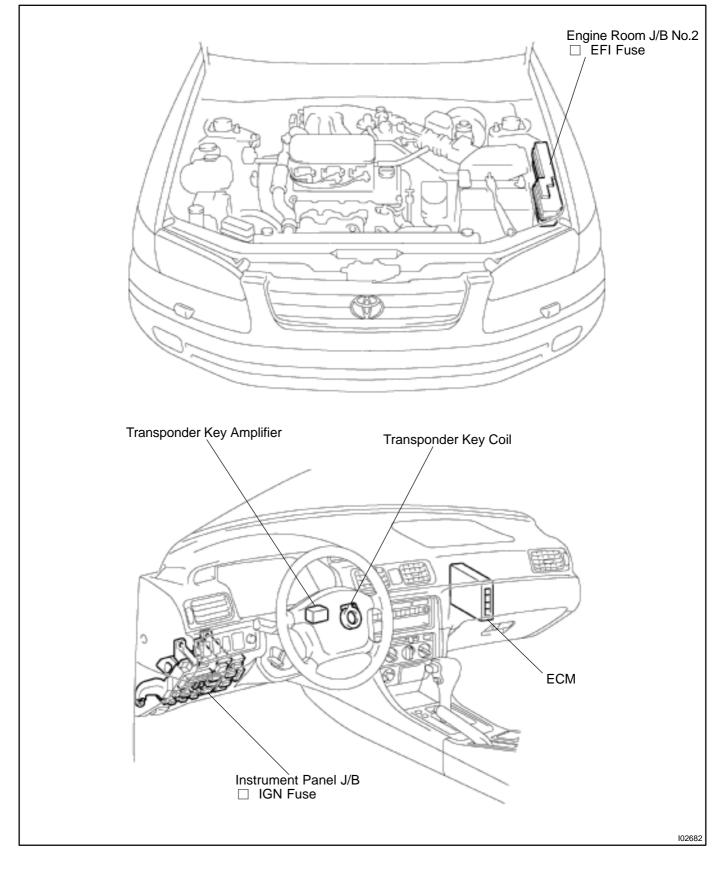
In the event of 2 or more malfunction codes. indication will begin from the smaller numbered code and continue in order to the larger.

(c) Clear the DTC

The following procedures will erase the DTCs and freeze frame data.

- (1) Operating the OBD II scam tool (complying with SAEJ1978) or TOYOTA hand-held tester to erase the codes. (See the OBD II scan tool's instruction book for operating instructions.)
- (2) Disconnecting the battery terminals or EFI fuse.

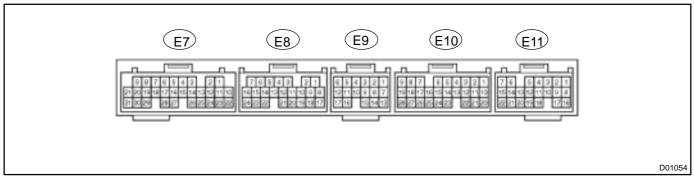
DIAGNOSTIC TROUBLE CODE CHART


DTC No. (See page)	Detection Item	Trouble Area
B2795 (DI–928)	Unmatched key code	KeyUnregistered key inserted before
B2796 (DI-929)	No communication in immobiliser system	•Key •Transponder key coil •Amplifier •Wirehaness •ECM
B2797 (DI–932)	Communication malfunction No.1	Communication contestsUnregistered key inserted before
B2798 (DI–935)	Communication malfunction No.2	•Key •Transponder key coil •Amplifier •Wirehaness •ECM

HINT:

To reduce the unnecessary exchange of ECM, check that a trouble occurs with the original ECM at the time of exchanging ECM and the trouble will disappear with a new ECM.

DI1KH-03


PARTS LOCATION

DI1KI-04

DI1KJ-04

TERMINALS OF ECM

5S-FE engine:

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
CODE – E1 (E10–8 ↔ E9–24)	$G\text{-}W \leftrightarrow BR$	Ignition Switch ON	10 – 14
TXCK – E1 (E10–9 ↔ E9–24)	$L\text{-}Y \leftrightarrow BR$	Ignition Switch ON	10 – 14
RXCK – E1 (E10–3 ↔ E9–24)	$R-L \leftrightarrow BR$	Ignition Switch ON	10 – 14
1MZ–FE engine:			
Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
CODE – E1 (E9–4 ↔ E10–17)	$G\text{-}W\leftrightarrowBR$	Ignition Switch ON	10 – 14
TXCK – E1 (E9–10 ↔ E10–17)	$L\text{-}Y \leftrightarrow BR$	Ignition Switch ON	10 – 14
RXCK – E1 (E9–5 ↔ E10–17)	$RL\leftrightarrowBR$	Ignition Switch ON	10 – 14

PROBLEM SYMPTOMS TABLE

DI1	KK-03	

Symptom	Suspect Area	See page
Immobiliser is not set. (Engine starts with key codes other than the registered key code.)	2. ECM	IN-31
Engine does not start.	 Key Wire harness Transponder key coil Amplifier ECM 	*1 IN-31 BE-128 IN-31
Security indicator is always ON.	 Security indicator Wire harness ECM 	*2 IN–31 IN–31
Security indicator is always ON. (Although code has been registered in the automatic registration mode, indicator is not OFF.)	 Wire harness Transponder key coil Amplifier ECM 	IN–31 BE–128 IN–31
Security indicator is OFF (When DTC of immobiliser is output)	 Wire harness Transponder key coil Amplifier ECM 	IN-31 BE-128 IN-31
Security indicator is OFF. (When DTC of immobiliser is not output)	1. Wire harness 2. ECM	IN-31 IN-31
Security indicator is abnormally brinking.	 Wire harness ECM 	IN-31 IN-31

*1 : Check that the key which did not start the engine has been registered and that it is possible to start with other already registered key codes.

*2 : Finish the automatic registration mode because the mode might still remain.

CIRCUIT INSPECTION

DTC	B2795/99	Unmatched Key Code
-----	----------	--------------------

This DTC is output when an unregistered key is inserted. When this DTC is output, delete DTC and insert the key that a customer keeps to check that B2795 is output.

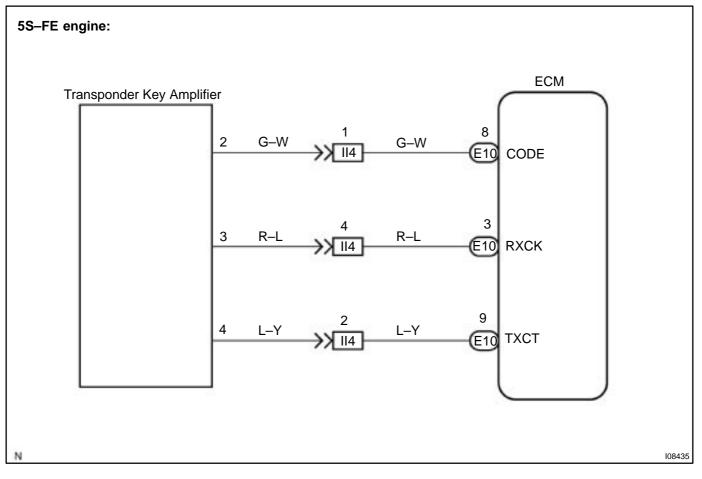
When a key that outputs B2795 is found, register this key. When B2795 is not output, there is a possibility that the unregistered key has been inserted before. (ECM is normal.)

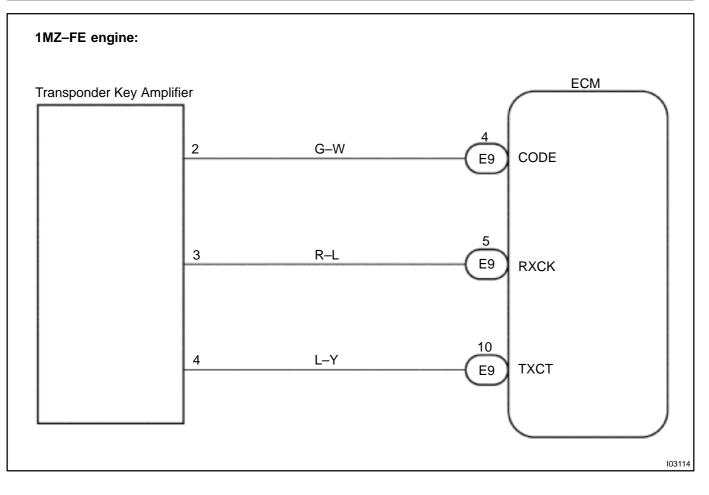
Inquire of a customer about the condition of using the system to find the cause of the trouble. (Example: Another key has been inserted, etc.)

DI1KN-02

DI4FF-01

DTC


B2796/99

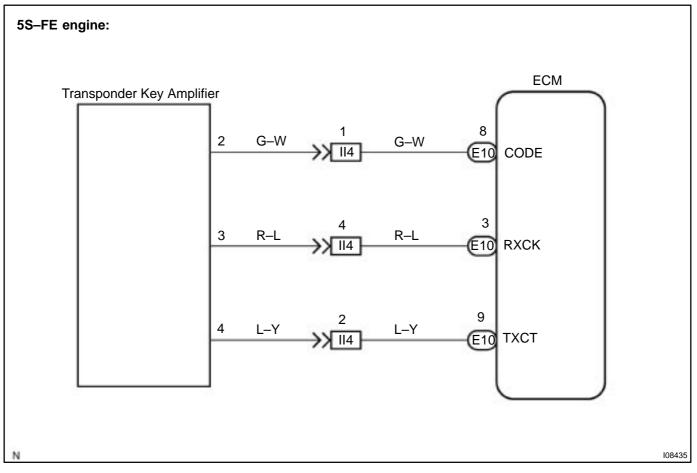

No Communication in Immobiliser system

CIRCUIT DESCRIPTION

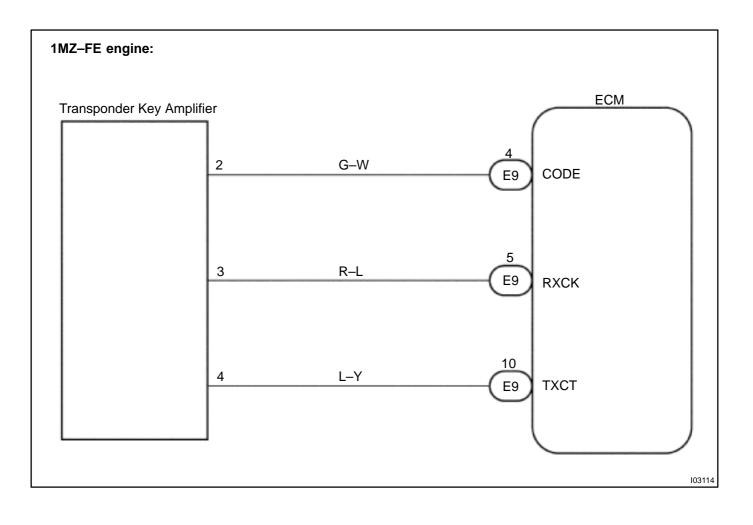
DTC No.	DTC Detecting Condition	Trouble Area
		●Кеу
	No communication	Transponder Key Coil
B2796/99		 Transponder Key Amplifier
		●Wireharness
		●ECM

WIRING DIAGRAM

INSPECTION PROCEDURE


|--|

CIRCUIT DESCRIPTION


This code is detected when although the communication has been performed normally, an error occurs. (Example. Some noise is inclueded in communication line.)

DTC No.	DTC Detecting Condition	Trouble Area
B2797/99		Wire Harness Transponder Key Amplifier ECM

WIRING DIAGRAM

DI4FG-01

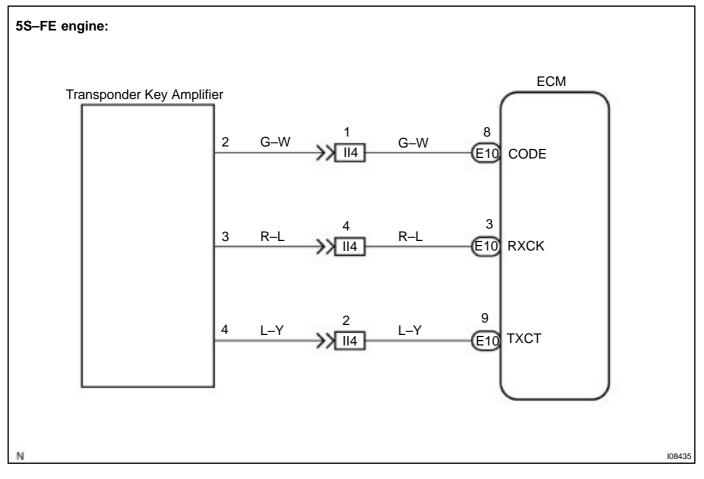
No

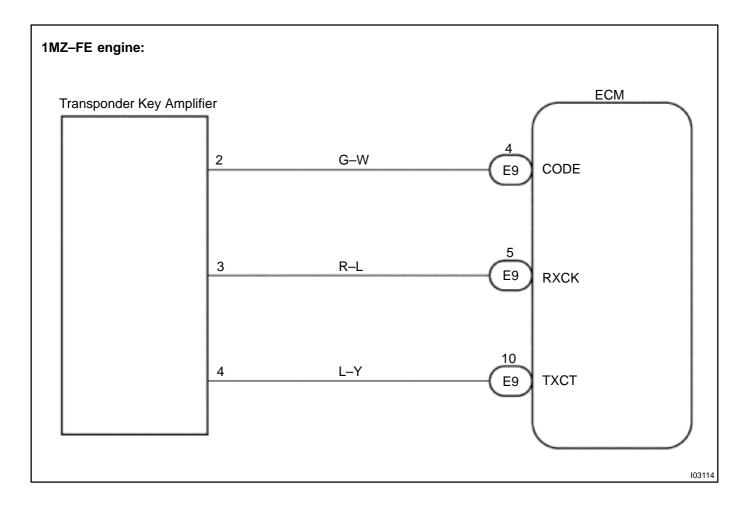
INSPECTION PROCEDURE

Replace ECM.

Communication malfunction No.2

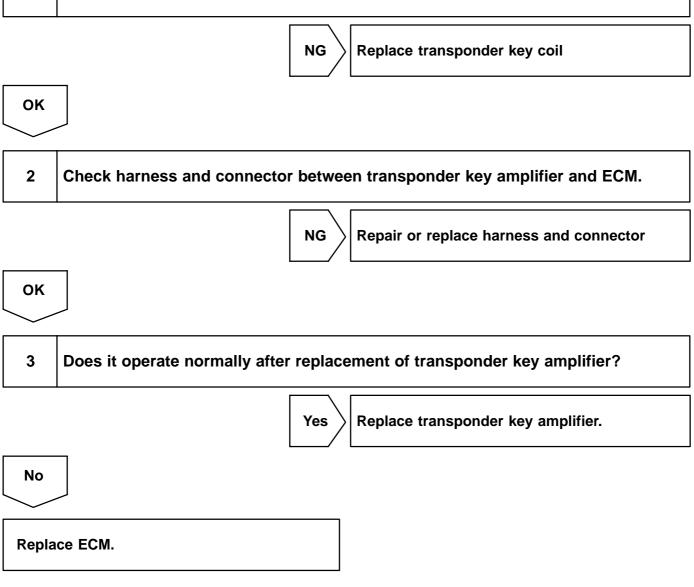
DI4FH-01


CIRCUIT DESCRIPTION


DTC

B2798/99

DTC No.	DTC Detecting Condition	Trouble Area
B2798/99	Communication error	 Key Transponder Key Coil Transponder Key Amplifier Wireharness ECM


WIRING DIAGRAM

Date :

INSPECTION PROCEDURE 1 Check transponder key coil (See page BE–128).

